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Abstract—Accurate estimation of gross primary productivity
(GPP) from the regional to global scale is essential in modeling car-
bon cycle processes. The recently-developed two-leaf light use effi-
ciency (TL-LUE) model and its revised versions based on different
concepts have significantly improved the underlying mechanisms
between model assumptions and photosynthetic processing. Yet few
studies have compared the advantages of the various two-leaf LUE
models for their practical applications. Here, an integrated model
referred to as a three-parameter radiation-constrained mountain
TL-LUE (RMTL3-LUE) is proposed by combining the radiation
scalar of the [radiation-constrained TL-LUE model] and the topo-
graphic parameters of the [mountainous TL-LUE model]. In this
way, the importance of light intensity and topography on vegetation
photosynthesis is integrated. Our calibration and validation of
RMTL3-LUE were carried out for 11 ecosystems with in situ eddy
covariance measurements around the globe. This indicates that
the model can effectively improve the GPP estimates compared
with its predecessors. At the landscape scale, RMTL3-LUE can
also realistically quantify topographic effects on photosynthesis,
with topographic sensitivities of decreasing (increasing) with the
slope on the unshaded (shaded) terrain. Furthermore, RMTL3-
LUE displays an asymmetric sensitivity to PAR variability, with a
low sensitivity to PAR compared with other models under high
PAR conditions and a similar sensitivity to PAR in low PARs.
Altogether, it is clear that the integration of the merits of multiple
TL-LUE models can further improve the photosynthetic processes
for various conditions amid more challenges in constructing more
complex models.
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I. INTRODUCTION

GROSS primary productivity (GPP) of terrestrial ecosys-
tems, defined as the amount of carbon fixed by plants

through photosynthesis for a given unit of time and space,
is the main process of the carbon cycle between land and
atmosphere systems. Therefore, accurate modeling of GPP at
different spatiotemporal scales is a prerequisite to understanding
the terrestrial carbon cycle [1]. It is an active focal point of
global change studies, especially in the decades since eddy
covariance (EC) flux towers [2] and satellite remotely sensed
data [3] became available.

The EC technique can provide a near real-time measure of
the net exchange of CO2 (i.e., net ecosystem exchange, NEE)
between the land surface and the atmosphere with high accuracy,
through which GPP can be directly estimated by differentiating
ecosystem respiration and NEE [4]. Although its footprint only
covers an area of a few hundred meters to kilometers, a net-
work of global EC towers has provided key ancillary datasets
for the calibration and validation of GPP models in different
ecosystems [5], [7], [8]. In recent decades, many models have
been developed to simulate GPP at scales from local to global,
with substantial improvements in model structure and quality of
forcing inputs. These models are generally classified as process
models [9], [10], [11] and light use efficiency (LUE) models
[12], [13], [14], [15], [16], [17]. Because process models have a
complex structure and require many parameters for vegetation,
soil, and climate, LUE models have been preferred for some
applications. This is primarily due to the successful use of
the remotely sensed vegetation index to characterize absorbed
photosynthetically active radiation (APAR) [18], [19], [20],
[21], [22], [23]. Earlier remote sensing LUE models simply
assumed the vegetation canopy to be a large extended leaf
(big-leaf concept) based on the leaf-level Monteith function (i.e.,
big-leaf LUE model) [24]. They would indirectly estimate GPP
by multiplying APAR, maximum LUE, and environmental stress
scalars at the ecosystem level. Unfortunately, these models (e.g.,
CASA, CFlux, VPM, MOD17) ignore the differences in APAR
and maximum LUE between sunlit and shaded leaves of the
canopy [6], [25], [26]. For any ecosystem, sunlit leaves receive
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both direct and diffuse photosynthetically active radiation (PAR)
and have low LUE due to light saturation. In contrast, shaded
leaves absorb only diffuse PAR and have high LUE (two-leaf
concept) [20], [23], [27]. Treating sunlit and shaded leaves the
same in big-leaf LUE models thus led to substantial biases
in GPP simulations, with underestimates on cloudy days and
overestimates on sunny days [20], [28], [29]. In contrast, the
two-leaf LUE model (e.g., TL-LUE) estimates GPP by APAR
and LUE independently for the sunlit and shaded leaves. It has
been proven to be more accurate than big-leaf LUE models (e.g.,
MOD17 model) in six plant functional types (PFTs) in China
[20] and nine PFTs across the globe [27]. As a key parameter of
TL-LUE, the LUE for sunlit and shaded leaves is calculated with
an independent maximum LUE value for the sunlit (εmax-sun)
and shaded leaves (εmax-shd), and then downscaling the εmax-sun

and εmax-shd by identical environmental scalars of temperature
and atmospheric water vapor deficit (VPD) (see methods). This
means that specification of εmax-sun and εmax-shd is crucial for
the LUE estimates of sunlit and shaded leaves.

