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Land Use Classification of High-Resolution
Multispectral Satellite Images With Fine-Grained

Multiscale Networks and Superpixel Postprocessing
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Abstract—Land use recognition from multispectral satellite im-
ages is fundamentally critical for geological applications, but the
results are not satisfied. The scale dimension of current multi-
scale learning is too coarse to account for rich scales in mul-
tispectral images, and pixel-wise classification tends to produce
“salt-and-pepper” labels due to possible misclassification in het-
erogeneous regions. In this article, these issues are addressed by
proposing a new pixel-wise classification model with finer scales
for convolutional neural networks. The model is designed to extract
multiscale contextual information using multiscale networks at a
fine-grained level, addressing the issue of insufficient mul-
tiscale learning for classification. Furthermore, a small-scale
segmentation-combination method is introduced as a postprocess-
ing solution to smooth fragmented classification results. The pro-
posed method is tested on GF-1, GF-2, DEIMOS-2, GeoEye-1, and
Sentinel-2 satellite images, and compared with six neural-network-
based algorithms. The results demonstrate the effectiveness of the
proposed model in finding objects of large scale difference, im-
proving classification accuracy, and reducing classified fragments.
The discussion also illustrates that convolutional neural networks
and pixel-wise inference are more practical than transformer and
patch-wise recognition.

Index Terms—Classification, convolutional neural network
(CNN), multiscale, multispectral, superpixel.

I. INTRODUCTION

C LASSIFICATION of land use is critical in applications,
such as agricultural resource survey, crop yield estimation,

disaster assessment, and so on. Large-scale classification has
been carried out using satellite images in a cost-effective manner.
Among the data sources, high-resolution multispectral remote
sensing images are the most popular. The classification results
are now easier to gather thanks to the rapid advancements in
sensor, computer, and aeronautical technology.

There have been numerous methods to classify the land use
from remote sensing images, as are categorized into unsuper-
vised classification and supervised classification. Traditional
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Fig. 1. Land use classification from remote sensing images. Green denotes
the pixel-to-pixel classification, blue denotes the patch-to-pixel (pixel-wise)
classification, and red denotes the patch-to-patch (patch-wise) classification.

methods, such as k-means clustering, iterative self-organizing
data analysis technique (ISODATA) clustering, decision tree,
random forest, and support vector machine, perform the pixel-to-
pixel classification with the one-dimensional spectral informa-
tion. New classification algorithms are based on neural networks
and utilize both spectral information and two-dimensional struc-
tures. Distinguished by the output form, they can be categorized
into two groups, namely pixel-wise and patch-wise. The patch-
wise classification is essentially a semantic segmentation as the
input and the output are both patches. Pixel-wise classification is
to use the scene classification pixel by pixel in which the input is
a pixel or patch while the output is a class value. The input/output
difference of the classification methods are presented in Fig. 1.

Pixel-wise classification will be carried out in this article.
Patch-wise classification, or semantic segmentation, has been
carried out in numerous works. For example, Liu et al. [1]
used multiple images for training in context aware cascade
network and expanded the training set using operations, such
as overlapping block taking, rotation, and mirroring. With the
context-aware encoder network, Liang et al. [2] presented a
patch sampling strategy, in which manual intervention is needed
to maximize the separation of training and validation sets. The
accuracy of segmentation is usually lower than that of clas-
sification. In addition, patch-wise classification uses the com-
prehensively labeled patches matched with the input patches,
which requires the labeled data to be as continuous and complete
as possible. In contrast, pixel-wise classification requires only
discrete or irregular labels. Therefore, pixel-wise classification
is more suitable to the application needs of remote sensing
classification.
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Pixel-wise classification tends to produce the “salt-and-
pepper” results. The derived land cover maps are highly frag-
mented to be incorporated into a geographic information system
database. The reason is from the limited patch size that judges
a label locally. Although the small size is effective for homoge-
nous regions, it faces misclassification in heterogeneous regions
due to the lack of training data, illegible features, or vague
class. Therefore, fragmentation needs to be avoided when the
pixel-wise classification is used.

High-resolution multispectral remote sensing images offer
valuable spatial contextual information that can enhance classi-
fication accuracy through the acquisition of local multiscale fea-
tures. Derived from the wavelet transform, multiscale learning
is the sampling of different scales of a signal or image. Smaller
scales can exhibit structures and textures, while larger scales
focus more on the spectral features. In convolutional neural
networks (CNNs), convolutional layers and residual modules
that are cascaded with different kernel sizes can be used for
multiscale learning, as has been proposed with different levels
of semantic information or various receptive fields. Li et al. [3]
presented an adaptive multiscale deep fusion residual network
(AMDF) with the purpose of effectively using the useful infor-
mation contained in shallow features to mine multiscale features
with different levels of semantic information. In contrast, Liu
et al. [1] and Hua et al. [4] aimed to perceive boundaries, regions,
and semantic categories of the target objects by learning features
on multiscale receptive fields. Considering that the integration
of shallow and deep features faces the differences in size and
amount of channels, multiscale features from various receptive
fields are of more potential. In addition, Hang et al. [5] proposed
a multiscale progressive network for gradually segmenting ob-
jects into small scale, large scale, and other scales by cascading
three subnetworks.

