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Geological Mapping via Convolutional Neural
Network Based on Remote Sensing and Geochemical

Survey Data in Vegetation Coverage Areas
Ting Pan, Renguang Zuo , and Ziye Wang

Abstract—Geological mapping in vegetation coverage areas is
a challenging task. In this article, convolutional neural networks
(CNNs) were employed for geological mapping in a vegetation cov-
erage area based on remote sensing images and geochemical survey
data. The Gram–Schmidt fusion technology was first applied to
fuse Sentinel-2A and ASTER remote sensing images to enhance the
spatial resolution and enrich spectral information of remote sensing
data. The fused remote sensing images were then organically inte-
grated with geochemical survey data according to the correlations
between the geochemical element contents and spectral reflectance
of the objects. A case study of mapping six lithologic units in
Jilinbaolige, Inner Mongolia, China was implemented using a CNN
model based on the fused data. The classification map obtained an
overall accuracy of 83.0%, which exhibited a better performance in
contrast to random forest model. The results showed that CNNs can
take full advantage of the spatial features of fused data and solve the
problems of the “salt and pepper phenomenon” against the shallow
machine learning algorithms, and the fusion of remote sensing
and geochemical data can provide rich diagnostic information for
geological mapping.

Index Terms—Convolutional neural network, data fusion,
geological mapping, random forests.

I. INTRODUCTION

G EOLOGICAL mapping plays a critical role in geological
survey. It is one of the most basic and important means for

mineral prospecting and exploration. There are two difficulties
associated with identifying lithological units: data and methods.
Rocks and minerals have specific geochemical compositions,
spectral absorption, and reflection properties, which can be
identified using geochemical and remote sensing data. Remote
sensing images contain information about the electromagnetic
waves of the target, which have the advantages of multiscale,
multitemporal, and high-spatial-resolution, particularly in areas
that are hard to access [1].

However, multispectral remote sensing technology cannot
detect subsurface geological bodies. In addition, it is difficult
to solve the problem of misclassification caused by mixed
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pixels and spectral variations. Although the scale of regional
geochemical survey data is small, they record the geochemical
characteristics of geological units, which offers a way to solve
the abovementioned problems. Because the mineral character-
istic spectrum is a response to mineral chemical composition,
there is a close relationship between them. Both geochemical
survey data and multispectral remote sensing data reflect the
different attributes of the same ground object, which are the
physical and chemical characteristics, respectively. The distribu-
tion of geochemical elements involves physical processes such
as electronic transitions and atomic vibrations, which leads to
microscopic changes such as spectral reflection and radiation.
These changes can be recorded in remote sensing images [2].
Accordingly, for the same ground object, there is a spatial and
genetic correlation between the spectra in the remote sensing
imagery and geochemical element concentrations. Multisource
data fusion provides an effective way to utilize the advantages
of different kinds of data sources by combining the information
regarding different features of the same target, thus providing
abundant information for geological mapping from multiple
perspectives [1], [3], [4].

Numerous approaches have been developed to identify litho-
logic units for geological mapping, ranging from traditional
statistical methods (such as principal component analysis) [5]
to machine learning (ML) algorithms, such as random forests
(RF) [6], [7], support vector machines (SVM) [8], [9], and
lasso regression [10]. For example, Harris and Grunsky [7]
used the RF classification algorithm for geological mapping
based on geochemical survey data, aeromagnetic data, and γ-ray
spectrum. Yu et al. [11] used SVM to classify ASTER data for
automatic lithology classification, and revealed the importance
of spatial detail features such as texture structure and topography.
Li et al. [12] used the maximum likelihood method to classify
TM remote sensing data in combination with spatial texture
features, and improved the classification accuracy from 54.3%
to 83.2%. The combination of MLs and multisource data is
an easy and inexpensive method for geological mapping [1].
However, the abovementioned methods make decisions for each
pixel in the classification map, which may ignore the spatial
characteristics of the neighboring data, and thus, may cause
the salt-and-pepper phenomenon in the classification results.
Deep learning (DL) algorithms can overcome the limitations
of these methods. DL is a neural network model with multiple
hidden layers that can improve the accuracy of classification
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Fig. 1. Basic workflow of this article.

and prediction by learning and extracting deep abstract features
of the data [13]. Convolutional neural networks (CNNs), as a
famous DL algorithm, can simulate the structure and function
of human brain neurons [14]. Moreover, CNNs are typical im-
agewise classifiers that have gained increasing attention because
their performance is much better than that of traditional ML
algorithms [15].