A recent study by Guan et al. [30] found that the divergence
in LUE between sunlit and shaded leaves is closely related to
their radiation interception abilities rather than the differences in
maximum LUE. This is because the physiological traits of a leaf
are almost the same irrespectively of “sunlit” or “shaded,” i.e.,
εmax-sun equals εmax-shd. Based on this assumption, Guan et al.
[30] proposed a radiation-constrained TL-LUE (i.e., RTL-LUE)
model by introducing a radiation scalar for the differences in
LUE between sunlit and shaded leaves, which resulted in more
accurate estimates of GPP across 169 globally distributed EC
sites [30]. Unfortunately, both TL-LUE and RTL-LUE neglect
the topographic effects on vegetation photosynthesis. However,
the topographic attributes (elevation, slope, aspect, etc.) are
known to change vegetation interceptive capability of radiation
by altering the geometric relationship between the canopy and
sunlight [31]. For example, Chen et al. [10] showed that the
net primary productivity was overestimated by 5% in boreal
mountain forests when topographic effects were neglected.
Xie and Li [32] proposed a two-leaf LUE model for mountainous
areas (MTL-LUE) to address this shortcoming by including
topographic effects on direct and diffuse radiation and sunlit
canopy area. This model not only improves the GPP estimates
for mountainous forests but also presents the spatial distribution
of the effects of rugged terrain on photosynthesis [32], [33]. The
MTL-LUE, however, neglects radiation-related differences in
LUE between sunlit and shaded leaves addressed by RTL-LUE,
likely leading to an overestimation of actual LUE and GPP.
Additionally, the MTL-LUE model has been validated at the
site- or watershed-scale in only a few areas (e.g., forests in the
mountains of central Italy and southwestern China) and has not
been extensively assessed at EC sites globally.

Previous studies have provided important information on
methodological advances in the two-leaf LUE models in global
EC sites and terrestrial ecosystems. However, to our knowl-
edge, several methodological challenges remain when integrat-
ing three two-leaf LUE models (i.e., TL-LUE, RTL-LUE, and
MTL-LUE). First, both TL- and RTL-LUE models neglect the
topographic effects on APAR in GPP estimates. However, both

emphasize the differences in εmax (TL-LUE) and radiation
intensity (RTL-LUE) between sunlit and shaded leaves. To
address this, we first propose a radiation-constrained TL-LUE
model for mountain areas [hereafter RMTL2-LUE] by incor-
porating APAR estimates of MTL-LUE with consideration of
topographic effects into RTL-LUE (see methods). The inspi-
ration for this treatment is that the RTL-LUE simulates GPP
more accurately than TL-LUE by quantifying different radiation
scalars for sunlit and shaded leaves. Second, we propose a
radiation-constrained TL-LUE model for mountain areas that
considers a different εmax for sunlit and shaded leaves (hereafter
RMTL3-LUE). For example, the RMTL3-LUE incorporates
APAR estimates in MTL-LUE and differing radiation con-
straints for the LUE of sunlit/shaded leaves of RTL-LUE into
the TL-LUE (see methods). This integrated model involves the
physiologically based process of photosynthesis (i.e., different
εmax values for sunlit and shaded leaves) and radiation con-
straints on photosynthesis (i.e., different radiation intensities for
sunlit and shaded leaves) under complex terrain conditions (i.e.,
different estimates of APAR for flat and mountain areas). We
expect that RMTL3-LUE could more precisely capture the pho-
tosynthesis processes of the canopy. However, comprehensive
comparisons among these models and validation against ground
measurements of GPP (e.g., EC-based observations) are lacking,
particularly across various PFTs and terrain conditions. Finally,
the sensitivity of these models to crucial forcing inputs (PAR,
LAI, and clumping index) and terrain variability is needed to
examine which forcing input is most associated with the outputs
of the models under diverse topography conditions. Sensitivity
analysis can also identify the possible effects of biases in the
gridded products of PAR, LAI, and clumping index data on
spatial distributions of GPP in mountainous areas. Here we
leverage 658 site-year high-quality EC data (143 sites, 11 PFTs
globally) to calibrate the above two integrated models at the PFT
scale and compare them with their predecessors (TL-, RTL-, and
MTL-LUE). We focus on which of these models is the most
effective, especially in different terrain conditions. Our premise
is that new integrated models could effectively explore the merits
of earlier two-leaf LUE models and not only improve the GPP
estimates at EC sites but also reveal the topographic effects
on spatial distributions of GPP, particularly for the mountain
ecosystems at large spatial scales.

II. DATA AND METHODS

A. Data and Sources

1) Flux Data: Flux data recorded at 143 EC sites of the
global FLUXNET 2015 database were used to calibrate and
validate five types of models, including our two integrated mod-
els and their three predecessors (TL-, RTL-, and MTL-LUE).
The FLUXNET 2015 provides data on GPP, air temperature,
precipitation, PAR, etc., at multiple time scales (30 min to
annual) [34]. The high-quality flux and micrometeorological
data were first selected based on the criteria, with (1) record
of daily GPP, downward shortwave radiation, VPD, and air
temperature, (2) daily data quality flag >0.8, (3) proportion of
high-quality data for the whole year >80%, and (4) availability
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Fig. 1. Spatial distribution of the 143 EC tower sites covering 11 plant functional types. The numbers in parentheses represent the number of sites used in this
study, and the black open squares indicate six mountain sites for GPP simulation at a landscape scale with rugged terrain.

of remotely sensed leaf area index (LAI) and digital elevation
model (DEM) data in a rectangular area of 1000 m × 1000 m
centered on the EC site (hereafter carbon footprint area). The
8-day flux data for each site was then estimated by averaging
the daily data with valid values of ≥5 days during consecutive
8-day records. This was to match the 8-day LAI data. As a result,
the 143 EC sites (658 site-years) were selected from all 212 sites
to cover the 11 PFTs globally: deciduous broadleaf forest (DBF,
19 sites), evergreen broadleaf forest (EBF, 14 sites), evergreen
needleleaf forest (ENF, 28 sites), mixed forest (MF, nine sites),
grass (GRA, 27 sites), crop (CRO, 15 sites), closed shrub (CSH,
two sites), open shrub (OSH, seven sites), wetlands (WET, ten
sites), savannas (SAV, six sites), and woody savannas (WSA,
six sites) (Fig. 1 and Table S3). Finally, the 658 site-years of
flux data were randomly divided into 497 and 161 site-years for
calibration and validation of all models (75.5% and 24.5% of all
site-years), respectively.