However, the scale dimension of the current multiscale learn-
ing for pixel-wise classification is too coarse to account for rich
scales in multispectral images. Detail emerges in high-resolution
multispectral images when the spatial resolution approaches one
meters, accompanied with more complex spectral features of
ground objects [6]. In very high-resolution remote sensing im-
ages, land use are larger than a single pixel, and the phenomenon
of “same object with different spectrums” and “same spectrum
for different objects” becomes more prevalent. Finer multiscale
characteristics with multiscale feature learning at smaller gran-
ular are, therefore, needed to deal with these challenges.

This article focuses on the two issues mentioned above. A
new pixel-wise classification model is designed to extract the
multiscale contextual information in images with multiscale
networks at a fine-grained level to address the issue of insuffi-
cient multiscale learning for the classification of high-resolution
multispectral images. A superpixel combination technique is
proposed as a postprocessing solution to smooth the fragmented
classification results.

The main contributions of this work are summarized as fol-
lows.

1) To achieve fine-grained multiscale learning in CNN, new
downsampling and residual modules are proposed for the
classification task of high-resolution satellite images.

2) To improve the fragmentation of classification results, a
small-scale segmentation method is introduced for post-
processing to combine labels across class boundaries.

II. RELATED WORK

In this section, classical, neural network-based, and object-
oriented classification methods are introduced. Classical and
neural network-based classification are pixel-wise that outputs
only one label for the center pixel of the input patch. Object-
oriented classification is a typical representative of patch-wise
classification that outputs all the labels for pixels in a patch.

A. Traditional Pixel-Level Classification

Unsupervised classification methods can directly classify
image pixels based on gray-scale spatial features, which are
suitable for feature classification scenarios with simple prior
knowledge. Currently clustering techniques, such as k-means
and ISODATA are often used for unsupervised classification.
More and more sophisticated unsupervised classification meth-
ods have been developed to extract an appropriate group of
features for the classification of remote sensing images in a more
efficient way. For example, to achieve accurate classification
of remote sensing images, Marinoni and Gamba [7] proposed
an unsupervised approach for feature extraction based on data
driven discovery, which exploits mutual information maximiza-
tion to retrieve the most relevant features with respect to informa-
tion measures. Huang et al. [8] proposed a multiview subspace
clustering model, which exploits effectively the rich information
from multiple features extracted either from a single data source
or from multiple sources. Unsupervised classification methods
can only distinguish different categories and not determine the
attributes of the categories, since they lack the necessary a priori
knowledge.

By learning data relationships from a given training set con-
taining ground truth information, supervised classification meth-
ods are more suitable than unsupervised classification methods
for remote sensing images with complex ground object types,
and usually have higher classification accuracy. There are two
primary groups of supervised classification methods. The mini-
mum distance method and the maximum likelihood method are
two prominent examples of the first group of supervised clas-
sification methods based on statistical models. The minimum
distance method, which classifies pixels based on how far they
are from the center of each category, is a relatively simplified
classification method. The maximum likelihood method is a non-
linear classification based on Bayesian criterion with minimal
probability of classification error.

The second group is supervised classification methods based
on machine learning, mainly including decision tree, random
forest, support vector machine, neural network-based classifica-
tion, and object-oriented classification. Decision tree classifica-
tion is a method that compares the eigenvalues of pixels with a set
baseline value in a hierarchical manner. The classification and
regression tree model was proposed by Breiman et al. in 1984
and is a widely used decision tree classification method. Random
forest is an integrated classification model proposed by Breiman
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[9] in 2001. To address the problem of noise in training data,
Gislason et al. [10] used random forest to classify multispectral
images. support vector machine is based on the structural risk
minimization criterion to maximize the generalization ability of
the classifier with strong nonlinear and high-dimensional data
processing capability while making the sample classification
error minimal. A fuzzy support vector machine-based multi-
spectral image classification method was put out by Wang and
Ma [11] and has higher accuracy than the method that uses an
support vector machine directly.

These classical algorithms belong to the pixel-wise classifica-
tion. The advantages of these methods are fast training or unsu-
pervised classification. These methods only utilize the spectral
information of images and cannot utilize the spatial contextual
information in images. With the emergence of large amount of
details in high-resolution multispectral remote sensing images
and the complexity of spectral features, the classification accu-
racy of these methods is poor. And since the classification is
performed pixel by pixel, the categories between neighboring
pixels have contingency. Misclassification is prone to occur
in the region of ground object category transition or feature
ambiguity, resulting in fragmented classification results.

B. Neural Network-Based Pixel-Wise Classification

Neural network-based classification contains many different
approaches. Multilayer perceptron neural network based on
error back propagation is the first algorithm that was intro-
duced for remote sensing image classification. In the latest
research, deep learning-based classification methods have been
widely used, which can be seen as a development of neural
networks. Deep belief network (DBN) achieves image clas-
sification by unsupervised pretraining of unlabeled data and
supervised fine-tuning of labeled data. Liu et al. [12] calculated
the texture features of high-spatial resolution remote sensing
images through nonsubsampled contourlet transform, and used
DBN to classify images based on spectral and texture features.
Subsequently Zhong et al. [13] developed a new diversified DBN
through regularizing pretraining and fine-tuning procedures by
a diversity promoting prior over latent factors. Chen et al. [14]
proposed a SAE to extract the high-level features for remote
sensing images using spectral–spatial information. Chen et al.
[15] used stacked denoise autoencoder to extract features, and
used logistic regression approach in the top layer of the network
to perform supervised fine-tuning and classification. However,
the inputs of these models are in vectorization form that may
ignore the neighborhood structures around pixels.

