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Abstract—Removing the noise and improving the visual quality
of hyperspectral images (HSIs) is challenging in academia and
industry. Great efforts have been made to leverage local, global, or
spectral context information for HSI denoising. However, existing
methods still have limitations in feature interaction exploitation
among multiple scales and rich spectral structure preservation. In
view of this, we propose a novel solution to investigate the HSI
denoising using a multiscale adaptive fusion network (MAFNet),
which can learn the complex nonlinear mapping between clean
and noisy HSI. Two key components contribute to improving the
HSI denoising: A progressively multiscale information aggregation
network and a coattention fusion module. Specifically, we first gen-
erate a set of multiscale images and feed them into a coarse-fusion
network to exploit the contextual texture correlation. Thereafter, a
fine fusion network is followed to exchange the information across
the parallel multiscale subnetworks. Furthermore, we design a
coattention fusion module to adaptively emphasize informative
features from different scales, and thereby enhance the discrim-
inative learning capability for denoising. Extensive experiments
on synthetic and real HSI datasets demonstrate that the proposed
MAFNet has achieved a better denoising performance than other
state-of-the-art techniques.

Index Terms—Deep learning, fusion module, global contextual
correlation, hyperspectral image (HSI) denoising, neural network.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have developed rapidly
with the maturity of remote sensing technology. HSIs

have been extensively applied in land cover classification [1],
[2], [3], [4], semantic segmentation [5], change detection [6],
[7], [8], [9], [10], [11], oil spill monitoring [12], [13], [14],
and geographic transport prediction [15]. In these applications,
high-quality images are commonly desired. However, during
the HSI acquisition, some noise corruptions are inevitable and
degrade the visual quality considerably [16]. Hence, removing
noise from the acquired HSI is a critical step for many remote
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sensing applications [17]. The task of highly efficient HSI de-
noising has recently captured numerous research attention.

The HSI denoising task aims to recover an underlying clean
image I from a noise observed data IN . The degradation model
is commonly formulated as IN = I + I∗N . Here, I∗N denotes
the mixed noise. To solve the ill-posed inverse problem, many
methods model the prior knowledge of the clean image I to
constrain the solution space. Total variation [18], [19], [20], [21],
sparsity-driven models [22], [23], [24], and low-rank represen-
tations [25], [26], [27], [28] are commonly used. The intrinsic
structures in HSIs are modeled by these optimization-based
models for noise removal.

During the past few years, the deep learning-based model
for low-level vision tasks has demonstrated significant potential
and performance improvement. It has been extensively em-
ployed to image restoration tasks, such as compression artifact
reduction [29], image denoising [30], [31], and image super-
resolution [32], [33]. In HSI denoising, the deep learning-based
model has yielded excellent results recently. Deep convolu-
tional neural networks (CNNs) are capable of exploiting rich
feature representations from large-scale training data, instead
of hand-crafted features, which are designed according to prior
knowledge. Most existing CNN-based HSI denoising methods
follow high-resolution feature processing [34], [35], [36]. These
methods do not employ any downsampling operation; and hence,
more accurate spatial details can be retained in the denoising
results. However, the contextual information is inclined to get
lost due to the limited receptive field. To effectively encode the
contextual information, some researchers employ an encoder–
decoder architecture [37], [38]. The input HSI is progressively
mapped into a low-resolution representation and then gradually
mapped to the original resolution. The broad context can be
learnt in the low-resolution representation [39]. However, some
fine spatial details are hard to be reserved. Such detailed infor-
mation is hard to be recovered in the decoding stages.

It is crucial to encode the contextual information and preserve
the spatial details simultaneously for robust HSI denoising.
However, it is a nontrivial task due to the following challenges.
1) Tradeoff between the spectral–spatial detail preservation and
contextual information modeling. HSI denoising creates pixel-
to-pixel correspondence from the observed data with complex
noise to the clean image, and it is essential to preserve the de-
tailed spectra and texture via high-resolution feature processing
networks. However, the contextual information is hard to be
encoded while preserving the spatial details by existing models.
Hence, how to preserve the detailed spectra and texture whiles

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1825-328X
https://orcid.org/0000-0001-7012-2087
https://orcid.org/0000-0001-8354-7500
mailto:hyzs1220@outlook.com
mailto:gaofeng@ouc.edu.cn
mailto:dongjunyu@ouc.edu.cn
mailto:dongjunyu@ouc.edu.cn
mailto:du@ece.msstate.edu
https://github.com/summitgao/MAFNet


3046 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 1. Illustration of the multiscale representation of high-resolution remote
sensing image. Specially, there are similar patches in different scales, both in
the same scale (highlighted in green) and across different scales (highlighted in
red), can make contribution as additional information to reconstruct the target
area (highlighted in blue).

encoding the contextual information effectively is of great sig-
nificance. 2) Multiscale information aggregation. Image con-
tents from multiple scales encode complementary information
for feature representation, as shown in Fig. 1. Existing multiscale
models rarely exchange information across different scales flex-
ibly. The correlations among different scales have not been fully
exploited. Therefore, how to aggregate multiscale information
into a unified framework is a tricky task. Wang et al. [40] pro-
posed a deep high-resolution representation network (HRNet)
for visual recognition. It maintains high-resolution representa-
tions in the whole network and repeatedly exchanges informa-
tion among multiresolution features. It has been widely used for
human pose estimation [41], semantic segmentation [42], [43],
[44], and multispectral image classification [45]. If such frame-
work could be introduced into HSI restoration, the denoising
performance could be further improved.