2) Leaf Area Index: The Terra MODIS LAI product
MOD15A2H, with a spatial resolution of 500 m and 8-day
interval, was used to drive the LUE models in the study. Spatially
averaged LAI time series data were extracted over each EC site’s
carbon footprint area after removing cloud-contaminated pixels
using quality control flags. Then, a locally adjusted cubic spline
capping filter was used to smooth the LAI data further to reduce
the influences of nonvegetation effects such as clouds, snow, and
soil [35].

3) Digital Elevation Model: The NASADEM, a newly re-
leased product generated from the original Shuttle Radar Topog-
raphy Mission data with 30 m spatial resolution, provides key

topographic parameters for driving the topographic-related LUE
models (MTL-LUE and our integrated models). The topographic
variables needed in the models include slope, aspect, and sky
view factors to provide the proportion of sunlit and shaded leaves
in the canopy and the distribution of solar radiation (i.e., direct
and diffuse radiation).

B. Model Improvement Protocols

1) Model Description and Integration: The model improve-
ment protocols in this study were inspired by the methodolog-
ical advances from the TL-LUE to RTL-LUE and MTL-LUE.
Specifically, the TL-LUE estimates GPP by setting a different
maximum LUE and APAR for sunlit and shaded canopies (1)
shown at the bottom of the next page, and assuming different
physiological traits of sunlit and shaded canopies. In contrast,
RTL-LUE emphasizes radiation constraints rather than physio-
logical mechanisms on LUE for sunlit and shaded canopies and
employs different radiation scalars to downscale the maximum
LUE of two canopies (2) shown at the bottom of the next page.
However, these two types of models are generally parameterized
for flat areas without consideration of topographic effects on
solar radiation received by the canopies. The MTL-LUE model
estimates GPP using a terrain-adjusted APAR for sunlit and
shaded canopies in mountain areas, with a similar parameteriza-
tion of maximum LUE in TL-LUE [20] (3) shown at the bottom
of the next page. Here, we propose two integrated models for
EC sites and landscape within the carbon footprint area [31]
by taking the merits of the previous three models. In the first
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protocol, we propose a model (RMTL2-LUE) that integrates
the terrain-corrected APAR of MTL-LUE into the RTL-LUE
(4) shown at the bottom of this page. As its name indicates, this
model estimates different APARs for sunlit and shaded canopies
in mountainous vegetation and has two PFT-specific parameters
to be optimized, including the light intensity coefficient [a] and
εmax. In the second protocol, we propose a model (RMTL3-
LUE) by integrating the terrain-corrected APAR of MTL-LUE
and the radiation scalar of RTL-LUE into the TL-LUE (5) shown
at the bottom of this page. Three PFT-specific parameters are to
be optimized, including the light intensity coefficient [a], and
the maximum LUE for sunlit and shaded canopies [εmsu and
εmsh], where the light intensity coefficients were inherited from
optimized values of RMTL2-LUE. where εmax-sun, εmax-shd,
and εmax are the maximum LUE of sunlit, shaded, and the entire
canopy, respectively (unit: g C MJ−1). APARsun-ft (APARsun-mt)
and APARshd-ft (APARshd-mt) are the absorbed PAR by sunlit
and shaded leaves in flat (rugged) terrain (unit: MJ·m−2·d−1).
The specific information and associated parameters optimization
are provided in Supplementary Methods S1 and S2. According
to Chen et al. [9] and Guan et al. [30], the radiation scalars
[f(PPFDsun) and f(PPFDshd)] were derived from the algorithms
of stomatal conductance in response to light intensity in the
BEPS and BIOME-BGC models. These are the reciprocal equa-
tions of the photosynthetic photon flux density (PPFD) of the
sunlit and shaded leaves.

f(PPFDsun) =
b

a× PPFDsun + b
(6)

f(PPFDshd) =
b

a× PPFDshd + b
(7)

where a and b are the coefficients that determine the relationship
between light intensity and LUE; b is set as a constant (1 mol
m−2 hh−1), and a is a parameter that controls the response of
LUE to PPFD. The PPFD of sunlit and shaded leaves (PPFDsun

and PPFDshd, mol m−2 hh−1) was derived from the product of
the PAR absorbed by the two sets of leaves with a constant
PAR-energy ratio (4.55 mol/MJ), respectively.

f(VPD) and g(Ta) represent water and temperature stress
scalars that are used to downscale maximum LUE (8) and (9)

f(V PD)=

⎧⎨
⎩
0 V PD ≥ V PDmax
V PDmax−V PD

V PDmax−V PDmin
V PDmin<V PD<V PDmax

1 V PD ≤ V PDmin

(8)

g(Ta)=

⎧⎨
⎩
0 Ta ≤ Tmin
Ta−Tmin

Tmax−Tmin
Tmin < Ta < Tmax

1 Ta ≥ Tmax

(9)

where VPD and Ta are day-time averaged vapor pressure deficit
and daily minimum temperature in 8-day steps, respectively.
The subscripts max and min are the corresponding maximum
and minimum values of VPD and Ta and are determined by the
PFTs following Guan et al. [30].

2) Model Parameterization and Validation: The maximum
LUEs [εmax-sun, εmax-shd, and εmax] and the radiation scalars
[f(PPFDsun) and f(PPFDshd)] are the key parameters in the five
LUE models to be optimized using the EC GPP for each PFT.