CNN models allow the use of spatial patches as data input,
providing a natural way to integrate spatial contextual infor-
mation with higher classification accuracy compared to BP,
DBN, and SAE. Based on this, Maggiori et al. [16] designed
a fully convolutional architecture for the dense classification
of remote sensing images and addressed the issue of imperfect
training data through a two-step training approach. Ji et al.
[17] proposed a novel three-dimensional CNN based method
that automatically classifies crops from spatio-temporal remote
sensing images. Liu et al. [18] proposed an end-to-end learning

framework based on deep multiple instance learning, using CNN
and SAE to extract the spatial features of panchromatic images
and the spectral features of multispectral images, respectively.
In recent years, the development of CNN has made continuous
breakthroughs in multispectral image classification. Aiming at
the problems of gradient explosion, gradient disappearance, and
nonconvergence brought by deeper networks, ResNet [19] used
the concepts of residual learning and skip connection to deepen
the network complexity in exchange for the higher classification
performance. On the other hand, some research has focused on
improving the computational efficiency of networks, such as
LinkNet [20], which is pretty light but superior in performance.

Recent advancements in deep learning networks have signif-
icantly improved the extraction of discriminative features from
remote sensing data. However, the performance bottleneck in
identifying and recognizing objects of interest when only using
single satellite data has become increasingly evident. To over-
come this limitation, multimodal networks have been proposed
and used for remote sensing images. These networks combine
multiple sources of data to improve classification accuracy and
obtain better results than only using single satellite data source.
For example, Gadiraju et al. [21] developed a multimodal deep
learning framework for crop classification using multispectral
and multitemporal satellite images. Similarly, Hang et al. [22]
proposed an unsupervised feature learning model to extract
features by using the relationship between hyperspectral and
light detection and ranging data. These studies demonstrate
the potential of multimodal networks to improve the accuracy
and efficiency of remote sensing image analysis. However, the
classification of a single multispectral image still has the greatest
universality in terms of the burden of data preparation.

The neural network-based pixel-level classification method
can obtain higher classification accuracy compared with the
classical method. Furthermore, the CNN-based pixel-level clas-
sification adopts the patch-to-pixel classification way, which
utilizes both the spatial contextual information and the spectral
information of images, and achieves a high classification accu-
racy. However, patch-to-pixel classification still results in the
same fragmented classification results as the classical method
and has a slower training speed.

C. Object-Oriented Classification

Object-oriented classification is a new remote sensing image
classification method that emerged for high-resolution remote
sensing image applications. Object-oriented classification takes
regions containing similar semantic information as the process-
ing objects for classification, and can use not only the spectral
features of images, but also the geometric features, texture
features, adjacency relationships, and other spatial features of
images. Image segmentation is used in object-oriented clas-
sification, where the image to be classified is segmented to
generate image objects. Then, the image objects are classified
using methods, such as nearest neighbor classification or fuzzy
classification.

On the basis of object-oriented classification method, Zhang
et al. [23] extracted Zhangjiangkou mangrove communities from
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QuickBird images with segmentation, merge, computing, and at-
tributes selection. Mirzapour and Ghassemian [24] proposed an
object-based method for multispectral image segmentation and
classification. In addition Jin et al. [25] presented a method that
combines object-oriented approach with deep CNNs. Baroud
et al. [26] also proposed an artificial neural network combined
with object-oriented method for land cover classification of
high-resolution multispectral remote sensing images.

Object-oriented classification can guarantee continuous clas-
sification results and is faster than pixel-wise classification
methods. However, the classification accuracy of object-oriented
classification is limited by the segmentation accuracy. The ex-
isting segmentation algorithms have limited accuracy, which is
significantly lower than the classification accuracy, making the
overall classification accuracy of object-oriented classification
slightly worse.

Although transformer shows advantages in many applica-
tions, CNN is more friendly to the training amount and com-
putational burden. CNN focuses mainly on local features, while
the cross attention in Transformer can capture global similarity
over a larger receptive field. However, the attention mechanism
contributes weakly to the pixel-wise classification that uses only
local features. Instead, it introduces three disadvantages. First,
in order to achieve the same performance as CNN, a very large
size of training data is required. Second, far more graphical card
memory is used to train a transformer than a CNN. Lastly, the
computational effort of a Transformer is usually larger than that
of CNN. Since a portion of the image to be classified has to be
manually labeled to pursue the best accuracy, pixel-wise classi-
fication needs to be trained online which prefers smaller labels.
In terms of the computational volume, a remote sensing image
commonly has more than 100 million pixels, then it is a huge
burden to perform scene classification for each pixel. Global
features can also be captured by CNN plus attention module,
but the abovementioned disadvantages cannot be avoided. The
combination of pretrained transformer and shift learning can
reduce the amount of training data, but the consumption of
memory and computation is greater than that of CNN.