To solve the aforementioned issues, we proposed a multiscale
adaptive fusion network (MAFNet) for HSI denoising. The
framework of MAFNet is illustrated in Fig. 2. Specifically, we
first generate a set of multiscale images and feed them into a
coarse-fusion network to exploit the contextual texture correla-
tion. Meanwhile, a fine fusion network is followed to exchange
information across the parallel multiscale subnetworks. Further-
more, we design a coattention fusion module to adaptively em-
phasize informative features from different scales, and thereby
enhance the discriminative learning capability for denoising. We
next adopt a reconstruction loss together with a global gradient
regularization to optimize the network. We conduct extensive
experiments on five publicly available datasets. The experimen-
tal results show that the proposed MAFNet outperforms several
state-of-the-art baselines. Our MAFNet differs from HRNet in
two respects: First, in the coarse-fusion network, the information
interaction direction is only from the low-resolution features to
the high-resolution features. In this stage, we aim to increase the
receptive field to capture more content. Second, in multiscale
feature fusion, HRNet transforms features from different reso-
lutions to the same size and then concatenates them together as
the fusion output. The proposed MAFNet use adaptive instance
(AIN) and coattention mechanism for adaptive feature fusion.

The contributions of this work can be summarized as follows.

1) We propose a novel HSI denoising model MAFNet, which
progressively fuses multiscale information. Hence, the
global contextual information modeling and spatial detail
preservation can be achieved simultaneously.

2) We present a coattention fusion module to dynamically
select the useful features from each scale subnetwork,
enhancing the discriminative learning capability. Thereby,
multiscale information is adaptively aggregated, and the
correlations among different scales are concurrently en-
hanced.

3) Extensive experiments are conducted on two benchmark
datasets, which demonstrates the rationality and effec-
tiveness of the proposed MAFNet. Meanwhile, we have
released our codes to benefit the remote sensing image
restoration community.

The rest of this article is organized as follows. In Section II,
we review closely related HSI denoising methods. The details
of MAFNet are described in Section III. Experiments on several
datasets on HSI datasets are presented in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

The HSI denoising is an essential step to improve the image
quality before interpretation. To date, a great number of methods
have been proposed to reduce the noise in HSIs. In this article,
the existing methods are classified into three categories and
introduced, respectively.

A. Filter-Based Methods for HSI Denoising

In the beginning, the filter operator is generally used for
HSI denoising, and it aims to separate the clean image from
noisy signals by nonlocal means filter or Fourier transform.
Othman et al. [46] presented a wavelet shrinkage method for HSI
denoising. The method benefits from the feature dissimilarity
between the spectral and spatial domains. Zelinski et al. [47]
proposed a method based on wavelet decomposition and sparse
approximation for HSI denoising, thereby exploiting the cor-
relation between bands and higher quality band information.
Maggioni et al. [48] proposed BM4D for volumetric data de-
noising, which is an extension of the BM3D filter. It embeds
the grouping and collaborative filtering paradigms, thus inte-
grating spatial and frequency domain filtering. Letexier and
Bourennane [49] used the multidimensional Wiener filter for
HSI denoising. Quadtree decomposition is also utilized to keep
local characteristics. These filter-based methods are sensitive to
the transform function and, therefore, can hardly remove the
mixed noise in HSIs.

B. Model-Based Methods for HSI Denoising

The model-based method is the most popular representation
tool for HSI denoising. Total variation [18], [19], [20], [21],
sparsity-driven models [22], [23], [24], and low-rank representa-
tions [25], [26], [27], [28] are commonly employed to establish
an optimization model for HSI denoising. For instance, Yuan
et al. [18] presented an adaptive total variation model for HSI
denoising, which simultaneously models the spectral and spatial
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Fig. 2. Framework of the MAFNet. MAFNet is composed with initial layer, coarse-fusion network, fine-fusion network, and noise reconstruction. Initial layer
obtains the feature representation from the HSI image, then coarse-fusion network realizes the information transfer from the low-scale network to the high-scale
network, then fine-fusion network fully integrates the contextual global information, and finally we reconstruct noise to get denoising images. For upsampling, we
use transposed convolution to get the hight-resolution representation of the feature.

noise distribution. Zhang et al. [20] proposed an HSI denoising
method based on nonlocal low-rank tensor decomposition, in
which the nonlocal similarity between the data cubes is captured
to build a clean image. Zhuang et al. [50] proposed a denoising
method that exploited the low-rank structure of the HSI data,
utilizes the low-rank and self-similar characteristics contained
in HSI for sparse and compact representation. Cao et al. [24]
presented a subspace-based nonlocal low-rank method for HSI
denoising. These methods achieve a satisfying performance
due to the comprehensive consideration of the image’s prior
information.

