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Feature Consistency Constraints-Based CNN for
Landsat Land Cover Mapping

Xuemei Zhao , Luo Liang , Jun Wu , Haijian Wang, and Xingyu Gao

Abstract—The cascade of convolution layers and the end-to-end
training process facilitate CNN feature extraction and transmis-
sion, and promote the success of CNN in image processing. How-
ever, the drawback of heavily relying on large-scale high-quality
training samples restricts its applications. To avoid costly and un-
realistic manual annotations for large-scale remote sensing images,
existing land cover maps are considered as an alternative to manual
annotations, in which noisy labels are inevitable. To alleviate the
impact of noisy labels, this article proposes to improve the con-
sistency feature learning ability of CNNs as a feasible solution in
practical land cover mapping. First, an intraclass feature consis-
tency constraint is introduced to maintain the consistency of CNN
feature maps for the same class. Then, an inter-iteration feature
consistency constraint is employed to guide the network to learn
features that are consistent with the whole underlying distribution
inside a minibatch. These two feature consistency constraints work
in a cooperative and complementary manner with the traditional
cross-entropy, and together improve the consistency feature learn-
ing ability of the proposed feature consistency constraints-based
CNN (FCNet). Experimental results demonstrate the effectiveness
of the proposed FCNet. Extensive experiments on different net-
work structures validate the generalization of the proposed feature
consistency constraints.

Index Terms—CNN, feature consistency constraint, land cover
mapping, Landsat images, loss function.

I. INTRODUCTION

LANDSAT is one of the most commonly used data sources
in large-scale land cover mapping due to its long-term and

appropriate observation ability [1], [2], [3]. Benefitting from the
manually collected labels, supervised classifiers have achieved
great success in land cover mapping [4], [5]. Among them,
CNN is becoming an increasingly relevant topic in land cover
mapping since it has made many breakthroughs in computer
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vision [6], [7]. These improvements promote its use in land
cover mapping [8], [9], [10]. As an end-to-end classifier, CNNs
transmit input remote sensing images to land cover mapping
products without any human interaction. What it relies on are
the large-scale high-quality training samples, the architectures,
and the loss functions.

Benefitting from the large capacity of network structures,
CNNs can learn various features of the same class. Actually,
it learns a kind of feature through a convolution kernel in one
layer and then fuses them through the stacking of convolution
layers. In this process, a convolution kernel extracts and fuses
image features inside a receptive field to make it robust to noisy
labels, and the stacking of a large number of convolution kernels
makes the network adaptable to various features. Yet, the multi-
to-one process is irreversible, and there exists some confusing
information, especially near the target boundary. In addition,
noisy labels provide conflict information to the network, and
thus, it is difficult for the network to learn consistent formation.
The uncertainty brought by noisy labels may confuse CNNs and
lead to unsatisfactory classification results [11], [12]. What’s
worse, the network cannot distinguish benefits from harmful
information during training, and thus loses the controlling ability
of the learning preference from the information point of view.
This results in the phenomenon that the higher the quality of
the training set is, the more accurate and comprehensive the
information it provides. Consequently, the more general is the
trained CNN. While for Landsat land cover mapping, enough
high-quality training samples are difficult to access. Although
some methods aim to increase the information transmission
capability of CNNs by improving the network structures, but
they still lack guarantee about the consistency of information.
This makes it very important for the network to extract and
transfer consistent information from existing imperfect training
samples accurately and efficiently.

Improving architectures improve the feature extraction and
transfer capability, but the end-to-end process hinders the in-
troduction of additional constraints, which forces the network
to learn consistent information. The loss function is used to
evaluate the discrepancy between the predicted results and the
ground truth. Thus, modifications are performed on it to control
the learning preference of CNN [13], [14]. Some of the defects
hidden in the training samples can be overcome if a proper
loss function is used. For example, giving more weights to
minority classes is efficient to deal with class imbalanced train-
ing samples [15], [16]. Image information-related constraints
are introduced to deal with noisy labels [17], [18]. Due to the
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cascading nature of CNNs, detailed information is lost, resulting
in unsatisfactory results. Introducing boundary information to
define loss function improves CNN’s learning ability on de-
tailed information [19]. However, the following problems still
exist.

1) Problems of the training set: Affected by imaging illu-
mination conditions, pixels representing the same class
present different spectral features in Landsat images. The
differences in spectral features in the same class increase
the difficulty of recognizing different classes on the one
hand and seriously affect the labeling of training samples
on the other hand. For Landsat land cover mapping, both
the variations spectral features and noisy label problems
exist simultaneously.