In this study, the shuffled complex evolution-University of
Arizona method (SCE-UA) [36] was used to optimize biome-
specific parameters for each model, including the maximum
LUE [εmax-sun, εmax-shd, and εmax] and a (for f(PPFD) es-
timate) in (1)–(5), respectively. Specifically, SCE-UA opti-
mization was carried out at 497 site-years and evaluated with
agreement index (d), (10), which ranges between 0 (no agree-
ment) and 1 (complete agreement). Site-year data with d <0.5
was excluded from the modeling calibration to eliminate the
effects caused by abnormal or incomplete seasonal changes in
EC GPP.

d = 1−
n∑

k=1

(Pk −Ok)
2

/ n∑
k=1

(∣∣Pk −O
∣∣+ ∣∣Ok −O

∣∣)2
(10)

where n is the total number of observations; Pk and Ok represent
the kth model predicted, and EC site observed GPP values,
respectively, and Ō represents the mean value of all observations.

The statistics of optimized parameters of the five LUE models
for 11 PFTs are shown in Table S4. Three statistical indexes,
including coefficient of determination (R2), root-mean-square
error (RMSE), and mean predictive error (Bias), were applied
to assess the accuracy of the 8-day GPP simulated by the five
models [30] using validation data at 161 site-years.

C. Simulations Across Heterogeneous Spaces

To evaluate model performance in mountainous areas, we
selected six mountainous sites (also representing six PFTs,
Fig. 1) with an average slope >10° within the carbon footprint
areas to simulate 8-day GPP (Figs. 5 and 6). The simulations
were made at a 30-m spatial resolution to match the spatial
resolution of the topography data. The forcing inputs for each
model over the footprint area [Ta and VPD in 8-day steps] were
obtained from the Mountain Microclimate Simulation Model 4.3

GPP = (εmax−sun ×APARsun−ft + εmax−shd ×APARshd−ft)× f(V PD)× g(Ta) (1)

GPP = εmax × (f(PPFDsun)×APARsun−ft + f(PPFDshd)×APARshd−ft)× f(V PD)× g(Ta) (2)

GPP = (εmax−sun ×APARsun−mt + εmax−shd ×APARshd−mt)× f(V PD)× g(Ta) (3)

GPP = εmax × (f(PPFDsun)×APARsun−mt + f(PPFDshd)×APARshd−mt)× f(V PD)× g(Ta) (4)

GPP = (εmax−sun × f(PPFDsun)×APARsun−mt + εmax−shd × f(PPFDshd)×APARshd−mt)× f(V PD)× g(Ta)
(5)
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Fig. 2. Comparisons between the GPP simulated by five two-leaf LUE models and estimated at corresponding EC sites for 11 PFTs. The color varying from blue
to yellow indicates the data point density from low to high. The black dashed line represents the 1:1 line, and the solid red line represents the linear regression line.

(MT-CLIM 4.3) by inputting topography and flux tower mi-
crometeorological data [37], [38], [39]. Direct and diffuse PARs
above the canopies within the tower footprint were calculated
using the method described in Supplementary Method S1. We
uniformly used mean LAI data within the footprint areas to
model landscape scale GPP for each pixel in the footprint areas.
This is because the 30 m resolution LAI data for each pixel
over the footprint area were unavailable, and carbon footprint
areas were found to be relatively homogeneous by our visual
inspection of Google Earth for each mountain site.

III. RESULTS

A. Multiscale Comparison Among the Models

1) EC Site Scale: After calibration of the models using 497
site-years data, the estimated EC GPP data at 161 site-years were
used to validate each two-leaf LUE model for the 11 PFTs at an
8-day interval (Fig. 2). Overall, all five LUE models reasonably
captured the variations of GPP at EC sites for 11 PFTs, with
R2 of >0.50 for all PFTs except CSH (0.213–0.315). Com-
pared with the TL-LUE, both RTL-LUE and MTL-LUE showed
better performance for most PFTs. For example, the smallest
RMSE values are observed for RTL-LUE, with ranges from
5.868 g C m−2 8d−1 for OSH to 21.379 g C m−2 8d−1 for CRO
(Fig. 2). The phenomena of over- or under-estimates for low and
high GPP values in MTL-LUE were significantly reduced, with
the fitted line more closely located at the 1:1 line than TL-LUE

for most PFTs (Fig. 2). In terms of our integrated models,
RMTL3-LUE outperformed RMTL2-LUE for most PFTs, with
an R2 of 0.289–0.853 and 0.315–0.872. An exception occurred
in croplands where R2 is 0.642 and 0.652 for RMTL3-LUE and
RMTL2-LUE, respectively. Because RMTL3-LUE effectively
integrated the merits of its predecessors, RMTL3-LUE produced
a more accurate GPP prediction than TL-LUE and RTL-LUE.
However, it was slightly inferior to MTL-LUE in solving the
phenomena of over- and under-estimation of GPP in the low and
high GPP ranges. It is worth noting that RMTL3-LUE produced
higher R2 values than predecessors for DBF, EBF, ENF, CSH,
OSH, and WET, but similar for other PFTs except cropland.
When all PFTs were considered together (Fig. 2), RMTL3-LUE
showed the best performance, with the highest R2 being 0.761.
Additionally, RMTL3-LUE simulated GPP and flux tower GPP
exhibited high levels of consistency in both the high- and
low-value ranges. This was similar to MTL-LUE, superior to
RTL-LUE and RMTL2-LUE, but inferior to TL-LUE.