C. CNN-Based Methods for HSI Denoising

Recently, research on natural image restoration has been
dominated by the deep CNN in recent years [29], [30], [31],
[32], [51], [52], [53]. Chang et al. [34] introduce the deep
CNN model for HSI denoising, uses residual learning, dilated
convolution, and multichannel filtering to enhance the ability to
express spectral features. Liu et al. [35] presented a 3-D atrous
convolution method for HSI denoising. Atrous convolution was
employed to enlarge the receptive fields. Zhang et al. [54]
employed the gradient learning strategy to capture the intrinsic
and deep features of HSI. Cao et al. [55] proposed two global
reasoning modules to exploit the contextual information along
the channel and spatial dimensions, respectively. Both modules
are combined in dense CNNs to exploit rich feature representa-
tions. Lin et al. [56] built a CNN-constrained nonnegative matrix
factorization model for HSI denoising, realizes the optimization
of noisy images through three stages: update of the spectral
matrix, update of the abundance matrix, and estimation of the
sparse noise. Wei et al. [57] designed QRNN3D, the model
adopts the encoder–decoder structure, realizes the use of spatial

pixel correlation information and spectral global information by
building a three-dimensional recurrent unit, and uses the special
structure of alternating directions to eliminate unreasonable
causal dependencies. Capable of flexible processing of HSIs.

Leveraging the powerful linear modeling capability of the
deep CNN, these methods achieved promising performance on
HSI denoising. However, existing CNN-based methods rarely
build feature communications between cascaded multiscale lay-
ers; thus, the correlated noise information across different scales
is not fully exploited.

III. METHODOLOGY

In this section, we present the MAFNet for HSI denoising,
which exploits the inherent correlation of noise across multiple
scales. As illustrated in Fig. 2, MAFNet consists of the follow-
ing four parts: initial layer, coarse-fusion network, fine-fusion
network, and noise reconstruction. Four parts work together to
estimate the noise image I∗N . The noise-free data is generated
by subtracting I∗N from the observation data Y . The details of
each part of the network are presented in the following.

A. Coarse-Fusion Network

For a given input HSI, the proposed model first downsamples
the input image into 1/2 and 1/4 scales by using Gaussian kernels.
Shallow features are extracted by multiple parallel convolutions,
as illustrated in Fig. 2 (the initial layer). Next, the coarse-fusion
network extracts deep features and fuses the multiscale infor-
mation through several parallel AIN modules. The motivations
for designing the coarse-fusion network are twofold: 1) The
multiscale structure presents a solution to increase the receptive
field to capture more content. 2) The AIN module can transfer
the basic structures from the low-resolution feature maps to
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Fig. 3. Illustration of the proposed AIN module.

the high-resolution ones. We choose AIN normalization [58]
to build the AIN module due to its efficiency and compact
representation. Fig. 3 shows the architecture of the AIN module.

The AIN normalization affine transforms the normalized fea-
ture map h ∈ RH×W×C by taking an input h′ ∈ R

H
2 ×W

2 ×2 C .
Here, H and W denote the height and width of the feature map,
respectively. C is the number of channels. It should be noted
that h′ is the feature from the downscale. Specifically, the AIN
normalization takes the current feature h and the downscale
featureh′ as input. First, we converth′ to the size ofH ×W × C
by transposed convolution to be consistent with the same dimen-
sion as h. Afterwards, for the purpose of using the contextual
semantic information contained in the downscale features, we
obtain the affine transform parameters from the transformed
h′ for each pixel (shift β and scale γ). Every feature map is
pixel-wise affine transformed and channel-wise normalized, as
illustrated in Fig. 3. The updated value in the feature map at
position (i, j, c) can be formally represented as

hnew
i,j,c = γi,j,c

(
hi,j,c − μc

σc

)
+ βi,j,c (1)

where μc denotes the mean of h in channel c, σc denotes the
standard deviation of features in channel c. To be more specific,
μc is computed as

μc =
1

HW

H∑
i

W∑
j

hi,j,c. (2)

σc is computed as

σ2
c =

1

HW

H∑
i

W∑
j

(hi,j,c − μc)
2. (3)

It should be noted that γi,j,c and βi,j,c are generated pixel-
wisely from h′. Therefore, the images with spatially variant
noise can be handled adaptively. Finally, a convolutional layer is
applied onhnew, and residual connection is used to better transfer
feature information.

B. Fine-Fusion Network

The outputs of the coarse-fusion network are fed into the
fine-fusion network to refine the information from multiple

Fig. 4. Illustration of multiscale features aggregation from left to right,
respectively.

scales. It is well known in cognitive science that in the primate
visual cortex, the local receptive fields of neurons are of different
sizes. Hence, the capability of collecting multiscale information
should be taken into account in deep networks.

Inspired by HRNet [40], we conduct repeated multiscale
fusion by exchanging information across parallel multiresolu-
tion subnetworks. Furthermore, we design a coattention fusion
module to adaptively emphasize informative features from dif-
ferent scales, and therefore, enhance the discriminative learning
capability of the network for image denoising.