2) Problems in feature extraction: The cascading of convolu-
tion layers will result in similar features in adjacent areas.
The linear weighted sum essence of convolution layers
may submerge some information that is important for land
cover mapping, thus leading to similar CNN feature maps
for different classes, which confuses the classifier. This
inconsistency of CNN feature maps usually occurs near
the object boundary, especially for Landsat images with
30-m resolution.

3) Problems in network training: Traditional CNNs use
shuffled minibatches to approximate the whole dataset.
Each minibatch provides various gradients for the network
to learn general features, while the randomly sampled
minibatches cannot well simulate the whole underlying
distribution, due to the unbalanced natural distribution of
land cover types. This means that the information provided
by the minibatches is a biased estimation, which leads to
the oscillation of the trained network.

Despite all this, the success of loss functions in controlling
the learning preference of CNN gives us a chance to force the
network to learn consistent information from noisy labels in
Landsat images. Therefore, we propose to incorporate feature
consistency constraints to the loss function to guide the learning
preference of a CNN. The main contributions of the proposed
FCNet are summarized as follows.

1) An intraclass feature consistency constraint is employed
to minimize the discrepancy of learned features inside the
same class to improve the learning ability of the network,
with the presence of noisy labels.

2) An inter-iteration feature consistency constraint is intro-
duced to guild the network to learn consistent features
within a class among iterations when using minibatches
to approximate the underlying distribution of the data.

3) We demonstrate the effectiveness and complementarity
of the proposed feature consistency constraints and their
extensibility on other network structures.

II. RELEVANT WORK

A. CNN Architecture

The design of the CNN architecture determines how image
features are learned and transmitted in the network. So, early
research focused on increasing or expanding the number of

network layers [20]. Along with the increase in model capacity,
new problems such as the vanishing-gradient problem arise.
ResNet, which takes skipping connection as the core idea, over-
comes this drawback and allows the network to go deeper [21].
However, a deeper network does not mean stronger learning
ability, especially on specific tasks. To fully utilize the difference
between different CNN architectures, multibranch-based CNNs
are proposed. Zhao et al. [22] used 1-D and 2-D convolution to
learn spectral and spatial features, respectively, to improve the
learning ability of CNN. Different representations also have a
great impact on the learning ability of CNNs. Using each branch
to learn information from a representation can also improve
the performance [23], while the detailed information lost in
the cascading of convolution layers cannot be compensated
with multiple branches. [24] used dense connections to allow
the information to be transmitted in nonadjacent layers. As
demonstrated in [25], dense connections can not only strengthen
the feature extraction but also alleviate the vanishing-gradient
problem to some extent.

The attention mechanism is first proposed in natural language
processing to give different weights to the input. It can be used
in soft, hard, global, local, and other ways to capture long-range
connections [26]. However, it cannot accurately describe the
relationship between the source and the target. To overcome
this drawback, the self-attention mechanism is proposed. In [27],
the proposed multihead self-attention module completely consti-
tutes the network architecture, called transformer. Even though it
is computationally expensive, it outperforms other architectures
when the training samples are sufficient [28]. To alleviate the
dependency of GPU memory, Huang et al. [29] proposed a criss-
cross attention module to capture the full image dependencies
from all pixels and reduce GPU memory usage simultaneously.
Jiang et al. [30] proposed an online attention accumulation strat-
egy to obtain more integral object regions at different training
phases.

B. Loss Function

The loss function evaluates the differences between the pre-
dicted result and the ground truth, so as to provide the gradient
of back-propagation. Accordingly, there are many contributions
in this regard [31], [32]. Among all these loss functions, cross-
entropy is the most widely used [33]. However, affected by the
imbalanced and noisy labels, cross-entropy cannot always reach
its optimum, in practical applications. Luo et al. [15] combined
focal loss and cross-entropy to alleviate the impact of class
imbalance and outliers. Potential noisy labels were automati-
cally compensated by the asymmetric loss function proposed
in [34]. The loss function can not only solve the imbalanced
and noisy label problems but also deal with multiscale data
conveniently. Considering the scale differences between small
and large objects, Zhou et al. [35] used contrastive loss and
cross-entropy loss to define a new loss function that is suitable
for small sample target. Yang et al. [36] used discrete wavelet
transforms to divide the image into patches with different sizes
and then accumulated the information through the structure
similarity loss function.