III. METHODOLOGY

In this section, new solutions are proposed for land use classi-
fication of high-resolution multispectral satellite images. First,
a new pixel-wise classification network is created consisting
of downsampling and multiscale residual blocks (MRBs) to
capture multiscale contextual information. The MRBs extract
multiscale features at a fine-grained level. A postprocessing
module is designed that uses superpixels derived from small-
scale image segmentation to refine the pixel-wise classification
results by stitching the fragmentation. The new model is named
as fine-grained multiscale classification network, or FGMCN.
The superpixel postprocessing is abbreviated as SPP. The whole
method is called FGMCN-SPP.

A. Multiscale Residual Network

There is rich scale diversity in high-resolution satellite im-
ages. Woodlands and water can be identified point by point

through normalized difference indices. Cultivated land has to
be identified over an area. Artificial buildings are identified over
larger and more diverse patch sizes. When secondary classifica-
tion is involved, the diversity of scales is even more complex.
However, the multiscale learning in land use classification tasks
can only learn features at given scales. Therefore, when plenty
of computational resources and training data are given, the
classification accuracy can be improved by designing extractors
at diverse scales as many as possible.

The proposed network structure is shown in Fig. 2. At the
beginning of the network, a batch normalization (BN) layer is
first used to normalize the input data. A 3× 3 convolutional layer
is then applied to the normalized image blocks to extract shal-
low features. Four MRBs are alternatively cascaded with four
downsampling blocks (DSBs) to gradually extract high-level
features. The separation of downsampling and feature blocks en-
sures that more features can be learned individually. Multiscale
features are learned with the newly designed MRBs. After the
feature learning, a high-level feature map is downsampled with a
2 × 2 average pooling with stride 1. Next, a fully connected
layer and a softmax activation layer are employed to convert
the multichannel feature mapping into a multiclass problem for
pixel classification. The dropout operation is used behind the
average pooling to reduce possible overfitting.

The network parameter is listed in Fig. 2. A patch with a size
ofw × w is created as the feature region centered at each labeled
pixel. Therefore, the actual size of the input data is I ∈ Rw×w×B ,
where B is the channel number of input image. The suggested
size of the input image for satellite images with spatial resolution
greater than 1 m is 27 × 27. The output channels for the first
convolutional layer is set to 64, and the output channels for each
subsequent block are set to 128, 128, 256, 256, 512, 512, 1024,
and 1024, respectively. The dropout probability of dropout is
0.5. The scale of training data has been taken into consideration
when setting these settings.

1) Downsampling Block: Existing classification networks
use either convolution or pooling for downsampling. Max-
imum pooling improves the nonlinear representation of the
network out of commonplace information. Cascaded down-
sampling convolution maintains the indistinctive features in-
stead of salient features. The average pooling smoothes out
salient features, too. However, there are both distinctive and
indistinctive features in high-resolution satellite images as the
ground resolutions are roughly between 2 and 30 m. The for-
mer is beneficial for identifying artificial facilities, while the
latter can be used to identify natural resources such as forest
land and water. Since using a single downsampling method
may lose features, the complementarity of the two down-
sampling methods is harnessed to design the downsampling
module.

Fig. 3 depicts the three parallel branches that make up the
downsampling procedure. The network automatically searches
for branches that are appropriate for various structures. After
the first convolution layer, the input of the first DSB is I1 ∈
Rw×w×N . The left branch using a 3 × 3 convolution layer with
stride 2 to transform I1 into ID_L ∈ R

w
2 ×w

2 ×N
2 for extracting

features and downscaling. BN is to avoid the gradient vanishing.
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Fig. 2. Network structure of the proposed model. Conv3 denotes the convolution with the kernel size of 3 × 3, BN is the batch normalization, and FC is the fully
connected. The number of output channels is appended for each block. The number in dropout brackets indicates the dropout probability, and s indicates the stride.

Fig. 3. Structure of a DSB. conv denotes the convolutional operation, BN
denotes the batch normalization, f gives the amount of channels, s gives the
stride, and c© denotes concatenation.

The calculation can be formalized as

ID_L1 = Conv
(
I1
)
= ω ∗ I1 + b (1)

ID_L = BN
(
ID_L1

)
=

ID_L1 − E
(
ID_L1

)
√

Var (ID_L1) + ε
(2)

where Conv denotes the convolutional operator, ω and b are the
weight and bias of the convolution layer, respectively,E(ID_L1)
and Var(ID_L1) are the expectation and variance of ID_L1 ,
respectively, and ε is a small constant value (i.e., 1e−5) to
maintain stability.

The middle branch using layers of 1× 1 convolution, 3× 3
convolution, and 3 × 3 convolution with stride 2 to transform
I1 into ID_M ∈ R

w
2 ×w

2 ×N
2 for enlarging the receptive field and

extracting features at a wider scale. Then, a 3 × 3 max pooling
with stride 2 is used to obtain the texture detailed information in
the right branch. For input feature map I1 ∈ Rw×w×N , the max
pooling selects the maximum value of a specific area Rc

k,k as its
representation

ID_R = Maxpool
(
I1
)
= max

t∈Rc
k,k

I1 (3)

where 1 ≤ c ≤ N and 1 ≤ k ≤ w.
Therefore, the output of DSB can be denoted as

IDSB = Concat
(
ID_L, ID_M , ID_R

)
. (4)

Our downscaling module is based on the Reduction A module
from Inception V4 [27] but deliberately modified to suit for
classification applications. The number of output channels in
the convolution part is reduced to half the number of input

channels. The ReLU activation layer in the convolutional branch
is removed to prevent feature loss. Finally, the two convolutional
branches are concatenated with the maximum pooling branch,
each playing a half role. As a result, the number of output
channels is expanded to twice the number of input channels
when the scale is reduced to half of the input.