As illustrated in Fig. 2, the fine-fusion network starts from
multiscale feature representations {X1

r, r = 1, 2, 3}, where r
denotes the spatial resolution index. In the second layer, the
feature representations are {X2

r, r = 1, 2, 3}. Each feature rep-
resentation is computed as

X2
r = CA(f(X1

1), f(X
1
2), f(X

1
3)) (4)

where CA is the coattention fusion module. f(·) is a transform
function. The transform function f(·) depends on the input and
output spatial resolution of the feature map. As depicted in Fig. 4,
the strided3× 3 convolution is employed for2×downsampling.
Two consecutive strided3× 3 convolutions are employed for4×
downsampling. At the same time, the nearest neighbor sampling
following a 1× 1 convolution is used for upsampling.

If the input and the output have the same resolution, we
adopt the identity connection. Note that after transformation,
the feature maps from different scales are of the same size, and
they are fed into the coattention fusion module.

In deep neural networks, features from different states or
sources contribute differently to the feature representations [59].
In HRNet, multiscale features are directly fused by element-wise
summation. We argue that simply combining multiscale features
by concatenation or summation lacks the flexibility to modulate
these features, and the discriminative ability of deep models will
be influenced. Therefore, this article proposes a coattention fu-
sion module to adaptively emphasize the important information
from different scales. The structure of the coattention fusion
module is sketched in Fig. 5, which consists of two parts: 1)
concatenation and split, 2) fusion and self-calibration.

1) Concatenation and Split: The coattention fusion module
receives multiscale features and generates trainable weights for
feature fusion. Given input features Y1, Y2, and Y3 are with
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Fig. 5. Illustration of the proposed coattention fusion module.

the size of C ×H ×W , we first conduct the concatenation
operation on three features

U = cat(Y1,Y2,Y3) (5)

where cat(·) is the concatenation operation. Next, The global
average pooling is used to compute the channel-wise statistics
s ∈ R3C×1×1 along the spatial dimension of U ∈ R3 C×H×W .
A downsampling convolution layer is employed to produce
a compact feature u ∈ R

3 C
r ×1×1. Here, r = 4 is used in our

experiments.
Ultimately, the feature u is passed through three parallel

upsampling layers and provides us with three feature descrip-
tors u1, u2, and u3 each with dimension C × 1× 1. Softmax
function is applied to u1, u2, and u3, yielding three attention
activation vectors α1, α2, and α3, respectively.

2) Fusion and Self-Calibration: The three attention activa-
tion vectors generated will be used to recalibrate the input
features as

Ỹ = α1 ·Y1 + α2 ·Y2 + α3 ·Y3. (6)

Then, we adjust and integrate the features, which are per-
formed by the self-calibration module

Ŷ = Hsc(Ỹ) (7)

where Hsc(·) denotes the self-calibrated convolution [60].
As a follow-up operation after fusion, self-calibration convo-

lution uses the convolution filters to operate on the fused feature
map to enhance the feature representation ability.

Conclusively, the proposed coattention module transforms
the input features into compact descriptors and generates three
sets of weights to model channel-wise interdependencies. In
this way, the coattention module can adaptively emphasize the
important information from multiscale and generate trainable
weights for representative feature fusion.

C. Denoising and Reconstruction

At the end of the fine-fusion network, multiscale features are
fused by the coattention fusion module. Then, one convolution
layer is employed to learn the residual noise image I∗N . Finally,
the noise-free image Î is computed by subtracting I∗N from the
observation IN .

We use L1 loss to optimize our network, and the reconstruc-
tion loss is

Lrec = ‖Î − I‖1 (8)

where Î denotes the estimated noise-free HSI, and I denotes the
real noise-free HSI. While in the HSI case, hundreds of bands
with abundant spectral information means the noise types and
intensity in each band are usually different. Therefore, differ-
ences in spatial and spectral direction can provide additional
complementary contributions for denoising. We introduce a
global gradient regularizer to constrain the details of Î

Lgrad = ‖∇hÎ −∇hI‖22 + ‖∇v Î −∇hI‖22
+ ‖∇sÎ −∇sI‖22 (9)

where ∇h, ∇v , and ∇s denote the gradient operator along the
horizontal, vertical, and spectral direction respectively. Then,
the total loss function is as follows:

L = Lrec + λLgrad (10)

where λ is the weight parameter of Lgrad. We empirically set λ

to 0.01 to balance the loss terms.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup

1) Benchmark Datasets: To verify the effectiveness of the
proposed MAFNet for HSI denoising. The proposed MAFNet
is employed on several datasets, and training is conducted using
data from ICVL [61] and CAVE [62] hyperspectral dataset. The
images in the ICVL dataset were collected over 31 spectral bands
with the size of 1392× 1300, while the images in CAVE dataset
were collected over 31 spectral bands with the size of 512× 512.
The training data are randomly cropped as cube data with the
size of 128× 128× 31. Basic data augmentation (rotation and
scaling) is used for regularization. A total of 20 000 training
samples are generated in total. To verify the robustness of the
proposed MAFNet in real data, spaceborne hyperspectral data
are used in our experiments, including Pavia University, Urban,
and Indian Pines. Through experiments on both real noise HSI
datasets, we try to verify the generalization ability and denoising
effect of the proposed MAFNet.