Statistics at independent EC sites showed that more than 60%
of the sites produced an R2 of>0.7 and an RMSE of<12 g C m−2

8d−1, and nearly 80% of the sites exhibited |Bias| <10 g C m−2

8d−1 for all models (Table I). This suggested that all models were
universally applicable in various regions of the world (Fig. 3). In
particular, RMTL3-LUE produced the highest R2 values and the
lowest RMSE and |Bias| values at 47.6%, 46.3%, and 36.6% of
the validation sites, which is considerably better than the other
four models (Table II).
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Fig. 3. Percentage of the site with a coefficient of determination (R2), RMSE, and absolute value of the mean predictive error (Bias) between the GPP simulated
by five models and estimated at corresponding EC sites.

TABLE I
PERCENTAGE OF SITES (%) OF R2 > 0.7, RMSE < 12 G C M−2 8D−1 AND AN

ABSOLUTE VALUE OF BIAS < 10 G C M−2 8D−1 BETWEEN GPP SIMULATIONS

BY FIVE LUE MODELS WITH CORRESPONDING GPP ESTIMATED BY EC SITES,
RESPECTIVELY

TABLE II
PERCENTAGE OF SITES (%) OF MAXIMUM R2, MINIMUM RMSE, AND AN

ABSOLUTE VALUE OF BIAS IN FIVE LUE MODELS BETWEEN GPP
SIMULATIONS BY FIVE LUE MODELS WITH CORRESPONDING GPP ESTIMATED

BY EC SITES, RESPECTIVELY

To evaluate the performances of the five models in rugged
terrain, we divided EC sites into two groups by the mean slope
in the footprint area. The first group represents the flat terrain

where the mean slope is 0°–5° (64 sites, 112 site-years), while
the second group represents rugged terrain where the mean slope
is >5° (18 sites, 39 site-years). Interestingly, we found that the
five models produced similar results for the first group, with R2,
RMSE, and Bias ranging from 0.765–0.770, 17.742–15.507 g C
m−2 8d−1 and −2.808–−1.753 g C m−2 8d−1. In addition, the
regression lines between the observed GPP and modeled GPP
by TL-LUE, MTL-LUE, and RMTL3-LUE were very close to
the 1:1 line with a k of >0.8 and a b of <7.6 g C m−2 8d−1

(Fig. 4). In rugged terrain, however, the five models’ modeling
accuracy was reduced to varying degrees, with a noticeable
reduction of the R2 and k values for TL-LUE (from 0.765 to
0.718 and from 0.836 to 0.758) and the k value for RMTL2-
LUE (from 0.783 to 0.749). The RTL-LUE, MTL-LUE, and
RMTL3-LUE showed more consistency with EC GPP in rugged
terrains, most probably due to the successful integration of
radiation/topography mechanisms in these models. In summary,
RMTL3-LUE showed similar or better performance than other
models regardless of PFTs, sites, and terrain features. However,
RMTL2-LUE did not although it also considers topography
effects on GPP simulations. Thus, we excluded RMTL2-LUE
in subsequent analysis.

2) Landscape Scale: Clear spatial differences were observed
in total GPP (i.e., the sum of sunlit and shaded GPP) between
modeled by [TL-LUE, RTL-LUE] and [MTL-LUE, RMTL3-
LUE] (Fig. 5, S2, and S4). Specifically, the GPP modeled by
TL-LUE and RTL-LUE were higher in low elevations, while
GPP simulated by MTL-LUE and RMTL3-LUE were higher
in unshaded terrain (Figs. 5 and 6). For example, the regional
averaged total GPP modeled by RMTL3-LUE at the CN-Din site
was 51.544 g C m−2 8d−1 in unshaded terrains, which is greater
than that in shaded terrains (49.019 g C m−2 8d−1) (Fig. 6). As
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Fig. 4. Comparisons between GPP simulated by five LUE models and estimated at corresponding EC sites for flat [slope = 0°–5°] or rugged [slope>5°] terrain.
The color varying from blue to yellow indicates the data point density from low to high. The black dashed line represents the 1:1 line, and the solid red line
represents the linear regression line.

Fig. 5. Spatial distribution of the annual mean GPP simulated by four LUE models for the carbon footprint area at six EC sites representing six PFTs.
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Fig. 6. Spatial distribution of the annual mean GPP simulated by four LUE models in varying aspects (denoted by radius) and slopes (denoted by angle) at six
EC sites (i.e., six PFTs). The black dashed line indicates the annual mean solar azimuth (As); the red/blue number represents the spatial average for annual mean
GPP in unshaded terrain [As-90°<aspect< = As+90°]/shaded terrain [As+90°<aspect< = 360° or 0°<aspect< = As-90°].

expected, both MTL-LUE and RMTL3-LUE showed greater
spatial variabilities than TL-LUE and RTL-LUE, with the
standard deviations of modeled total GPP ranging between
0.132 and 2.202 g C m−2 8d−1 for MTL-LUE and 0.101 and
1.941 g C m−2 8d−1 for RMTL3-LUE (Figs. 5 and 6). This
suggests that topographic corrected models can reveal the
spatial variations of GPP. In terms of the spatial differences in
GPP between sunlit and shaded canopies (GPPsun and GPPshd),
the nontopographic-corrected models (TL-LUE and RTL-LUE)
showed similar spatial patterns of GPPsun and GPPshd with
total GPP for all selected landscapes, with a tendency of
increasing GPPsun and GPPshd with altitudes (Figs. S2–S5,
Figs. 5 and 6). However, both MTL-LUE and RMTL3-LUE

exhibited different spatial GPPsun and GPPshd, with higher
GPPsun in unshaded terrain than in shaded terrain, which is
consistent with the spatial pattern of total GPP and higher
GPPshd in shaded terrain than in unshaded terrain (Figs. S2–S5,
Figs. 5 and 6).