2) Multiscale Residual Block: The proposed MRB is de-
picted in Fig. 4, which incorporates the multilevel residual con-
nection in [28] and two residual modules similar to Res2Net [29].
Four parallel branches make up the Res2Net-like residual mod-
ule, which extracts features at four different scales. The network
is expected to automatically discover scale features that best
suits for input image content. To obtain distinguishable receptive
fields at a fine-grained level, the Res2Net module is introduced.
By stacking convolutional layers, CNNs may learn coarse-to-
fine multiscale features and increase the receptive field. The
Res2Net module builds hierarchical residual connections within
one single residual block, which can broaden the range of
receptive fields. The multiscale residual module has been applied
to extract multiscale convolution features of remote sensing
images [30].

The structure of our residual block is slightly different from
the Res2Net residual module. The input of the first residual mod-
ule is IDSB ∈ R

w
2 ×w

2 ×2N . The output of the 1× 1 convolution
in the first layer is IM1−1 ∈ R

w
2 ×w

2 ×2N and separated into four
equal portions to fed into each branch separately. Assume xi

and yi represent the ith input and output parts, respectively, the
abovementioned process can be formulated as

yi =

{
xi,
BN (Conv (xi + yi−1)) ,

i = 1
1 < i ≤ 4.

(5)

These four branches are combined to obtain multiscale fea-
tures IM1−2 ∈ R

w
2 ×w

2 ×2N . After that, multiscale features are
convolved and connected with the input of first residual module.
The output of the first residual module can be expressed as

IM1−2 = Concat (y1, y2, y3, y4) = {y1, y2, y3, y4} (6)

IM1 = Add
(
IDSB,BN

(
Conv

(
IM1−2

)))
. (7)

In addition, the channel quantities of the input and the output
are the same to guarantee the feature learning capacity of MRB.
To avoid feature loss, the ReLU activation layer in the Res2Net
residual block is removed. Finally, the output of the MRB is
IMRB ∈ R

w
2 ×w

2 ×2N .
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Fig. 4. Structure of a MRB. +© denotes addition and c© denotes concatenation.

Fig. 5. Display of segmentation results. The left is the original image, and the right is the segmented image.

B. SPP to Smooth Fragmented Labels

Our classification method is pixel-wise, that is, a patch is
fed into the network and a label value is output endowing the
class of the pixel at the patch center. Broken spots are observed
in the results of pixel-wise classification methods. Especially,
the classification results based on deep learning are not stable
enough as a result of the lack of corresponding training data for
the mixed pixel features in the cross-category transition zone.
Some pixels in heterogeneous regions show “salt-and-pepper”
noise style in the output label images with small proportion.

A postprocessing technique is then suggested using small-
scale segmentation to address the label inaccuracy issue for het-
erogeneous regions. The patch size in pixel-wise classification is
fixed, which leads to ambiguous category judgments for pixels
in transition regions. In this case, the human vision system is
accustomed to searching for salient borders ahead of judging
the category. Segmentation is, therefore, incorporated into clas-
sification as a processing method to mimic the experience of
human eyes.

SPP is proposed in light of this. In parallel with the classifica-
tion, small-scale segmentation is performed on the image to be
classified. A superpixel is defined as the pixel set in a segmented
image block. An image can be divided into multiple superpixels
based on the similarity of feature, shape, or texture.

The superpixel segmentation results will be fused with the
classification outcomes. Taking the superpixel S as an example,

different categories Cn contain different number of pixels in S,
and is defined as

P (C1) + · · ·+ P (Cn) = 1 (8)

where P (Cn) denotes the proportion of category n in S, that is,
the number of pixels of category n contained in S is divided by
the total number of pixels inS. The procedure of label correction
is analogous to voting. A Superpixel is considered as a uniform
class when the fraction of that class is dominant, whereas the
remained portion is more likely to be of wrong labels.

An image segmentation method is chosen to meet the demand
of our task. Small-scale segmentation results are desired because
transition zones are typically tiny in size. Hu et al. [31] proposed
a stepwise evolution analysis (SEA) framework. In SEA, the
evolution of scale, local variance, and Moran’s index are ana-
lyzed step-by-step, and four LV- and MI-metrics-based methods
are technically integrated for automated scale parameterizations.
Later, in [32], they experimentally concluded that the optimal
scale of an object-based image classification work is a range
rather than a single value, and demonstrated the possibility of the
framework to automatically estimate the optimal classification
scale. This technique is chosen as our segmentation tool because,
with the right parameters, it can produce small block segmenta-
tion. Fig. 5 displays the results with the suggested segmentation
tool.
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Fig. 6. Classification maps of the GF-1 image.