This article provides an alternative approach for geological
mapping in vegetation coverage areas using multisource data
fusion technology and a lithology identification model based
on a CNN, aiming to solve two issues: 1) a single type of data
resource cannot accurately diagnose the characteristics of all
lithological units; 2) commonly used ML methods only perform
pixel-wise classification that ignores spatial features. In this
regard, Gram–Schmidt (GS) multisource data fusion technology
was first applied to fuse Sentinel-2A and ASTER remote sensing
images to improve the spatial resolution of the remote sensing
data and enrich the spectral information. The fused remote sens-
ing images were then organically integrated with the geochemi-
cal survey data according to the correlations between geochem-
ical element concentrations and spectral reflectance, which not
only enriches the spatial details of geochemical survey data but
also complements the advantages of different data sources, thus
providing rich diagnostic information for geological mapping.
A CNN model (see Fig. 1) was built to distinguish the geological
units based on the fused data. The results were compared with
an RF to demonstrate the advantage of a CNN for geological
mapping using a case study in Jilinbaolige, Inner Mongolia,
China. In summary, this article is valuable and practical for
geological mapping in vegetation coverage areas.

II. METHODS

A. GS Fusion Technology

The GS transform [16], a classical pixelwise fusion method,
eliminates redundant information using orthogonal transforma-
tion of multidimensional images or matrices [17], and improves
the problem of excessive concentration of information. The
fused high-resolution image obtained using the GS transform
retains the spectral information to the greatest extent and has a
color retention similar to that of the original multispectral image.
The registered remote sensing images are synthesized into a new
image by the GS fusion algorithm, and as much information as
possible is retained to improve the image quality and provide
clearer details of the ground objects. The basic steps of GS fusion
are as follows [18], [19], [20], [21].

1) A panchromatic image is simulated using the original low-
spatial-resolution image.

2) The panchromatic image is adopted as the first component
of the GS transformation of the low-spatial-resolution
image, and the specific transformation equation is

GST (i, j) = (BT (i, j)− μT )−
T−1∑
l=1

(∅ (BT ,GSl)

·GSl (i, j)) (1)

μT =

∑N
j=1

∑M
i=1 BT (i, j)

M ×N
(2)

∅ (BT ,GSl) =

[
σ (BT ,GSl)

σ(GSl,GSl)
2

]
(3)

whereGST represents the Tth orthogonal component after
the GS transformation, BT is the T band of the original
image,μT is the mean value of the gray value of the T-band
pixel of the original image, ∅(BT ,GSl) is the covariance
between the T band and GSl of the original image, i and
j, M, and N represent the number of rows and columns of
the original image and the entire image, respectively.

3) The first component, namely the GS1 component, is sub-
stituted by a high-spatial-resolution image after the GS
transformation.

4) GS inverse transform is performed on the replaced dataset
using the following equation to obtain the fused image:

BT (i, j) = (GST (i, j) + μT ) +

T−1∑
l=1

(∅ (BT ,GSl)

·GSl (i, j)) . (4)

In the equation, all the symbols have the same meanings as
abovementioned.

B. Multisource Data Fusion

Geochemical survey data is fused with remote sensing images
using a multisource data fusion method [1], [22], [23]. The
geochemical element layers and multispectral bands have the
same spatial coordinate system and cover the same area. Ding
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et al. [23] proposed a detailed workflow for fusing geochemical
and remote sensing data as follows.

1) The same-size single-element geochemical layer (geo_l)
and multispectral remote sensing images (MS) were
clipped, and spatial correction and registration were im-
plemented.

2) The Laplacian pyramid algorithm was adopted to decom-
pose the MS into two parts: high-frequency (MS_Hi) and
low-frequency components (MS_Li), which represent the
spatial details and background, respectively [24], [25].

3) The geochemical layer of each element (geo_lj) and
low-frequency component of multispectral bands (MS_Li)
were resampled to the same resolution as MS_Hi using the
cubic convolution method [26].