2) Noise Setting: Hyperspectral data captured by real space-
borne sensors are commonly contaminated by a mixture noise,
such as the Gaussian noise, impulse noise, and deadline noise.
In the testing phase, five types of complex noise are defined as
follows.

1) Case 1: Non-i.i.d. Gaussian noise. Data in all spectral
bands are contaminated by Gaussian noise with various
intensities. The variances of Gaussian noise are randomly
selected from 30 to 70.

2) Case 2: Gaussian + Stripe noise. Every band is contami-
nated by non-i.i.d Gaussian noise, as mentioned in Case 1.
Besides, some spectral bands are randomly selected to
add strip noise. In each band, 5% to 15% of columns are
polluted with strips.
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3) Case 3: Gaussian + Deadline noise. Every band is cor-
rupted by non-i.i.d Gaussian noise, as mentioned in Case
1. Besides, deadline noise is randomly added to one-third
of spectral bands. In each band, 5% to 15% of columns
are conflicted with deadlines.

4) Case 4: Gaussian + Impulse noise. Each band is con-
taminated by Gaussian noise, as mentioned in Case 1.
One-third of bands are randomly selected to add impulse
noise with intensity ranging from 10% to 70%.

5) Case 5: Mixture noise. Like other cases, every spectral
band is corrupted by Gaussian noise. Then, each band is
randomly contaminated by a random combination of the
other three noises.

3) Competing Methods and Quantitative Metrics: The pro-
posed method was compared with six state-of-the-art meth-
ods. Both traditional methods and deep learning-based methods
are taken into account. Specifically, For traditional methods,
BM4D [48], low-rank methods (LRMR [63] and LRTV [64])
are considered. For deep learning-based methods, the proposed
MAFNet is compared with HSID-CNN [36], MemNet [65] and
QRNN3D [57]. To give a fair evaluation, three quantitative
metrics are used, including peak signal-to-noise ratio (PSNR),
structure similarity (SSIM) [66], and spectral angle mapper
(SAM) [67]. SAM is a spectral-based index, and a smaller value
of SAM indicates a better denoising performance. PSNR and
SSIM are spatial-based indexes. Larger values of PSNR and
SSIM suggest better denoising performance.

4) Incremental Learning Policy: We use an incremental
learning policy for stable training, which can effectively avoid
the network converging to suboptimal minimum. Specifically,
the training goes through three stages, and the training data of
each phase uses the same network. In the first stage, Gaussian
noise with fixed noise level (σ = 30, 50, 70) is sequentially
employed to build the training data for network training in turn.
The network weights of each training phase are saved, and we
load the last trained network weights to initialize the network
parameters for the next training phase, instead of retraining
the network again from scratch. Next, we use blind Gaussian
noise (randomly selected from σ = 30, 50, 70) to construct the
training data, and the method described in the first stage is still
used to load the network weight data already trained in the first
stage. Finally, the complex noise is employed to produce the
training data (from Cases 1 to 5). With the increase of the noise
complexity of each stage, the denoising difficulty of the model
also increases. Therefore, making full use of the pretrained
network model in the previous stage is more conducive to
improve denoising performance and enables the network to
converge better. In order to explore the effectiveness of the
incremental learning strategy, we plotted the loss function curve
in the model training process, as shown in Fig. 6, we can see
that the incremental learning strategy can converge faster and
achieve a better denoising performance.

It should be noted that we make the model handle data with
different noises sequentially. Following the easy-to-difficult
learning strategy in Curriculum learning [68], we incrementally
learning the noise from Cases 1 to 4, and therefore, gradually
improving the generalization and learning ability of the model.
Finally, the model learns the complex noise, including all kinds

Fig. 6. Training errors with/without incremental learning. Blue curve denotes
the mixture noise data training without incremental learning. Red curve denotes
the mixture noise data training with incremental learning.

of noise from Cases 1 to 4. Hence, the final model is robust
for complex noise removal. Through incremental learning, the
proposed MAFNet achieves a better denoising performance.

We initialize the learning rate at 10−4, and it decayed every
epoch to accelerate training. The training process of MAFNet
took 100 epochs for Gaussian noise and 150 epochs for complex
noise. The network is optimized using the Adam optimizer
with the PyTorch framework on a machine with NVIDIA GTX
2080Ti GPU, Intel(R) Xeon(R) E5 CPU of 2.50 GHz and 32 GB
RAM.

B. Experiments on Gaussian Noise Cases

This article uses a single model to process various Gaussian
noise levels. Specifically, additive Gaussian noise with different
variances is imposed to produce a set of noisy HSI patches.
The average evaluation indexes are listed in Table I. The best
results have been marked in bold. The best performance for
each quality index is marked in bold. Figs. 7 and 8 show the
denoising results under noise levels σ = 30 and σ = 70 to give
detailed comparison results.