IV. EXPERIMENTAL SCHEME

The proposed method is tested on five satellite images. Six
existing classification algorithms are compared to validate the
performance. The details of competing algorithms are given
in this section. The objective metrics are used to evaluate the
experimental results.

A. Datasets

Five remote sensing images from GF-1, GF-2, DEIMOS-2,
GeoEye-1, and Sentinel-2 satellites are used for the experiment.
Images of GF-2 and DEIMOS-2 are from public datasets while
others are labeled by us. Their spatial resolutions range from 1
to 10 m. Each image contains blue, green, red, and near infrared
bands. The numbers of marked pixels are within the range of
900 000 to 32 000 000.

The GF-1 satellite image has a spatial resolution of 8 m and
an image size of 4548 × 4503. This image was taken on De-
cember 4, 2014 at Poyang lake, Jiangxi province. The coverage
range is 29◦29′57.84′′–29◦53′6′′ N, 115◦39′50.4′′–116◦0′46.8′′

E. The scene was divided into five categories, which consist of
farmland, water, forest, bare land, and artificial building. There
are 1 854 234 marked pixels in the image, of which 402 730 are
farmland, 422 726 are water, 386 300 are forest, 217 864 are bare
land, and 424 614 are building.

The GF-2 satellite image has a spatial resolution of 4 m and
an image size of 7200 × 6800. This image is extracted from the
Gaofen image dataset constructed by Tong et al. [33]. The image
was captured on January 23, 2015 in Dongguan City, China.
The scene is divided into four categories including building,
farmland, forest, and water. There are 31 968 298 marked pixels
in the image, of which 12 725 502 are building, 8 299 238 are
farmland, 443 836 are forest, and 10 499 722 are water.

The DEIMOS-2 satellite image has a spatial resolution of
4 m and an image size of 2928×3249. This image was provided
by the 2016 IEEE GRSS Data Fusion Contest [34]. The image
is a level-1B image captured on May 30, 2015 in Vancouver,
Canada. The scene was divided into 11 categories including
vegetation, four kinds of building areas, boat, road, port, bridge,
tree, and water. There are 3 045 244 marked pixels in the image,
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Fig. 7. Classification maps of the GF-2 image.

of which 52 289 are vegetation, 303 374 are building-1, 76 427
are building-2, 513 224 are building-3, 171 289 are building-4,
8 939 are boat, 60 265 are road, 80 905 are port, 6 882 are bridge,
463 384 are tree, and 1 308 267 are water.

The GeoEye-1 satellite image has a spatial resolution of
1.65 m and an image size of 4399 × 4354. This image was
captured on February 7, 2016 in Jingmen City, China. The cov-
erage range is 30◦40′33.39′′–30◦45′19.44′′ N, 112◦15′12.76′′–
112◦20′39.61′′ E. The scene was divided into seven categories
including farmland, water, road, forest, building, bare land, and
grassland. There are 925 749 marked pixels in the image, of
which 427 918 are farmland, 272 225 are water, 23 165 are road,
83 584 are forest, 57 154 are building, 37 488 are bare land, and
24 215 are grassland.

The Sentinel-2 satellite image has a spatial resolution of
10 m and an image size of 10980 × 10980. This image was
taken on October 3, 2021. The coverage range is 28◦50′22.27′′–
29◦49′35.07′′ N, 115◦57′52.49′′–117◦5′59.82′′ E. The scene was
divided into eight categories consisting of farmland, forest,
artificial building, bare land, sediment in water, norm water,
dark water, and sands. There are 2 131 302 marked pixels in the

image, of which 184 310 are farmland, 474 531 are forest, 56 652
are building, 24 688 are bare land, 586 139 are sediment in water,
726 709 are normal water, 45 787 are dark water, and 32 486 are
sands.

B. Cluster Sampling

Before the experiment, the cluster sampling strategy in [35]
is adopted. Sampling strategies dividing the labeled data into
train and test sets has a significant impact on the quality and
reliability of the estimated generalization error [36], while the
cluster sampling strategy can mostly ensure the fairness.

TheK-means algorithm partitions all samples into two groups
with regard to the spatial coordinates. One group is chosen at
random to extract training samples for each category, and the
other group are for test. For each category in GF-1, DEIMOS-2,
GeoEye-1, and Sentinel-2, 10% of it in a group was randomly
chosen for training while all the pixels in the other group are
used for test. Because of the vast amount of labeled data in the
GF-2 image, 1% of the entire dataset was randomly chosen from
one group for training and 5% from the other group for test.
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Fig. 8. Classification maps of the DEIMOS-2 image.

C. Parameter Setting

The proposed FGMCN and SPP methods are compared with
some algorithms for performance validation, including ResNet-
34 [19], SSRN [37], MSPSSRN [38], AMDF [3], CANet [39],
and SDF2N [40] to ascertain the efficacy of the proposed ap-
proach, which are all CNN-based. Among them, ResNet-34 is a
standard residual network, CANet is a residual network with an
attention mechanism, SSRN is for hyperspectral images, while
MSPSSRN, AMDF, and SDF2N are specifically designed for
multispectral images. The programming language is PYTHON
with the KERAS framework for deep learning.