4) The relationship between the geochemical concentration
and spectral reflectance was established. The following
relational function can be built, and the correlation coef-
ficient fij can be obtained:

geo_lj = fij ·MS_Li (5)

where i is the band index and j is the element index.
5) The geochemical and high-frequency components MS_Hi

are reconstructed according to the correlation coefficient
fij, and the high-frequency information layer geo_h can be
written as

geo_h = fij ·MS_Hi. (6)

6) The high-frequency information fusion layer that repre-
sents the spatial details was injected into the resampled
geochemical layer to obtain the fused high-resolution
geochemical layer geo_f

geo_f = geo_lj + geo_h. (7)

C. Convolutional Neural Network

A CNN is a feedforward neural network with convolution and
pooling operations [14]. CNNs adopt the network construction
mode of local perception and weight sharing to reduce the
complexity of the neural network and improve its generalization
ability [27], [28]. A typical CNN primarily involves input,
convolution, pooling, fully connected, and output layers. These
layers have their own mapping relationships, extracting the
characteristics of the input data and transmitting them to the
complete CNN structure.

The convolutional layer, as the core of a CNN, controls
feature extraction through a convolution operation between a
convolution kernel of a certain size and the input matrix. The
convolutional layer is characterized by local perception and
weight sharing. Local perception (receptive field) implies that
each neuron in the hidden layer does not have to connect all
neurons [29], [30], [31]. The pooling layer, also known as the
downsampling layer, is designed to decrease the size of the
output feature map, and reduce the space occupation of the sub-
sequent feature map [32]. In this article, the maximum pool layer
is adopted. After several convolution and pooling processes, a
CNN can construct fully connected layers to complete the final
classification or predictive task using a Softmax classifier [33].

Fig. 2. Basic structure of a CNN.

The learning rate controls the rate of parameter adjustment
during network training, which affects whether the network can
converge or not. Epochs directly affect the training efficiency of
the model. If the values of epoch are too small, underfitting will
occur, resulting in insufficient network training; if the values
are too large, overfitting will occur, resulting in insufficient
model generalization ability. Batch size refers to the number
of training samples in one iteration. Batch size is a trade-OFF

between computing power and efficiency. Increasing the batch
size helps the stability of convergence within a certain range,
however, the performance of the model would decrease with the
increase of batch size. Therefore, it is necessary to set reasonable
parameter values according to the training situation.

A network structure of 10-layer CNN model based on the
AlexNet is constructed for geological mapping, including input
layer, three convolutional layers with kernel size of 3 × 3, three
pooling layers, two fully connected layers, and output layer
(see Fig. 2). Standardization is used in the network to avoid
problem with the gradient of the model, and can accelerate the
convergence of the model. The last layer of the fully connected
layer is a Softmax classifier with an output dimension of six
corresponding to six lithological categories in the article area.

D. Random Forests

RF is a machine learning classification algorithm that com-
bines ensemble learning with several decision trees [34]. A RF
classifies multidimensional data sources by generating decision
trees from randomly selected subsets in the training set using the
bagging method [35]. For the training sample x, the kth decision
tree is

fk(x) = f(x, θk) (8)

where θk represents a random vector with an independent distri-
bution. A decision tree is a tree structure classifier that transmits
classification results through the root, branch, and leaf nodes.
At each nodal point of the decision tree, m feature variables
were randomly chosen and one branch was selected to grow
without pruning. Here, the key factor is determining how to
divide the input training set into homogeneous subsets, i.e.,
the optimal segmentation criteria, such that each subset has the
best classification process. Breiman proposed the use of Gini
impurity to determine the optimal segmentation threshold [36].
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Fig. 3. Simplified geological map of Jilinbaolige, inner Mongolia, China (after
from [42]). The training (upper) and testing (lower) area are divided by a black
line.

The Gini impurity can be regarded as the probability of misclas-
sifying a random event into its opposite events or minimizing
the probability of misclassification, which is expressed as IG

IG (f) =
m∑
i=1

fi(1− fi) (9)

where fi represents the probability of the occurrence of class
i samples. The smaller the Gini impurity, the better is the
classification effect [37]. According to this criterion, the optimal
splitting method for each tree was obtained until all the samples
in each subset were correctly classified. For all the decision trees,
the final classification results were obtained by voting. Here, the
probability Pq of the training sample being assessed as q by the
random forest is

Pq =
1

T

T∑
q=1

ziq(x) (10)

where T represents the number of decision trees, q is the forecast
category, and ziq(x) is the ith decision tree that identifies the
training sample as the qth predictive result.