Through comparison, we can observe that the proposed
MAFNet obtains better performance metrics (PSNR, SSIM, and
SAM) when dealing with Gaussian noise cases. It is owing to this
reason that the proposed MAFNet takes the multiscale contex-
tual information into account. Furthermore, benefiting from the
AIN module and coattention fusion, the MAFNet also achieves
better denoising results compared with HSID-CNN, MemNet,
and QRNN3D. As shown in Figs. 7 and 8, we select one band to
give the denoising results. It can be easily seen that the denoising
result of the proposed MAFNet is capable of effectively reducing
the Gaussian noise while precisely preserving the basic texture
details of the original HSI. LRMR can hardly deal with degraded
bands with strong Gaussian noise. BM4D introduces undesirable
artifacts in some regions. Other deep learning-based methods
perform better in noise suppression, but still lose some texture
details. Furthermore, the PSNR and SSIM values of other deep
learning-based methods are lower than the proposed MAFNet.

C. Experiments of Complex Noise Removal on ICVL Dataset

As mentioned before, the model trained at the final stage
of training is used to deal with the five complex noise cases
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON ICVL DATASET

Fig. 7. Gaussian noise removing results of PSNR (dB) at tenth band of the HSI under noise level σ = 30 (ICVL dataset). (a) Ground truth (+∞). (b) Noisy
(18.58). (c) LRMR (32.41). (d) BM4D (36.65). (e) LRTV (34.77). (f) MemNet (39.63). (g) HSID-CNN (40.06). (h) QRNN3D (42.24). (i) Ours (42.57).

simultaneously. Five types of complex noise include non-i.i.d
Gaussian noise, Gaussian + stripe noise, Gaussian + deadline
noise, Gaussian + impulse noise, and Mixture noise. We con-
ducted experiments on ICVL dataset for complex noise removal.
The quantitative results are shown in Fig. 9, and the correspond-
ing quantitative values are listed in Table II, respectively. The
best results have been marked in bold.

Fig. 9 shows the visual results of MAFNet denoising under
complex noise conditions. The result shows that our MAFNet
significantly outperforms the other methods. By comparing
the denoising performance indicators in Table II, it can be
observed that our MAFNet performs better than LRMR and
LRTV, since they are low-rank matrix-based methods and some
basic structures get lost in the denoising process. Furthermore,
our MAFNet performs better than the other deep learning-
based methods (MemNet, HSID-CNN and QRNN3D). It is
evident that the multiscale feature exploitation and contextual
information integration can help the network to capture more

intrinsic characteristics of HSI. At the same time, it also helps
the network to retain more structural information about the input
image. As shown in Fig. 9, our MAFNet not only removes
complex noise, but also retains the structure and spatial details.
Moreover, compared with other methods, the proposed MAFnet
generates HSI images with a more natural and vivid appearance.
Besides, the HSI images produced by the proposed MAFNet
have better global contrast.

D. Experiments of Complex Noise Removal on CAVE Dataset

We conducted complex noise removal experiments on the
CAVE dataset [62] so as to verify the effectiveness of the
MAFNet’s denoising performance. Each image in the dataset
is acquired at a wavelength of 10 nm in the range of 400–
700 nm. We divided the dataset into two sets, with 20 im-
ages for training and 12 images for testing. Table III presents
the quantitative evaluation results of different methods. The
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Fig. 8. Gaussian noise removal results of PSNR (dB) at tenth band of image under noise level σ = 70 (ICVL dataset). (a) Ground truth (+∞). (e) LRTV (29.36).
(b) Noisy (14.15). (c) LRMR (26.26). (d) BM4D (30.27). (g) MemNet (34.71). (g) HSID-CNN (35.55). (h) QRNN3D (39.03). (i) Ours (39.78).

Fig. 9. Complex noise removal results on the ICVL dataset. Examples for non-i.i.d Gaussian noise (Case 1), Gaussian + stripes (Case 2), Gaussian + deadline
(Case 3), Gaussian + impulse (Case 4), and mixture noise (Case 5) removal are illustrated, respectively.

best results have been marked in bold. We compare the pro-
posed MAFNet with BM4D [48], OLRT [69], NGMeet [70],
MemNet [65], HSID-CNN [36], and QRNN3D [57]. It can
be observed that the proposed MAFNet achieves the high-
est PSNR value, which demonstrates its superior denoising
performance.

It should be noted that we employ state-of-the-art low-rank
tensor recovery models (NGMeet [70] and OLRT [69]) on the
CAVE dataset. These low-rank tensor methods can effectively

utilize both the spatial-spectral information, and preserve the
high-dimensional spatial and spectral structure information in
HSIs. NGMeet learns the orthogonal basis matrix and reduced
image, which produces impressive recovered images. OLRT
provides a flexible and promising solution for HSI denoising,
deblurring, and inpainting. Additionally, we conducted exper-
iments of Gaussian noise on CAVE dataset. In the low noise
case, NGMeet and OLRT demonstrate a better performance than
MAFNet. As the noise level increases, the proposed MAFNet



PAN et al.: MULTISCALE ADAPTIVE FUSION NETWORK FOR HYPERSPECTRAL IMAGE DENOISING 3053

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER FIVE COMPLEX NOISE CASES ON ICVL DATASET

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE CAVE DATASET

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE PAVIA UNIVERSITY DATASET

outperforms NGMeet and OLRT. Therefore, we can conclude
that NGMeet and OLRT are effective in spectral regularization,
and the proposed MAFNet is beneficial for complex noise re-
moval.