ZHAO et al.: FEATURE CONSISTENCY CONSTRAINTS-BASED CNN FOR LANDSAT LAND COVER MAPPING 3547

As previously discussed, detailed information will be lost
during the cascading of convolution layers. To overcome this
drawback, Borse et al. [19] proposed a boundary-aware loss
function to learn the degree of parametric transformations be-
tween the predicted and the ground-truth boundaries. Along
with the cross-entropy, it achieved satisfactory results. Similarly,
Guarda et al. [37] proposed an adaptive distortion metric-based
loss function to improve the rate-distortion performance inside
a neighborhood. To improve the learning ability of networks
on interest targets, Liu et al. [38] proposed a task-specific loss
function. Choi and Kil [13] proposed to learn compact and dis-
criminative high-level features by using a radial basis function
kernel-based loss function. A pairwise Gaussian loss function
is employed to address the intraclass compactness and ensure
good interclass separability [39]. The learned knowledge about
different objects is accumulated by a loss transferring method
proposed in [40].

C. Class-Related Information

Different from CNNs which extract information by automat-
ically learning from the training set, traditional supervised and
unsupervised methods fully utilize the class-related information
to achieve optimum results. Zhang et al. [41] proposed to use
information entropy, conditional entropy, and mutual informa-
tion to construct class-specific regularizations to describe the
internal relationship, which is an extension of their previous
work [42]. Fisher information can also be used to describe
class-related information by decreasing intraclass scatter and
enlarging interclass scatter [43]. Besides the information used
for evaluating the intra- and interclass similarity, the way to use
this information also has a great impact on the performance of the
method. Zhu et al. [44] used intravideo and intervideo distance
metrics to propose a distance learning method. Leng et al. [45]
proposed an intra–inter-scale discrimination index to balance the
spectral difference inside a superpixel and between superpixels.
However, the discrimination ability of the scale-based index
is limited. To fully utilize consistent and diverse information,
Se et al. [46] imposed a clustering structure constraint on the
subspace self-representation and employed an exclusivity con-
straint term to enhance the diversity of specific representations.
In subspace clustering methods, a sparse construction error is
used to describe the interclass and intraclass relationship [47].
Class-level sparse and globally low-rank constraints are also
important class-related information [48]. Rong et al. [49] pro-
posed to use subdictionaries to capture class-specific informa-
tion and class-shared dictionary to model class-shared informa-
tion. Class-related information has also been introduced to CNN
architectures. Fan et al. [50] proposed an intraclass discriminator
to learn intraclass boundaries to improve the recognition ability
of the objects. Alhuzali and Ananiadou [51] proposed a triplet
center loss as an auxiliary task to cross-entropy loss. The triplet
center loss is defined by the distance of a pixel to its center
and the distance to other centers. In [52], an intraconcentration
and interseparability-based loss function, which is defined by
the distance of a pixel to its center and the distance between
class centers, is used to make intraclass samples concentrate
and interclass samples separable.

Fig. 1. Original Landsat images and the corresponding reference of Jing-Jin-Ji
region. (a) Original Landsat images. (b) Reference.

III. METHODOLOGY

In this article, we present a feature consistency constraints-
based CNN (FCNet) to fully utilize the consistent information
to improve the performance of CNN-based Landsat land cover
mapping. First, data sources and corresponding preprocessing
are introduced in Section III-A. Motivations inspired by the
characteristics of the data sources are analyzed in Section III-B.
On the basis of feature consistency theory, intraclass and inter-
iteration consistency constraints are defined in Sections III-C
and III-D. Then, Sections III-E and III-F introduce the overall
loss function and the overall architecture of the proposed FCNet.
Finally, the optimization of the FCNet is analyzed in Section II-
I-G.

A. Data Sources and Preprocessing

Jing-Jin-Ji region is selected as the study area since there
exist many types of land surface coverage. The original Landsat
images of this area are shown in Fig. 1(a), which are visually
expressed by near-infrared, red, and green bands. Red, green,
blue, near-infrared, and the other two mid-infrared bands are
used to train the network. A large number of training samples
are necessary to train a network. However, manually labeling
Landsat images is labor-intensive, and labeling accuracy is
difficult to be guaranteed. Existing high-accuracy land cover
products can be considered as an alternative. Land Cover Map of
the People’s Republic of China (1:1000000) is a widely accepted
product with 94% overall accuracy for the first-level classes and
86% overall accuracy for the second-level classes. According to
the land surface coverage distribution and the recognition ability
of Landsat images in the study area, a reference land cover map,
shown in Fig. 1(b), is produced from the Land Cover Map of
the People’s Republic of China (1:1000000). In this study area,
1280 nonoverlapping image patches with 512× 512 pixels are
sampled, in which 640 image patches construct the training set
and another 640 images are used as the validation set.