III. STUDY AREA AND DATA

A. Geological Setting

The study area was located in the northeastern part of In-
ner Mongolia, China, where most of the land was covered by
grassland. The study area is a key Ag polymetallic metallogenic
belt in northern China [38]. The geological formations exposed
in the study area range from the Paleozoic to the Mesozoic,
including predominantly Jurassic, Permian, and Devonian strata.
The Devonian strata are mainly composed of slate, sandstone,
siltstone, and pyroclastic rocks [39]. The Permian strata mainly
include tuff, tuffaceous sandstone, siltstone, slate, and andesitice
porphyrite. Jurassic strata are composed of tuff, basalt, rhyolite,
and breccia lava. Ternary and Quaternary sediments also occupy
a large proportion, mainly sand, clay, and mud [40]. Intrusions
include a few small intrusions with moderate acid and alkales-
cency, covered by sediments, distributed throughout the area,
mostly stretching along the NE-trending belt [41], [42], [43]
(see Fig. 3). For more detailed geological data, see Liu [44] and

TABLE I
DESCRIPTION OF THE LITHOLOGICAL UNITS

Fig. 4. Geochemical samples and concentration distribution of TFe2O3.

Yang [45]. Table I summarizes the detailed petrographic char-
acteristics of the six lithologic units that were widely emerged
in the study area.

B. Data

A total of 1412 stream sediment geochemical samples with a
scale of 1:200 000 were collected (sampling density of 1-2 per
km2) in the study area [42]. Sampling locations were irregularly
distributed across the study area (see Fig. 4). Each sample
identifies 39 major and trace elements using inductively coupled
plasma-mass spectrometry (for Bi, Cd, Co, Cu, Mo, Nb, Ni, Pb,
Th, U, W, Y, and Zn), X-ray fluorescence (for Ba, Cr, Mn, P, Ti,
Zr, SiO2, Al2O3, TFe2O3, and K2O), and other methods (for Be,
La, Li, Sr, V, MgO, CaO, Na2O, Ag, B, Sn, As, Sb, Hg, F, and Au)
[43]. The basic statistics of 39 elements were shown in Table II.
These data were subsequently explored by Wang and Zuo [41],
[43]. Geochemical data are typically compositional data because
the content of each element is related to the content of the
whole sample, which may lead to false correlations between
elements [46], [47]. Therefore, it is necessary to preprocess the
composition data to eliminate the influence of closure effects.
The central log-ratio transformation [48], [49] was adopted to
handle the geochemical compositional data with the support of
the open-source software CoDaPack [50]. Geochemical images
with a spatial resolution of 500 m × 500 m were obtained using
the inverse distance weighted interpolation method (see Fig. 4).
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TABLE II
BASIC STATISTICS OF 39 ELEMENTS

Two types of remote sensing images, ASTER and Sentinel-
2A, collected on August 28, 2003, and June 1, 2020, respec-
tively, were obtained from the US Geological Survey (https://
earthexplorer.usgs.gov). Sentinel-2A remote sensing images in-
cluded 11 visible and near infrared bands (VNIR) and two
short-wave infrared bands (SWIR), with spatial resolutions of
10 m, 20 m, and 60 m [51]. The ASTER remote sensing images
in the study area included three VNIR bands with resolutions
of 15 m and six SWIR bands with resolutions of 30 m. These
two types of remote sensing data not only have similar spectral
response functions in the same spectrum but can also integrate
their respective advantages [52]. Therefore, a combination of
these two images was used for geological mapping.

The preprocessing of multispectral remote sensing data in-
cludes image mosaic and clipping, radiometric calibration, and
atmospheric corrections. The ASTER images were corrected
using the FLAASH atmospheric correction module in ENVI
5.3 software [53]. Atmospheric correction of the Sentinel-2A
images was carried out using the Sentinel Application Platform

Fig. 5. Fused remote sensing images of the study area (false color composite
of bands 3, 2, and 1).

and Sen2cor software package supplied by the European Space
Agency [54].

IV. RESULTS AND DISCUSSION

A. Data Fusion

ASTER images have a high spectral resolution, providing
more diagnostic information to identify ground objects [55],
and Sentinel-2A images provide higher spatial resolution and
stronger information interpretation ability. The GS method was
adopted to fuse ASTER and Sentinel-2A images to improve the
overall spatial resolution and enrich the diagnostic information
(see Fig. 5). For example, the spatial resolution of ASTER Band
5 was increased from 30 m to 10 m, and rich texture information
and clear edge details were obtained (see Fig. 6).

Fig. 7 displays a fused image of the TFe2O3 and remote sens-
ing images obtained using the multisource data fusion method.
The spatial resolution of TFe2O3 improved from 500 m (see
Fig. 4) to 10 m and the fused geochemical pattern of TFe2O3

was consistent with that of the original TFe2O3. This method
not only complements some areas without geochemical survey
data but also retains the original element distribution pattern and
rich spatial details and texture structure in the remote sensing
images.