E. Experiments on Remote-Sensing HSI Datasets

To verify the robustness and denoising performance of the
proposed MAFNet, we conduct extensive experiments on three
remote-sensing HSI datasets. The first dataset is the Pavia
University dataset. It contains 103 bands, and the spatial size
of the image is 610 × 340 pixels. It was captured by the
reflective optics system imaging spectrometer sensor over the
Pavia University, Italy. The second dataset is the Urban dataset.
It was captured by the HYDICE sensor. The sensor provides 210
bands ranging from 400 nm to 2500 nm. In order to further verify
the denoising performance of MAFNet on real hyperspectral
noise, we introduce the Indian Pines dataset, which is captured

by the AVIRIS sensor and contains 220 bands with a resolution
size of 145 × 145 pixels.

1) Results on the Pavia University Dataset With Mixture
Noise: We added mixture noise on the Pavia University dataset,
and the experimental results are listed in Table IV. The best
results have been marked in bold. It can be easily seen that
the proposed model achieves the highest quantitative metrics.
The corresponding visual results are provided in Fig. 10, and
the values of the PSNR and SSIM within different bands of
the restored HSI on the dataset are depicted in Fig. 11. Our
method not only effectively removes the complex noise, but also
simultaneously preserves the high-frequency texture details.
Furthermore, the mean normalized digital number curves by
different methods are shown in Fig. 12, which demonstrates that
the proposed MAFNet effectively removes the complex noise
without introducing obvious spectral distortion.

As demonstrated in Fig. 11, the proposed method achieves
the best PSNR values on almost all spectral bands. We find
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Fig. 10. Simulated noise removal results of PSNR (dB) at tenth band of mixture noise on the Pavia University dataset. (a) Ground truth (+∞). (b) Noisy (14.15).
(e) LRTV (26.75). (f) MemNet (29.27). (c)LRMR (27.64). (g) HSID-CNN (30.38). (d) BM4D (25.16). (h) QRNN3D (33.83). (i) Ours (34.03).

Fig. 11. PSNR and SSIM values of different denoising methods in each band of the simulated experiments in mixture noise on Pavia University.

Fig. 12. Horizontal mean digital number curves at 14th band of real noise by different methods on the Pavia University dataset. (a) GT. (b) Noisy. (c) LRMR.
(d) BM4D. (e) LRTV. (f) MemNet. (g) HSID-CNN. (h) QRNN3D. (i) Ours.
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Fig. 13. Noise removal visual results of false color images on band 50, 100, and 150 of the Urban dataset with competing methods. (a) Ground truth. (b) Noisy.
(c) LRMR. (d) BM4D. (e) LRTV. (f) MemNet. (g) HSID-CNN. (h) QRNN3D. (h) Ours.

Fig. 14. Noise removal visual results of false color images on band 70, 110, and 160 of the Urban dataset with competing methods. (a) Ground truth. (b) Noisy.
(c) LRMR. (d) BM4D. (e) LRTV. (f) MemNet. (g) HSID-CNN. (h) QRNN3D. (i) Ours.

that nearly all the methods perform differently across spectral
bands. It is mainly caused by the denoising difficulties among
different spectral bands, since the intrinsic noise levels from
different spectral bands are different. In addition, due to the
characteristics of the hyperspectral sensor, the spatial details of
the different spectral bands are different. Hence, nearly all the
methods perform differently across spectral bands.

2) Results on the Urban Dataset With Mixture Noise: To
further validate the efficacy of MAFNet in denoising, we added
severely polluted noise to the Urban dataset. Figs. 13 and 14
demonstrate that deep learning-based methods are effective
in removing severely polluted noise. Notably, the proposed
MAFNet achieves the best denoising performance among all
the methods.

3) Results on the Indian Pines Dataset With Real-World
Noise: Some bands in the Indian Pines dataset are seriously
corrupted by the atmosphere and water, and are polluted by com-
plex noises. We show the denoising result of various methods
on this dataset in Fig. 15. It can be observed that MAFNet can
still achieve the satisfactory denoising performance in real hy-
perspectral noise. Furthermore, it performs better in preserving
spatial details.

F. Ablation Study and Parameter Sensitivity Analysis

1) Coattention and AIN: The critical parts of the proposed
method are the coattention and AIN modules. In order to validate
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Fig. 15. Noise removal visual results of false color images on band 2, 3, and 203 of the India Pines dataset with competing methods. (a) Noisy. (b) LRMR.
(c) BM4D. (d) LRTV. (f) MemNet. (g) HSID-CNN. (h) QRNN3D. (h) Ours.

TABLE V
ABLATION STUDY OF COATTENTION AND AIN

the effectiveness of both modules, we comprehensively compare
three variants on the Pavia University dataset.