B. Motivation

Consistency of image features is the essence of human recog-
nition and manually designed classifiers. However, the limi-
tations of manually designed features and constraints heavily
restrict the recognition ability of classifiers, resulting in their in-
ability in recognizing partially well-defined features. Along with
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the improvement of remote sensing image observation ability,
image features show a trend of diversification. This diversity
makes it difficult for traditional algorithms to effectively rec-
ognize classes with complex characteristics. The large capacity
of CNNs provides a solution for complex image classification.
However, existing CNN-based methods increase the learning
ability by improving the network structure and introducing
constraints in the loss function, and they commonly ignore the
consistency of learned CNN feature maps. CNNs use a large
number of convolution kernels to learn the diverse features
of the same class. This process is heavily affected by noisy
labels since they provide contrary labels for similar features.
The label-based training method will also lead to inconsistent
features learned by the network, with the presence of noisy
labels. Actually, the learned features of the same class should
be consistent. This can be considered as a constraint forcing
the network to resist the impact of noisy labels. Consequently,
this article proposes to use intraclass variance to constrain the
network on learning consistency features. Despite the intraclass
feature consistency, using minibatches to approximate the whole
underlying distribution is another factor influencing the learning
ability of the network. The diversity gradients of minibatches
promote the network to learn general information while also
causing the oscillation of the losses during training. This can be
partially explained that there are obvious differences between
the distributions of subsets and the whole dataset, due to the
unbalanced natural distribution of land cover types. To address
this problem, this article approximates the distribution with
the KL divergence of minibatches and the whole underlying
distribution, under the identity covariance matrix assumption.

C. Intraclass Feature Consistency Constraint

From a class-wise perspective, the learned features repre-
senting the same class should be similar. This inspires us to
define an intraclass feature consistency constraint to force the
network to learn consistent features for the same class. As is well
known, class variance is a simple yet effective index describing
the variance of features inside a class. Therefore, this article
proposes to use class variance to define the intraclass feature
consistency constraint. Let xi represent the output feature of the
ith pixel in the CNN feature map, then the variance of the jth
class is calculated as

σj =

√∑nj

i=1(xi − μj)2

nj − 1
(1)

where nj represents the number of pixels in the jth class, and
μj is the mean of the jth class, which can be defined as

μj =

∑nj

i=1 xi

nj
. (2)

To force the network to learn consistent intraclass informa-
tion is to minimize the variance of each class. Therefore, the
intraclass feature consistency constraint can be defined as

Lvar =

∑k
j=1 σj

k
(3)

where k is the number of classes.

D. Intrer-Iteration Feature Consistency Constraint

Consistent information facilitates the network to learn essen-
tial information of each class, while the unexplainability and
complexity of the network make the gradient propagation meth-
ods difficult to converge to the global optimum. In addition, using
minibatches to approximate the whole underlying distribution
is a challenging task due to the various features of the same
class. To make it flexible, this article assumes that there is no
distribution shift when using minibatches to approximate the
whole underlying distribution, and no feature variance inside
a class, i.e., each class has an identity matrix as its covariance
matrix in both minibatches and the whole distribution. We use
KL divergence to evaluate the discrepancy between minibatch
distributions pm and the underlying distribution of the whole
training set pu:

KL(pm||pu) = pmlog

(
pm
pu

)
(4)

Taking Gaussian distribution into consideration, (4) can be
rewritten as

KL(pm||pu) =
∫
x

1√
2πσm

e
− (x−μm)2

2σ2
m log

1√
2πσm

e
− (x−μm)2

2σ2
m

1√
2πσu

e
− (x−μu)2

2σ2
u

dx

= log
σu

σm
− 1

2
+

σ2
m + (μm − μu)

2

2σ2
u

(5)

where μm, μu, σm, and σu represent the means and covariances
of pm and pu, respectively. Under the identity covariance matrix
assumption, the KL divergence can be simplified as

KL(pm||pu) = (μm − μu)
2

2
. (6)

For a specific class, for example, the jth class, μm can be easily
calculated inside a minibatch according to (2):

μm = μj =

∑nj

i=1 xi

nj
. (7)