B. Sensitivity Analysis

1) Sensitivity of GPP Simulated by Models to Key Input
Variables: We optimized maximum LUE and light intensity
coefficients using EC data globally and emphasized the advan-
tages of integrating the merits of previously developed two-leaf
models. However, the variations of modeled GPP could be
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Fig. 7. Sensitivity of the annual mean GPP simulated by four LUE models to PAR for 11 PFTs.

associated with three key inputting variables, including LAI,
PAR, and clumping index. Consequently, we further analyzed
the sensitivity of the model output (GPP) to the above three
variables for each PFT by changing these variables relative to
the original simulation data from −30% to 30% in steps of
5%. The sensitivity of all models to PAR tended to decrease
sharply with increasing PAR (from 0% to 30%) and to increase
slightly with decreasing PAR (from 0% to−30%) for most PFTs,
showing an asymmetric distribution of the logarithmic function
(Fig. 7). For example, a 30% increase in PAR resulted in a 12.1%
overestimation of GPP, and a 30% decrease in PAR resulted in
a 19.8% underestimation of GPP in MTL-LUE for EBF. It is
noteworthy that the sensitivity of RMTL3-LUE to PAR is the
lowest for all PFTs, with GPP variations ranging from −22.0%
to+16.2%, which is lower than that of other models (−30.9% to
+42.0%; Fig. 7). Interestingly, there are almost no differences in
the sensitivity of all models to LAI for individual PFT. However,
the LAI sensitivity varied greatly by PFTs, with high sensitivity
occurring in CRO, OSH, SAV, and WSA (−27.4% to +25.4%)
and low sensitivity in the other PFTs (−20% to +20%) (Fig. 8).
The sensitivity of the four models to the clumping index showed
similar patterns to the LAI (i.e., individual PFT). There was a
slight difference in sensitivity between models, with differences
of GPP variability of <11.7%, while for the independent model,
there was a larger difference between PFTs, with GPP variability
exceeding 20% in OSH, SAV, and WSA, but−16–11% for other
PFTs (Fig. 9).

2) Sensitivity of the GPP Simulated by Models to Topo-
graphic Variations: In addition to three inputting variables, the
topography is another factor causing variations of GPP modeled
by the topography-corrected models (MTL-LUE and RMTL3-
LUE). By artificially changing the slope from 0 to 30° in 1°
steps for unshaded and shaded terrain separately, we showed
that the GPP simulated by both RMTL3-LUE and MTL-LUE
exhibited higher sensitivity to slopes on shaded terrain than
unshaded terrain and that sensitivity increased with an increasing
slope on shaded terrain but decreased with the slope on un-
shaded terrain (Fig. 10). Compared with MTL-LUE, the GPP
simulated by RMTL3-LUE showed a lower sensitivity to the
slope on unshaded terrain and a higher sensitivity on shaded
terrain. Considering that the input variables in different terrain
may play a decisive role in the final GPP variations by the
topography-corrected LUE model, we further found that the
sensitivity of RMTL3-LUE and MTL-LUE to changes in key
input variables with varying terrain. We found that the sensitivity
of the two models to PAR and LAI increased with slope increase
on unshaded terrain and decreased with the slope on shaded
terrain (Figs. S6 and S7). In contrast, the sensitivity of the two
models to the clumping index showed opposite changes with the
slope on the unshaded or shaded terrain (Figs. S8). For the same
topographic conditions (specific slope and aspect), RMTL3-
LUE presented lower sensitivity to PAR, higher sensitivity to
LAI, and similar sensitivity to the clumping index compared
with MTL-LUE (Figs. S6–S8).
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Fig. 8. Sensitivity of the annual mean GPP simulated by four models to LAI for 11 PFTs.

IV. DISCUSSION

A. Model Improvement

Using EC and micrometeorological data in 11 PFTs from 143
flux sites globally, and the modeling concept of two-leaf LUE
models, we integrated the merits of three previously proposed
two-leaf LUE models [TL-LUE, RTL-LUE, and MTL-LUE]
into two individual models. In the first integration, we opti-
mized the PFT-dependent maximum LUE and light intensity
coefficients in the entire canopy without consideration of dif-
ferences in εmax between sunlit and shaded canopies. In the
second integration, we optimized the different εmax for sunlit
and shaded canopies, except for the light intensity coefficient
optimized by our first integration. In addition, all two integra-
tions also estimated the APAR for sunlit and shaded canopies
separately by considering the effect of rugged terrain on APAR.
Comparing the model estimates using validation data in 86 EC
sites showed that RMTL3-LUE (second integration) provides a
noticeably better model performance than RMTL2-LUE (first
integration) for all PFTs. This suggests that the independent
setting of εmax for sunlit and shaded canopies is necessary for
improving the prediction of GPP. Notably, the RMTL3-LUE
produced similar or more accurate estimates of GPP than three
original two-leaf models, especially in the forest (DBF, EBF, and
ENF) and shrubland (CSH and OSH) ecosystems (Fig. 2), indi-
cating broader applicability of the newly integrated model. This
improved estimate of GPP in RMTL3-LUE is most probably