B. Training Samples

The study area was divided into a training area (upper) and a
testing area (lower) at a ratio of 6:1 (see Fig. 3). At the center of
each lithologic unit of the training area, 2500 evenly distributed
points were selected. The samples with spatial characteristics

https://penalty -@M earthexplorer.usgs.gov
https://penalty -@M earthexplorer.usgs.gov
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Fig. 6. ASTER Band 5: (a) Original image, (b) fused image obtained by the
GS fusion technology, (c) partial magnification of (a) (200 × 200 pixels), and
(d) partial magnification of (b).

Fig. 7. Fusion image of TFe2O3.

were created with each point as the center using the sliding win-
dow technique, and the samples were labeled by the center point
category (see Fig. 8). Among them, 2000 and 500 samples were
selected as the training and validation datasets, respectively.

The size of window determines the extraction of spatial
pattern features and the design of network structure. In this
article, the smallest identifiable lithologic unit size was 21 × 21,
therefore, the window size was set to 21 × 21 with a step size
of 1 after comparing the classification accuracy under different
window sizes.

Fig. 8. Diagram showing a sliding window technique for creating training
samples.

Fig. 9. Classification accuracy of training and validation datasets.

C. Geological Mapping

The CNN model was trained based on the training and val-
idation datasets, and the trained CNN model was then used
to classify the fused data samples using a sliding window of
21 × 21 pixels in the testing area. The input dimension of each
sample data was 21 × 21 × 39, where 21 and 21 were the
length and width of the sample, and 39 represented the number
of channels of the sample fused from the geochemical data and
the remote sensing bands. The parameters were optimized based
on the grid search method to construct the optimal network
model structure, in which the RMSProp algorithm [56] was
adopted for the gradient descent, the cross-entropy was selected
as the loss function. The hyperparameters of batch size, epochs,
and learning rate were set to 128, 500, and 10−5, respectively.
The loss function versus classification accuracy of the training
and validation datasets are shown in Figs. 9 and 10, indicating
that the CNN model was well trained effectively. The resulting
classification map (see Fig. 11) obtained by the CNN model
indicated that most of the lithologic units were classified in
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Fig. 10. Loss function of training and validation datasets.

Fig. 11. Classification map obtained by CNN and fused data.

agreement with the geological map (see Fig. 3) with an overall
classification accuracy of 83%.

RF was used to map the lithological units and was compared
with the CNN model. The parameters need to be set for the
RF were the number of decision trees (T) and the characteristic
variables selected at each node (m). The out-of-bag error was
used to evaluate the ability of the RF to fit the training data
and was employed to estimate the classification accuracy of
each lithological unit under the optimum parameters. m is the
arithmetic square root of the number of geochemical elements,
with a value of 6. Fig. 12 shows the out-of-bag error rate
obtained by the classification model with different values of
T. When T = 300, the out-of-bag error rate is the lowest, and
the model achieves the best classification effect on the test set.
A total of 2500 samples (pixels) were randomly selected as
training samples from the center of each lithologic unit. Fig. 13
presents the classification map obtained by RF, in which some
misclassifications can be found on the boundaries among various
lithologic units. For example, a part of the Jurassic strata is
wrongly classified as Permian and Neogene strata, resulting in
a relatively low classification accuracy of 78%.

Fig. 12. Number of decision trees in random forest.

Fig. 13. Classification map obtained by RF model and fused data.

D. Comparative Experiments and Analysis

Comparing the two classification maps obtained by the CNN
and RF, CNN had a better performance than RF and further
improved the overall classification accuracy by approximately
5%. RF is a pixelwise classification model that ignores the spatial
characteristics of the neighboring data, which may lead to the
salt-and-pepper phenomenon in the obtained classification map.
CNN can solve such problems because it considers the spatial
dependence of nearby regions. Moreover, the boundaries of the
different lithologic units identified by the CNN were clearer than
those identified by the RF.

To further validate the improvements in lithologic mapping
using multisource data fusion and a CNN, several comparative
experiments were conducted using 1) CNN and fused mul-
tisource data (RG_f + CNN), 2) RF and fused multi-source
data (RG_f + RF), 3) CNN and fused remote sensing images
(ASTER + Sentinel-2A + CNN), and 4) RF and fused remote
sensing images (ASTER + Sentinel-2A + RF). The abovemen-
tioned tests were implemented using the same parameters and
computer environment.
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Fig. 14. Classification map obtained by CNN based on ASTER and Sentinel-
2A fusion images.