Nevertheless, μu is unknown. Actually, the network is learning
from the whole training set with iteration. Therefore, this article
proposes to use the accumulated mean instead of the mean of the
whole underlying distribution. To be flexible, the accumulated
mean of the jth class in the tth iteration is calculated as

μu ≈ μ
(t)
cum_j =

μ
(t)
j + μ

(t−1)
cum_j

2
(8)

where μ
(1)
j is the mean of the first minibatch, and the accumu-

lated mean is the average of the current minibatch and all the
historical minibatches. Equation (8) means that the accumulated
mean of the tth minibatch can be calculated by the mean of the
tth minibatch and the accumulated mean of all the (t− 1)th
minibatches. Then, the KL divergence between the minibatches
of the jth class in the tth iteration and the whole unknown
underlying distribution can be approximated as

KL(pm||pu) ≈
(
μ
(t)
j − μ

(t)
cum_j

)2
2

. (9)
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Taking all the classes into consideration, the inter-iteration fea-
ture consistency constraint defined by the KL divergence under
the identity covariance matrix assumption can be written as

L
(t)
dis ≈

∑k
j=1

(
μ
(t)
j − μ

(t)
cum_j

)2
2C2

k

(10)

where C2
k means randomly select two classes from all k classes

to calculate the divergence.
Equation (9) describes the discrepancy between the class

mean value and the accumulated mean value of the class. From
a class-wise perspective, the distribution of a subset may be
different from the distribution of the whole underlying dataset,
but their mean tends to be the same. Therefore, the approxima-
tion shown in (9) can approach the KL divergence between the
distributions of the minibatches and the underlying distribution.

E. Overall Loss Function

Jointly considering the compactness of each class and the dif-
ferences among iterations, the feature consistency constraints-
based loss function is defined as

Lossfc = λ1Lvar + λ2Ldis (11)

where superscript (t) representing the tth iteration is omitted,
λ1 and λ2 are the coefficients of the intraclass feature con-
sistency constraint and the inter-iteration feature consistency
constraint, respectively. Combining Lossfc with the widely used
cross-entropy, the overall loss function is rewritten as

Loss = Lossfc + Lossce (12)

where Lossce represents the cross-entropy loss function, which
is defined as

Lossce = −
n∑

i=1

lilogxi (13)

where li is the label of the ith pixel in the form of one-hot
vector. The widely used cross-entropy aims at maximizing the
probability of each pixel belonging to its corresponding label.
It is a global optimum, which will sacrifice the accuracy of mi-
nority classes or the ones that are difficult to learn. However, the
proposed feature consistency constraints Lossfc can minimize
the discrepancies of intraclass and inter-iteration features. Thus,
Lossfc can be considered as a supplementary constraint to control
the learning preference of the network.

F. Overall Architecture

The framework of the proposed FCNet is shown in Fig. 2, in
which the feature extraction process (represented by the CNN
module in Fig. 2) is just the same as the traditional ones. This
article aims to improve the learning ability of the network
through compensating the cross-entropy with intra-class and
inter-iteration consistency constraints. The calculation of the
loss function only depends on the output feature maps and
corresponding labels. Therefore, it can be used on any backbone
for land cover mapping. First, the label can be used as a mask to
learn features of different classes from the output feature maps.
Then, the mean and variance of each class can be calculated

Fig. 2. Framework of the proposed FCNet.

according to (1) and (2). It is worth noting that the means of the
classes in each iteration are accumulated to compare with those
of the current iteration to construct robust estimates between the
minibatch and the whole dataset. Then, the proposed Lossfc is
combined with the cross-entropy to define the final loss function.
The yellow arrow in Fig. 2 represents the stream of training and
inferencing, and the blue arrow represents the stream used only
for training.

G. Optimization of FCNet

To train the network, it is important to make the proposed
Lossfc meets the requirement of optimization method. As Adam
(the same as other gradient decent methods) is used in this article,
the differentiability of the proposed Lossfc is demonstrated as
follows. Since the output featurexi can be back propagated in the
training process, we just need to demonstrate that the proposed
Lossfc is differentiable to xi. Substituting (3) and (10) into (11),
Lossfc can be rewritten as

Lossfc = λ1

∑k
j=1

√√√√∑nj
i=1

(
xi−
∑nj

i=1
xi

nj

)2

nj−1

k

+ λ2

∑k
j=1

((∑nj
i=1 xi

nj

)(t)

− μ
(t)
cum_j

)2

2C2
k

. (14)