Training parameters are set for the algorithms. The categorical
cross entropy loss is used in all algorithms. The batch sizes of all
algorithms are set to 64 to ensure fairness. ResNet-34, CANet,
and the proposed FGMCN algorithm share the same parameter
settings. The network optimization algorithm uses stochastic

gradient descent (SGD) optimizer and trains 200 epochs. The
learning rate is 0.001 in the 101–200 cycles and 0.0005 in
the 100–200 cycles. The input patch has 27 × 27 pixels. The
7 × 7 average pooling layer at the end of ResNet-34 is removed
to adapt to the input size. As for SSRN, MSPSSRN, AMDF, and
SDF2N, they use the original parameters. SSRN uses RMSProp
optimizer and trains 200 epochs. The initial learning rate is
0.0003 and the input patch has 7 × 7 pixels. MSPSSRN uses
the SGD optimizer and trains 200 epochs. The learning rate is
0.0003 in the 1–100 cycles and 0.00015 in the 101–200 cycles.
The input patch has 27 × 27 pixels. AMDF uses the SGD
optimizer and trains 200 epochs. The initial learning rate is 0.001
and the input patch has 31 × 31 pixels. SDF2N uses the Adam
optimizer and trains 100 epochs. The initial learning rate is 0.001
and the input patch has 33 × 33 pixels.

Metrics are used to evaluate the classification results. Accu-
racy is the most commonly used rule for this topic. In addition to
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Fig. 9. Classification maps of the GeoEye-1 image.

accuracy, recall, and F1-score are also evaluated for category by
category. To give a general conclusion related to the accuracy,
overall accuracy (OA), average accuracy (AA), and the Kappa
coefficient are also used to measure the classification quality.
All these metrics output scores within the range [0,1] where the
higher gives the better.

V. EXPERIMENTAL RESULTS

The experimental results are visually presented in this sec-
tion. They are also quantitatively evaluated with metrics. The
proposed FGMCN model and the SPP solution are validated
separately.

A. Quantitative Comparison on Test Sets

The test sets of the five images were tested using FGMCN
and the competition algorithms. To avoid the effect of random
clustering, each algorithm runs five times with random training
and test set, and the average scores are recorded as the final
result, which are presented in Tables I–V. The proposed SPP

TABLE I
ASSESSMENT FOR THE TEST DATASET OF THE GF-1 IMAGE

was not used at this stage because of the discrete test samples.
Bold digits represent the best scores.

In Tables I–V, OA, AA, and the Kappa coefficient indicate
that the newly proposed FGMCN method performs better than
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Fig. 10. Classification maps of the Sentinel-2 image.

competing algorithms. SSRN performs poorly, which is over-
weighed by ResNet-34 and ADMF. MSPSSRN, CANet, and
SDF2N are even better, but the proposed FGMCN algorithm
gives the best results steadily.

The DEIMOS-2 classification is the most challenging because
of the largest number of classes. There are large class imbalance
between the different categories. Bridges are only identified by
ResNet-34, CANet, SDF2N, and our model. In this scene, our
method has the highest stability, which can be partially explained
by fine-grained multiscale learning.

Table IV shows that grassland is difficult to be identified
for all algorithms because of insufficient labeled pixels and the
similarity to forest or farmland. The confusion matrix shows that
grassland is tend to be misclassified as farmland. The accuracy
of other algorithms is around poor 45%. The proposed FGMCN
algorithm gives the highest recall rate and F1-score.

B. Quantitative Comparison on Full Images

To verify the effectiveness of SPP, classification was per-
formed on the full images using the trained models. The

TABLE II
ASSESSMENT FOR THE TEST DATASET OF THE GF-2 IMAGE

complete labeled pixels are evaluated and the results are pre-
sented in Tables VI–X. The last columns of these tables give the
scores where SPP is used to correct the FGMCN results through
the full images which are abbreviated as “+SPP.”

Tables VI–X show that the classification accuracy is improved
for all algorithms, which indirectly indicate the effectiveness of
cluster sampling strategy for generalization comparison. The
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TABLE III
ASSESSMENT FOR THE TEST DATASET OF THE DEIMOS-2 IMAGE

TABLE IV
ASSESSMENT FOR THE TEST DATASET OF THE GEOEYE-1 IMAGE

scores of OA, AA, and the Kappa coefficient indicate that our
method performs far better than competing methods. When SPP
was added for classification refinement, OA, AA, and the Kappa
coefficient are slightly improved for almost all images.

In addition, the value of the optimal SPP threshold varies
depending on the number of annotated pixels. Based on the

TABLE V
ASSESSMENT FOR THE TEST DATASET OF THE SENTINEL-2 IMAGE

TABLE VI
ASSESSMENT FOR THE WHOLE GF-1 IMAGE

TABLE VII
ASSESSMENT FOR THE WHOLE GF-2 IMAGE
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TABLE VIII
ASSESSMENT FOR THE WHOLE DEIMOS-2 IMAGE

TABLE IX
ASSESSMENT FOR THE WHOLE GEOEYE-1 IMAGE

experiments, it is recommended to set the threshold to 0.90
for less than one million annotated pixels, 0.75 for millions
of annotated pixels, and 0.60 for tens of millions of annotated
pixels. To pursue the best combination performance, various
thresholds can be set for separate categories.