associated with the full consideration of differences between
both εmax and light intensity for sunlit and shaded canopies,
and the effects of topographic dependency on canopy solar
radiation reception. For example, He et al. [20] suggested that
a separate specification of εmax for sunlit and shaded canopy
can increase the accuracy of GPP estimation compared with
the big-leaf model MOD17 that use only one εmax for the
whole canopy. Guan et al. [30] also increased the accuracy
of GPP by separately parameterizing the radiation constraint
(light intensity) on εmax for the sunlit and shaded leaves. More
importantly, relevant field experiments and mechanistic studies
further support the above model mechanisms. Boulard et al.
[40], Yoshimoto et al. [41], Miller et al. [42], and Chen et al.
[43] observed that different micrometeorological conditions at
the sunlit and shaded canopy interact with canopy structure to
influence canopy physiology (enzyme activity, diffusion rate,
etc.). This physiological difference between sunlit and shaded
canopies may lead to the necessity of setting εmax for these
two groups of leaves separately. Hirose and Werger [44] also
proposed that the plant canopy adapted to the radiation envi-
ronment by redistributing nitrogen to maximize photosynthesis
throughout the canopy. They also proposed that photosynthesis
is stronger in the upper layers with higher nitrogen content
than in the lower layers with lower nitrogen content, supporting
the rationality of different radiation constraints to constrain the
εmax in sunlit and shaded canopies in our model. The im-
provements of RMTL3-LUE can also be observed at mountain
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Fig. 9. Sensitivity of the annual mean GPP simulated by four models to clumping index (Ω) for 11 PFTs.

sites compared with the MTL-LUE model proposed by Xie
and Li [32] (Fig. 4).

Despite using the same topographic parameters, RMTL3-
LUE captured the GPP of mountain vegetation more accurately
than MTL-LUE, which may be attributed to the integration
of merit of RTL-LUE (radiative constraints) to the RMTL3-
LUE. From sensitivity analysis, it can also be observed that
RMTL3-LUE is less sensitive to PAR (Fig. 7) and significantly
less variable with increasing slope than MTL-LUE (Fig. S6),
indicating the attenuation of uncertainty in mountain PAR sim-
ulation to GPP simulation in RMTL3-LUE model. The gridded
PAR products were reported to overestimate the actual PAR
[46]. In this respect, the low sensitivity of RMTL3-LUE to
PAR, especially for high PAR values, may improve the accu-
racy of regional-scale GPP simulations. At the landscape scale,
RMTL3-LUE produced more reasonable spatial distributions
of GPP, GPPsun, and GPPshd than TL-LUE and RTL-LUE,
consistently to MTL-LUE (Figs. 5 and 6, Figs. S2–S5) [32], [33].
This divergent spatial pattern of GPP modeled by the RMTL3-
and MTL-LUE model is attributed to the spatial simulation of
the model-driven variables of LAI and PAR considering rugged
terrains. By comparing the spatial patterns of LAI and PAR
from RMTL3-LUE with results from Xie and Li [32], Wang
et al. [45], and Yu et al. [46] at six mountain sites, we found
that the LAI and PAR estimated for mountainous areas by
RMTL3-LUE in conditions of terrain-tilting and adjacent terrain
shading were generally consistent with the results of previous

studies. Specifically, sunlit LAI for RMTL3-LUE increases
with an increasing slope on unshaded terrains and decreases
with an increasing slope on shaded terrains, while the oppo-
site occurs for shaded LAI (Figs. S9 and S10). It is observed
that the direct PAR for RMTL3-LUE is higher on unshaded
terrains than on shaded terrains, where direct PAR increases
with an increasing slope on unshaded terrains and decreases
with an increasing slope on the shaded terrains. Conversely,
diffuse PAR decreases with increasing slope regardless of the
aspect variations (Figs. S11 and S12). However, the TL-LUE
and RTL-LUE models, without consideration of topographic
parameters, failed to model the spatial variations in LAI and
PAR (Figs. S9–S12) and the final GPP simulations for different
terrains (Figs. 5 and 6). The minor spatial variation of GPP with
elevation presented by them was induced by the MT-CLIM 4.3
algorithm’s elevation correction factor for temperature, indepen-
dent of the internal parameters of the TL-LUE and RTL-LUE
models. At the site scale, RMTL3-LUE effectively captured
GPP at nearly 70% of globally distributed EC sites (R2 > 0.7,
RMSE < 12 g C m−2 8d−1, and |Bias| < 10 g C m−2 8d−1

at 68.3%, 69.5%, and 80.5% of validated sites in this study,
Table I). RMTL3-LUE outperformed other two-leaf models at
nearly 50% of EC sites (RMTL3-LUE had the highest R2, lowest
RMSE, and |Bias| at 47.6%, 46.3%, and 36.6% of validated sites,
Table II), demonstrating the robust performance of RMTL3-
LUE in capturing terrestrial GPP in different geographical re-
gions of the globe.
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Fig. 10. Sensitivity of the annual mean GPP simulated by MTL-LUE and RMTL3-LUE to slope on unshaded and shaded terrain for 11 PFTs.

Although improvements in GPP simulation at both site and
landscape scales were observed in the RMTL3-LUE model,
several key concerns remain regarding the application of the
RMTL3-LUE model in the future. The first concern is the
increased complexity of the model structure and, consequently,
the requirements of larger input data and computation cost for
large regional scale applications than the predecessors (TL-,
RTL-, and MTL-LUE). Due to the integration of three previ-
ously proposed models, three PFT-specific parameters, includ-
ing εmax-sun, εmax-shd, and a, needed to be optimized. Second,
we limited our study to the flux sites and less than 20 mountain
sites due to the difficulties in parameterizing models in areas
without carbon flux and micrometeorological observations. An
establishment of global scale εmax-sun, εmax-shd, and a will
become necessary to improve or apply the model per pixel
of remote sensing data already available globally. Therefore,
the trade-off in application between RMTL3-LUE and its pre-
decessors depends mainly on the requirements of study using
these models. Suppose the regional or local terrain heterogeneity
has a decisive effect on GPP variation, and there is a need for
precise GPP simulation. In that case, we strongly encourage
employing the RMTL3-LUE model to explore the effects of
micrometeorology on carbon fluxes. If the studies are on the
continental or global scales that may allow neglecting some
small-scale heterogeneity, the selection of the models highly
depend on the availability of flux data, topography data, and the
study requirement.