1) Basic network with coattention module.
2) Basic network with AIN module.
3) Basic network with both coattention and AIN module (our

proposed MAFNet).
The experimental results on the Pavia University dataset are

given in Table V. It is evident that the combination of coattention
and AIN achieves the best denoising performance.

The AIN module provides semantic guidance via channel-
wise normalization and pixel-wise affine transformation. The
transform parameters γ and β are visualized in Fig. 16. In
the AIN module, γ calibrates the input feature and highlights the
important regions. As can be observed that in the low-resolution
branch, γ highlights the object boundary and, thus, transfers the
basic structure to the high-resolution branch. β is used as the
complementary information for feature calibration in the AIN
module, providing more details to complete the denoising task.

2) Feature Fusion in Coattention Module: Here, we discuss
the multiscale feature fusion in coattention module. In the pro-
posed MAFNet, multiscale features are fused by element-wise

Fig. 16. Visualization of γ and β in AIN module.

summation. We also designed two other schemes, and the ex-
perimental results on the Pavia University dataset are shown
in Table VI. The “Concat” uses concatenation for multiscale
feature fusion, and employs 1× 1 convolution layer to reduce
the channels. The “Multiply” uses element-wise multiplication
for feature fusion. Compared with “Concat” and “Multiply,”
the proposed method could achieve slightly a better denoising
performance.
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TABLE VI
DIFFERENT FEATURE FUSION SCHEMES FOR COATTENTION MODULE

TABLE VII
DIFFERENT ATTENTION SCHEMES FOR COATTENTION MODULE

TABLE VIII
INFLUENCE OF λ IN MAFNET

3) Split Attention and Self-Calibration: Two attention mech-
anisms are employed in the coattention module: Split attention
and self-calibration. To verify the effectiveness of both mech-
anisms, we design three variants, as shown in Table VII. The
“Split” only uses the concatenation and split part in coatten-
tion module, and the self-calibration is removed. The “C-Attn”
uses the channel attention [71] instead of the concatenation
and split part in coattention module, and the self-calibration
is removed. In the proposed MAFNet, both split attention and
self-calibration are used. The experimental results on the Pavia
University dataset are shown in Table VII. It can be observed that
“Split” slightly outperforms “C-Attn,” since multiscale features
are adaptively emphasized by split attention. The proposed
MAFNet performs the best by combining split attention and
self-calibration.

4) Global Gradient Regularizer: In our designed loss func-
tion, λ is a critical parameter that affects the global gradi-
ent regularizer, and can affect the denoising performance. We
evaluate the denoising performance by taking different λ on
the ICVL dataset while keeping the network unchanged. The
results are shown in Table VIII, and it can be observed that the
proposed MFANet reaches the bet PSNR value when λ = 0.010.
Therefore, in our implementation, λ is set to 0.010.

5) Number of Channels: We explore the influence of the
channel number on the denoising performance, and design three
variants of MAFNet according to the channel number and model
size, i.e., MAFNet-S, MAFNet-B, and MAFNet-L. The channel
numbers of three scales of MAFNet-S are set as (32, 64, and
128). Then, the corresponding channel numbers in MAFNet-B
and MAFNet-L are set as (64, 128, and 256) and (128, 256, and
512), respectively. The denoising performance of three variants
and other deep learning methods are illustrated in Table IX. It
can be observed that MAFNet-L achieves the best PSNR value,
but its computational complexity is large. MAFNet-S achieves
a good denoising performance while it is rather computationally
efficient. It should be noted that MAFNet-B achieves an excel-
lent denoising performance while its computational complexity

TABLE IX
DENOISING PERFORMANCE AND THE NUMBER OF PARAMETERS COMPARISON

is within an acceptable range. Therefore, in our implementations,
we set the channel numbers of three scales as (64, 128, and 256).
Compared with other deep learning-based methods, our method
exhibits an impressive performance in FLOPs and the number
of parameters. Specifically, although the FLOPs of our method
are higher compared than HSID-CNN, the denoising perfor-
mance of our method is much better. Compared with MemNet
and QRNN3D, the proposed method is more computationally
efficient.

V. CONCLUSION

In this article, we present an MAFNet for HSI noise reduction.
Two key components contribute to improving the HSI denoising:
A progressively multiscale information aggregation framework
and coattention fusion module. Specifically, a set of multiscale
images are generated and fed into a coarse-fusion network to
exploit the contextual texture correlation. Thereafter, a fine
fusion network is followed to exchange the information across
the parallel multiscale subnetworks. Ultimately, the coattention
fusion module adaptively emphasizes informative features from
different scales and reinforces the discriminative learning ca-
pability for denoising. Experiments on both synthetic and real
HSI datasets verified the superiority of the proposed method
compared with other state-of-the-art HSI denoising methods.

Although the MAFNet in this article exhibits an outstanding
denoising performance, the utilization of multiscale branches
for feature extraction also results in an increase in the number
of parameters and computational complexity. Consequently, in
the future, we will concentrate on devising lightweight HSI
denoising techniques.
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