As the output of a network, xi is a derivable function. To discuss
the derivative of Lossfc, μ(t)

cum_j and xi can be considered as con-

stants, when deriving xi from Lossfc. dLossfc
dxi

can be calculated
as

dLossfc
dxi

=
λ1

k

k∑
j=1

2
nj−1

(
xi −

∑nj
i=1 xi

nj

)(
1− 1

nj

)
√√√√∑nj

i=1

(
xi−
∑nj

i=1
xi

nj

)2

nj−1

+
λ2

C2
k

k∑
j=1

((∑nj

i=1 xi

nj

)(t)

− μ
(t)
cum_j

)(
1

nj

)

=
2λ1

k(nj)2

k∑
j=1

njxi −
∑nj

i=1 xi

σj

+
λ2

C2
k(nj)2

⎛
⎝( nj∑

i=1

xi

)(t)

− njμ
(t)
cum_j

⎞
⎠ . (15)
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Equation (15) demonstrates that the proposed Lossfc can be
differentiated by xi. As the output of the network, xi can be
differentiated by the parameters of the network. According to
the gradient propagation theory, Lossfc can also be differentiated
by the parameters of the network. To further explore how the
proposed Lossfc guides the network to learn consistent features,
the two terms in (15) are explained as follows. 1) The first term
describes the differences between the estimated result, which
is based on a pixel value and the number of pixels inside a
class, and the true sum of this class, considering the variance
within the class. This is equivalent to estimating the ground
truth with the representative pixels. The resulted gradient can
guild the network to evolve toward the ground truth inside each
class, and thus force the network to learn intraclass compactness
features. Consequently, the learned features tend to be intraclass
consistent. 2) The second term describes the differences between
the sum of intraclass features in the current iteration and the
accumulated features with all the former iterations, which is
estimated by the accumulated mean of a class and the number
of pixels of the class. This is equivalent to approximating the
accumulated features with features of the current minibatch.
The resulted gradient can force the network to learn global
features with image features inside a minibatch. Consequently,
the network can learn consistent information inside a class
through iterations.

Considering the output of the network as a whole, the deriva-
tives of cross-entropy can be written as

dLossce
dxi

= −d
∑n

i=1 lilogxi

dxi
= − li

xi
(16)

where li represents the ground-truth label of pixel xi outputted
by the network. The derivatives of xi with respect to the network
parameters are not discussed in this article, since they are the
same for Lossce and Lossfc. Compared with (15), (16) can only
provide a gradient for the network to approach the ground-truth
label. In addition, this approach is equivalent to each class,
resulting in the accuracy scarifying in minority classes and
classes with noisy labels. With the guidance of the gradients
provided by (15), the proposed feature consistency constraints
can significantly improve the learning ability of the network,
especially with the presence of noisy labels.

IV. EXPERIMENTS AND RESULTS

In this section, we first introduce the backbones and imple-
mentation details in Section IV-A. Then, the proposed FCNet is
compared with state-of-the-art methods focusing on improving
the learning ability of the network through modifying the loss
function in Section IV-B. Further, the proposed feature consis-
tency constraints are performed on other networks to test their
generality in Section IV-C. An ablation study is carried out in
Section IV-D. The analysis of parameters and discussion about
the proposed FCNet are shown in Sections IV-E and IV-F.

A. Backbones and Implementation Details

To assess the effectiveness of the proposed FCNet, three
widely used backbones are employed, namely, FCN [53],

PSPNet [54], and DeepLab V3+ [55]. The proposed feature con-
sistency constraints are introduced to the three backbones. Adam
optimizer is used to train the network modules. All parameters
are trained based on the models pretrained on ImageNet. The
learning rate is set to be 10−4, and the weight decay is 10−4.
The number of epochs is set to 300 on four NVIDIA Tesla V100
GPUs with a batch size of 52.

B. Comparison With the State of the Art

To verify the effectiveness of the proposed FCNet, it is per-
formed on the study area shown in Fig. 1. Detailed classification
results are displayed in Fig. 3. Classic frameworks such as FCN,
PSPNet, and DeepLab V3+ tend to expand the built-up land to
some extent. This indicates the weak control of the loss function
on the learning preference. Because of the stacking of convolu-
tion layers, detailed information such as edges between different
classes is lost. Without a better control of the learning preference,
a network tends to classify the ambiguous areas as the most
responsive class, in this case, the built-up land. Fig. 3(a6)–(a8)
demonstrates the controlling ability of loss functions on the
learning preference of the network, among which the proposed
FCNet is the best. Similar phenomena arise in other areas within
the study area, as shown in Fig. 3(b1)–(b8) and (d1)–(d8).