B. Model Parameterization

The light intensity coefficient [a] and the maximum LUE
[εmax, εmax-sun, and εmax-shd] for sunlit and shaded canopies
are pivotal parameters optimized independently before the ap-
plication of the two-leaf LUE models. Overall, the a, εmax,
εmax-sun, and εmax-shd values optimized here varied with model
structures, site-year, and PFT (Table S4). In agreement with the
studies by He et al. [20], Zhou et al. [27], and Guan et al. [30],
the mean maximum LUE decreased with an order of εmax-shd >
εmax > εmax-sun for each model and PFT, with a mean value of
2.44±0.36, 1.74±0.90 and 1.12±0.50 g C MJ−1, respectively.
Similarly, the coefficient of light intensity [a] in RTL-LUE and
our integrated models [RMTL2-LUE, RMTL3-LUE] are also
consistent for PFTs, with values ranging from 0.18 to 1.76 and
0.22 to 1.96, respectively. However, there are some variations in
these optimized parameters for an individual model in different
site-years, suggesting the importance of ecosystem representa-
tion and high-quality site-years EC data for flux towers. For
instance, the standard deviations of a, εmax-sun and εmax-shd for
RMTL3-LUE were 0.20–1.07, 0.34–1.88 g C MJ−1 and 0.48–
1.68 g C MJ−1 among the PFTs, and the coefficients of variation
were 20.6%–115.4%, 29.7%–69.6% and 13.6%–51.6% (Table
S4). This suggests that the high-quality site-years flux data are
essential for model parametrization, and setting fixed values for
specific PFT may increase the uncertainty of the ultimate GPP
simulation. Therefore, the accuracy of GPP prediction could
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be improved enormously if these parameters were reoptimized
well using EC observations, especially in precise small-scale
studies. If EC observations are unavailable, a relatively robust
GPP simulation (Fig. 2) can be obtained by directly using the
PFT-specific parameters optimized in this study (Table S4).

Accurate simulation of PAR in mountainous areas is key to
achieving accurate estimates of mountain GPP at regional scales.
In nontopographic corrected models [TL- and RTL-LUE], the
PAR was divided into direct and diffuse components (PARdir

and PARdif) based on the empirical relationships between PAR
and the sky clearness index (SI). In contrast, the topographic
corrected models [MTL- and RMTL3-LUE] simulated PARdir

and PARdif by SI-based transmittance of direct and diffuse
radiation (Kb and Kd) and topographic auxiliary inputs (Eqs.
S7 and S8) [32]. We recalibrated Kb and Kd in this study at
42 EC sites globally (Table S1). We showed that both PARdir

and PARdif simulated by topographic corrected models using
Kb and Kd are highly in agreement with those observed in
validation sites, with [k = 0.997, R2 = 0.896] for PARdir and
[k= 1.048, R2 = 0.791] for PARdif, respectively. In comparison,
the nontopographic corrected models underestimate PARdir and
overestimate PARdif, with [k = 0.622, R2 = 0.769] for PARdir

and [k = 1.696, R2 = 0.795] for PARdif (Fig. S1). In summary,
establishing the relationship between corrected SI and Kb (Kd)
for the global multiecosystems is imperative to achieve accurate
GPP estimates for RMTL3-LUE.

V. CONCLUSION

This study developed an integrated two-leaf LUE model
(RMTL3-LUE) by integrating the radiation scalars of RTL-LUE
and the topographic parameters of MTL-LUE into TL-LUE and
considering the differences in their effects on sunlit and shaded
canopies. Comparisons of RMTL3-LUE with its predecessors
showed that the newly proposed model increased GPP predic-
tions for most plant functional types and EC sites. This high-
lighted that integration of the merits of different models could
be important, especially for areas that need precise estimates
of GPP for exploring micrometeorological effects on carbon
cycles. However, the model structure may become complex in
the new model. For complex terrain conditions, RMTL3-LUE
is more effective in resisting the attenuation effect of tilted
and obscured terrain on model performance than other two-leaf
models. It realistically characterizes the spatial patterns of GPP
in mountainous landscapes. Sensitivity analysis of the model
inputs shows that RMTL3-LUE is significantly less sensitive
to PAR than other models, which could serve to resist the
unfavorable effects of the current overestimated grid radiation
data inputs on GPP simulations. We do not observe significant
intermodel divergence regarding sensitivity to LAI or clumping
index in this study. Detailed studies using more precise LAI
and clumping index data with a finer spatial resolution are
expected in the future. Considering the full optimization of
three key PFT-specific parameters, including a, εmax-sun, and
εmax-shd, we speculate that the new integrated model involves
more biophysical mechanisms of plant photosynthesis. For ex-
ample, canopy physiological attributes and radiation constraints

on photosynthesis for sunlit and shaded canopies, and differ-
ences in APAR for unshaded and shaded terrain. Our model
optimization work for RMTL3-LUE provides key equations
related to mountain PAR allocation and PFT-specific parameters
over 11 ecosystems globally. It is expected that RMTL3-LUE
is capable of more correctly quantifying terrestrial productivity
from landscape to watershed level in different geographical areas
globally.
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