Fig. 15. Classification map obtained by RF based on ASTER and Sentinel-2A
fusion images.

Figs. 14 and 15 show the classification map based on CNN
and RF using ASTER + Sentinel-2A. From a visual per-
spective, it is difficult to distinguish the boundaries of litho-
logic units, implied that the fusion of remote sensing images
(ASTER + Sentinel-2A) performed worse than that of mul-
tisource data (ASTER + Sentinel-2A + geochemical data).
The abovementioned observations demonstrate excellent per-
formance in geological mapping when using a combination of
remote sensing and geochemical data.

From the perspective of quantitative index evaluation, this
article counted the overall accuracy, classification accuracy of
each category, and kappa coefficient obtained from four groups
of experiments (see Table III). The kappa coefficient is a quanti-
tative measure for predicting consistency between categories and
reference types [57]. A larger kappa coefficient indicates a better
classification performance of the model on the whole or individ-
ual. The resulting classification of RG_f + CNN was superior to
other results and had the highest overall classification accuracy.
All four experiments provided a satisfactory classification of the

TABLE III
CLASSIFICATION PERFORMANCE STATISTICS FOR EACH LITHOLOGICAL UNIT

Neogene strata, which covered a large study area. However, com-
pared with the other methods, data fusion with a CNN promoted
the distinguishment of the Quaternary strata, Intrusions, and
Devonian strata, which are developed in a small area. The intru-
sions identified using ASTER + Sentinel-2A + RF were mixed
with Jurassic and Permian strata, respectively, resulting in a low
classification accuracy of 13%. After fusing geochemical survey
data, the classification accuracy of the intrusions increased to
68%. The accuracy in classifying the Jurassic and Permian strata
also increased by 34% and 35%, respectively. Meanwhile, for the
Devonian strata identified using ASTER+ Sentinel-2A+CNN,
the classification accuracy was improved from 25% to 80%
with the support of the fused data, and the classification results
were significantly improved with clearer geological boundaries
that are more coincident with the geological map. Compared
with RG_f + CNN and RG_f + RF, a CNN could improve the
overall accuracy by 5% and the kappa coefficient by 0.05. For
the Neogene, Jurassic, and Permian strata, which comprise a
large proportion of the exposed area, the classification accuracy
was not greatly improved because this type of lithologic unit was
sufficiently represented in the training samples to construct and
optimize the RF and CNN model. However, a CNN enhances
the classification accuracy for lithologic units comprising a
small proportion of the exposed area, providing limited training
samples, such as Quaternary strata. These findings indicate the
potential of CNNs for lithological mapping.

In summary, with the help of the fused data and a CNN, a high
classification accuracy of 83% was achieved for the vegetation
coverage areas. Fused data provided abundant information on
lithologic units. Furthermore, a CNN can extract deep-level
spatial characteristics from fused data that contribute to mapping
lithologic units. However, some lithologic units are still mis-
classified by others, with an unclear contact zone and boundary,
especially for Jurassic strata. This may be due to the strong
metamorphism and weathering, sampling errors, similarities in
the spectral characteristics, and the uncertainty of surveying and
mapping of the original geological map.
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V. CONCLUSION

Geological mapping in vegetation coverage areas is challeng-
ing. In this article, a geological mapping framework combining
multi-data fusion and a CNN was applied to identify lithologic
units in Jilinbaolige, Inner Mongolia, China. The following
conclusions can be drawn: 1) multisource data fusion provides
abundant information from different perspectives. The combi-
nation of remote sensing images and geochemical survey data is
beneficial for realizing the complementary advantages of differ-
ent kinds of data and affords abundant diagnostic information
for geological mapping; 2) A CNN model performs better and
improves the overall accuracy in classifying the lithologic units
by 5% than RF model. This excellent performance indicated
that the proposed framework is effective for geological map-
ping. How to improve the accuracy of geological mapping is
a continuous work. In the follow-up study, more classification
features such as structure, rock mass, and aeromagnetic suitable
for the study area will be added to further optimize the classi-
fication results. In recent years, a wide variety of deep learning
models have emerged. In the future, newly developed models
and technologies will be used to improve the model and explore
the neural network structure suitable for geological mapping.
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