The linearly distributed water body is also a challenge for deep
CNNs, impacted by the stacking of convolution layers. Existing
networks either obtain thicker or thinner classification results,
compared with the real river range. However, the proposed
FCNet achieves better classification results not only on the
water body but also on the nearby built-up land and grassland,
as shown in Fig. 3(b8). The confusion between grassland and
forest is an obvious problem in the training set, as shown in
Fig. 3(c2). Accordingly, networks trained by the corresponding
training set are easily affected, as shown in Fig. 3(c3)–(c5) and
(c7). CEL-VTCL [51] employed a triplet center loss function to
force the network to learn compact and discriminative features,
and obtained satisfactory classification results, as shown in
Fig. 3(c6). The proposed FCNet uses the feature consistency
characteristic inside a class to enhance the connections among
pixels representing the same class and obviously decreases the
impact of noisy labels, as shown in Fig. 3(c8). As shown in
Fig. 4, wetland occupies the least proportion in the training
set. For a network that equally learns from each class of the
training set, the information on minority classes is insufficient.
Therefore, the classification results shown in Fig. 3(d3)–(d5)
cannot recognize the wetland located in the upper part of the
image. Although balancing the sample proportion or introducing
corresponding features can improve the learning ability of the
model, the minority classes should be known in advance, which
is impractical in some applications I2CS [52]. The proposed
FCNet can force the network to learn the compactness features
of each class and thus improve the recognition ability of minority
classes. Even though the effect may not be as good as balancing
class proportions, there is no need for prior knowledge about
minority classes.

To qualitatively evaluate the classification results in the whole
study area, the accuracy of each class and the overall accuracies
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Fig. 3. Detailed classification results of the study area. (a1)–(d1) Original Landsat images. (a2)–(d2) Reference. (a3)–(d3) Classification results of FCN. (a4)–(d4)
Classification results of PSPNet. (a5)–(d5) Classification results of DeepLab V3+. (a6)–(d6) Classification results of CEL-VICL. (a7)–(d7) Classification results
of I2CS. (a8)–(d8) Classification results of the proposed FCNet.

TABLE I
QUANTITATIVE EVALUATION OF SEGMENTATION RESULTS (%)

Fig. 4. Proportions of each class in the training set.

are listed in Table I, where the highest accuracies are shown
in bold. In general, the accuracies of forests, grassland, and
cultivated land are higher than those of the other classes. This
coincidence with the proportions of each class in the training
set is shown in Fig. 4. This means that networks tend to learn
features of majority classes over minority ones to maintain
global optimum. This is determined by the definition of loss
function that controls the learning preference of the network.

Assigning different learning weights to different classes is a
solution, but the effect is limited and the proportion of each
class should be known as a prior. The proposed FCNet aims to
improve the learning preference of minority classes and classes
with noisy labels by compacting the features of each class. As
can be seen in Table I, although the accuracy of each class of
the proposed FCNet is not the highest, it is more balanced than
those of other algorithms. So it can achieve the highest overall
accuracy. This indicates that the effect of compacting the features
of each class lies in balancing the learning preference of the
network.

C. Feature Consistency Constraints for Other Network
Structures

To test the generality of the proposed feature consistency
constraints, experiments on different network structures are
conducted. In this experiment, four network structures, namely,
FCN, DeepLab V3+, PSPNet, and FLANet [56], are employed
to test the effectiveness of the proposed feature consistency
constraints. Corresponding accuracies of the original network
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TABLE II
ACCURACIES OF DIFFERENT NETWORK STRUCTURES (%)

TABLE III
ACCURACIES OF THE ABLATION STUDY (%)

structures and the ones with feature consistency constraints
are listed in Table II, where the prefix “FC” represents the
network structure with feature consistency constraints. Although
the effect of feature consistency constraints is to improve
the intraclass and inter-iteration compactness, it is clear from
Table II that the feature consistency constraints cannot improve
the accuracy of each class. The overall accuracies performed
on the three network structures are all increased compared with
the baselines. The improvement on DeepLab V3+ is the least
among all the structures. This may be caused by the noisy
labels contained in the training samples. DeepLab V3+ has used
atrous convolution, atrous spatial pyramid pooling, Xception,
and other modules to improve the learning ability of the network.
With the effect of existing modules, the introduction of feature
consistency constraints did not work as well as without these
modules. On the contrary, the original PSPNet and FLANet are
sensitive to noisy labels, and introducing feature consistency
constraints improves their learning ability on consistent features.
Therefore, the performance improvements of these networks
are the most obvious. Although FLANet solved the attention
missing problem, but these channel and spatial attention cannot
alleviate the impact of noisy labels. Therefore, both accuracies
of FLANet and FCFLANet are lower than those of PSPNet and
FCNet. As for FCN, the original overall accuracy is 73.77%,
with the consideration of feature consistency constraints, the
overall accuracy of FCFCN is comparable with FCNet.