TABLE X
ASSESSMENT FOR THE WHOLE SENTINEL-2 IMAGE

C. Visual Comparison

The classification results for the whole images are shown in
Figs. 6–10 where local blocks are magnified to compare the
details. Fig. 7 shows that the river in the city is tend to be
recognized as farmland except for ResNet-34, SDF2N, and our
method. In Fig. 8, the boats can be identified only by SDF2N
and our method.

The results confirm that SPP can improve accuracy and reduce
fragmentation. For example, roads in Fig. 6 are unrecognizable
in the FGMCN result but are recovered by SPP. The fragments
of the river areas in Fig. 7 are also effectively removed by SPP.
As can be seen in these figures, SPP can outline ground types at
a small scale, which smooths out minor classification errors in
the category transition regions.

VI. ABLATION STUDY

The key to the performance improvement achieved by our
FGMCN model is the DSB and MRB modules designed for
the classification problem. Distinguishing from existing deep
learning-based classification models, our FGMCN model first
uses the DSB to automatically search for branches that fit
various structures while performing downscaling. Then, MRB is
used for feature extraction to obtain fine-grained distinguishable
perceptual fields.

To illustrate the contribution of these two modules, an ab-
lation study was conducted. In this experiment, the DSB and
MRB components were selectively removed to understand the
contribution to the overall classification model. Specifically,
DSB was replaced by a 3 × 3 convolution with the stride of
2, and MRB was replaced by a common residual block. The
modified FGMCN model was then trained, and the convergence
is presented in Fig. 11 by assessing the variation of the validation
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Fig. 11. Validation errors with regard to training epochs on the GF-1 image.

TABLE XI
ASSESSMENT THE ABLATION RESULTS ON THE GF-1 IMAGE (F1-SCORE FOR

SUB CLASSES)

error during the training of the model. The assessment results are
presented in Table XI. In general, error increases significantly
when DSB is removed, and removing MRB contributes to incur
slight accuracy loss, too. In contrast, FGMCN has the fastest
convergence and the lowest errors on the validation dataset.

VII. DISCUSSION

As mentioned in the first section, our classification method
is pixel-wise and CNN-based. The motivations are from the
practical purpose targeting the best performance as well as
convenience. In this section, the advantages of the two strategies
are discussed.

To compare the performance difference between pixel-wise
classification and patch-wise classification, an additional exper-
iment is conducted by introducing a patch-wise classification
algorithm for comparison. Since patch-wise training requires
complete patch labels, it is tested only on the GF-2 image.
CAEN [2] is chosen as the competing algorithm, which is
patch-wise-based. To train CAEN, the Adam optimizer is used
iterating 80 epoches with a learning rate of 0.001. The input
patch size is set to 56 × 56 pixels.

Two partition ratios are used on the GF-2 data to verify the
performance difference. In the first test, 10% of the dataset is
used for training and 50% for testing, as is the same to the
proportion used in the experimental section. In this case, the
OA score is 0.899 and the Kappa score is 0.850. By comparing
the results with the scores in Table II, it is concluded that
CAEN performs poorly than CANet, SDF2N, and the proposed
FGMCN model. In order to explore the performance boundary of
the patch-wise classification method, 50% of the dataset is used
for training and 50% for test, which is consistent with the ratio in
this article [2]. In this case, the OA score is 0.907 and the Kappa

TABLE XII
CLASSIFICATION ACCURACY CITED FROM [40]

score is 0.861. The new results are getting better and only lower
than FGMCN. However, patches in the training and test datasets
are much similar as the high ratio makes the random clustering
not feasible for a fair comparison. In other words, pursuing the
extreme performance of patch-wise classification methods are
in the cost of huge consistently labeled samples that are difficult
to be satisfied. In contrast, our pixel-level classification method
achieves higher accuracy with far less tags that are discrete and
irregular.

The poor classification effect of transformer can be indirectly
demonstrated by the results of the existing literature. In the
SDF2N study, SpectralFormer [41], a transformer-based classi-
fication method, was tested on three images, including two mul-
tispectral images and an airborne hyperspectral image. The eval-
uation results of SDF2N and SpectralFormer are partly shown
in Table XII, where the Transformer-based SpectralFormer al-
gorithm is not as good as the CNN-based SDF2N method. On
the other hand, Tables I–V show that the proposed FGMCN
method performs better than SDF2N for multispectral classifi-
cation, and the scores of MSPSSRN and CANet are similar to
SDF2N, which indicate the superiority of CNN-based methods
than Transformer-based methods.

VIII. CONCLUSION

This study introduces a novel classification method that uti-
lizes FGMCN and SPP to enhance the quality of multispec-
tral classification in high-resolution images. To improve the
effectiveness of learning multiscale information images, the
proposed method constructs a multiscale residual network at
a finer scale. The proposed method is compared with six widely
used image classification algorithms on five remote sensing
images acquired by GF-1, GF-2, DEIMOS-2, GeoEye-1, and
Sentinel-2 satellites. The experimental results demonstrate that
the proposed method performs well in terms of OA, AA, and the
Kappa coefficient, with good classification accuracy for high-
resolution multispectral images. Additionally, SPP can reduce
the speckles for pixel-wise classification results substantially,
thereby improving both accuracy and visual acceptance of the
proposed method.
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