D. Ablation Study

Ablation experiments are carried out to prove the efficiency of
the proposed FCNet with the backbone of PSPNet as an example.
The accuracies are listed in Table III. It is clear that both the intr-
aclass and inter-iteration feature consistency constraints make a
significant improvement on the learning ability of PSPNet. The
intraclass feature consistency constraint (PSPNet-σ) tends to
improve the learning ability of PSPNet on classes with spectral
consistency such as wetland, water body, and bare land. Actually,
the classification accuracy of forests also improves from 76.21%
to 83.38%. The inter-iteration feature consistency constraint
tends to balance the learning ability of PSPNet. As shown in

Fig. 5. Accuracy with the change of parameters.

Table III, the overall accuracy of PSPNet-dis is 74.45%, which
is higher than both PSPNet and PSPNet-σ, while only built-up
land obtains the highest accuracy among the four networks. The
proposed FCNet fully utilizes the advantages of the intraclass
and inter-iteration feature consistency constraints and obtains
the highest overall accuracy of 74.75%. From its class-wise
accuracy, it is found that the FCNet tends to balance the learning
preference of the network rather than improve the learning
ability of a certain class.

E. Parameter Analysis

To validate the robustness of the coefficients, the changes of
accuracies along with the changes of λ1 and λ2 are shown in
Fig. 5. Actually, the loss function shown in (12) contains three
parts, where the coefficient of cross-entropy is set to 1 in default.
From Fig. 5, it is clear that the overall accuracies exceed 74%
with the most combinations of the two coefficients. This means
that the proposed FCNet is robust to changes in parameters in
a relatively large range. This facilitates the utilization of the
proposed feature consistency constraints.

F. Discussion

To illustrate the advantages of the proposed FCNet, the
changes in average variance and average mean with iterations
are shown in Fig. 6. It is clear that the average variance has
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Fig. 6. Changes of the losses with iteration. (a) Average variance. (b) Average
mean. (c) Cross-entropy. (d) Entropy.

a significant increase between the iterations 4000 and 6000,
then it dramatically decreases. Compared with Fig. 6(c), which
represents the decrease of cross-entropy with iterations, it can
be inferred that the former 4000 iterations aim to learn general
information from the training set with a notable decrease of the
cross-entropy. Then, the average variance decreases along with
the cross-entropy after 6000 iterations, indicating that it begins
to influence the learning preference along with the cross-entropy.
As shown in Fig. 6(b), the fluctuation of the average mean
decreases with iteration. This means that the learned features
of the network tend to be more stable.

To verify the effectiveness of the proposed feature consistency
constraints in improving the learning ability of the networks,
the changes of entropy along with the iteration are shown in
Fig. 6(d). Without introducing the feature consistency con-
straints, the entropy decreases before the first 800 iterations
and then increases to the former value. The entropy has not
decreased significantly throughout the iteration, indicating that
the certainty of the learned features remains the same. On the
contrary, the entropy of the proposed FCNet decreases signifi-
cantly in the former 400 iterations, and the variance of entropy
further decreases in the following iterations. This means that the
proposed FCNet can continuously improve the certainty of the
learned features.

V. CONCLUSION

The proposed FCNet introduces intraclass and inter-iteration
feature consistency constraints to control the learning preference
of the network. The proposed feature consistency constraints can
improve the learning ability of different network structures as
a plug-and-play operation. Experimental results show that the
intraclass feature consistency constraint is expert in improving
the network learning ability in classes with strong intraclass
consistency, such as water bodies, and wetlands. However, the
inter-iteration feature consistency constraint tends to balance the
learning preference of the network. They are complementary and
insensitive to the corresponding coefficients, which makes the

plug-and-play operation more convenient for different datasets.
Further analysis of the loss and entropy verifies that the pro-
posed feature consistency constraints can balance the learning
preference of different network structures from the viewpoint of
gradient descent.
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