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Abstract—The segmentation of synthetic aperture radar (SAR)
images is vital and fundamental in SAR image processing, so evalu-
ating segmentation results without ground truth (GT) is an essential
part in segmentation algorithms comparison, parameters selection,
and optimization. In this study, we first extracted the heterogeneous
features (HF) of SAR images to adequately describe the SAR image
targets, which were extracted by the proposed intensity feature
extractor (IFEE) based on edge-hold and two fruitful methods.
Then we proposed a novel and effective unsupervised evaluation
(UE) metric G to evaluate the SAR image segmentation results,
which is based on HF and uses the global intrasegment homogeneity
(GHO), global intersegment heterogeneity (GHE), and edge validity
index (EVI) as local segmentation measures. The effectiveness of
GHO, GHE, EVI, and G was revealed by visual interpretation as
qualitative analysis and supervised evaluation (SE) as quantitative
analysis. In experiments, four segmentation algorithms are used to
segment plenty of synthetic and real SAR images as the evaluation
objects, and four widely used metrics are utilized for comparison.
The results show the effectiveness and superiority of the proposed
metric. Moreover, the mean correlation between the proposed UE
metric and the SE metric is more than 0.67 and 0.99, which in-
dicates that the proposed metric helps in choosing parameters of
segmentation algorithms without GT.

Index Terms—Intersegment heterogeneity metric, intrasegment
homogeneity metric, synthetic aperture radar (SAR) image
segmentation, unsupervised evaluation (UE) metric.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active microwave
imaging system that can provide high-resolution images

day and night under all weather conditions [1], [2], [3]. SAR
is used widely in many applications, such as environmental
observations, crop monitoring, and military reconnaissance [4],
[5], [6]. SAR image segmentation (SIS) methods divide the
image into regions of different features without intersections,
where every pixel in images gets the corresponding label [7].
Segmentation is vital for understanding and interpreting SAR
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images [8], [9], [10]. After a SAR image is segmented, it is
important to evaluate the quality of the segmentation results
(seg-results) so that the image can further be processed, an
optimal algorithm can be chosen, and related parameters can
be properly adjusted [11], [12], [13], [14]. Thus, the research
on SAR image segmentation evaluation metrics (SISEM) is
significant to promote the development of SIS.

Plenty of scholars have studied SIS issues and achieved fruit-
ful achievements. For example, Shang et al. [15], [16] conducted
SIS research from the perspectives of modeling and optimiza-
tion. Yu et al. [8], [17] launched SIS from the multifeature fusion
of SAR images. Akbarizadeh et al. [18], [19], [20], [21] solved
SIS problems from kurtosis, skewness wavelet energy, and the
feature learning. In addition, Aghaei et al. [22], [23], [24], [25]
also made achievements in object classification and detection
of SAR images based on deep learning. This research can also
provide new ideas for the research of SIS. However, compared to
a large number of studies on SIS, there are few studies on SISEM.
The existing SISEM can be divided into five categories [14]:
subjective evaluation methods, system-level methods, analytical
methods, supervised evaluation (SE) methods, and unsupervised
evaluation (UE) methods [26], [27], [28], [29], [30], [31]. The
subjective, system-level and analytical methods are more subjec-
tive and experience-dependent. Thus, the SISEM mainly relies
on more objective SE methods [15], [16], [17].

SE methods [32] are designed to quantitatively measure the
dissimilarity between the SIS results and the ground truth (GT)
images to assess the quality of seg-results. However, the SE
methods require the GT dataset to be composed manually [33].
Building the whole GT images for massive SAR images is
tedious, time-consuming, involves subjectivity, and is hardly
obtained in many cases. Overcoming the subjectivism in the
GT building would save both time and effort [34].

UE methods [27] do not require GT images, and SIS results are
evaluated by calculating human-recognized criteria representing
good seg-results. UE is quantitative and objective and has appar-
ent advantages. The most important benefit is that UE methods
can evaluate different types of SIS without GT images [35], [36].
Therefore, it is of great significance to study UE methods that
can replace SE methods. The UE become an inevitable trend in
the study of SIS evaluation [37]. However, there are few studies
dedicated to the UE of SAR image seg-results.

UE methods involve scoring and ranking multiple image seg-
mentation using quality criteria, which are typically established
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consonant human perceptions of what makes a good segmen-
tation [38], [39]. The widely recognized definition of an ideal
seg-result, given by Haralick and Shapiro [40], is as follows.

1) Regions should be uniform and homogeneous concerning
some characteristic(s).

2) Adjacent regions should have some significant differences
for the characteristic on which they are uniform.

3) Region interiors should be simple and without holes.
4) Boundaries should be simple, not ragged, and be spatially

accurate.
Therefore, for SAR images, a good segmentation should max-

imize intrasegment homogeneity, intersegment heterogeneity,
and edge validity. These elements are combined to assign an
overall “goodness” score to the segmentation [11].

In this article, we aim to design a UE metric based on the
heterogeneous features of SAR images for evaluating SIS results
without GT. Establishing whole GT images for plenty of SAR
images is tedious, time-consuming, and involves subjectivity. In
SAR image processing research, the situation that SAR images
without GT is widespread. And the current UE metrics only
depend on a single feature to evaluate seg-results, especially.
The metrics based on the single-feature design are valid for the
seg-results of single-feature images but fail for the results of SAR
images containing multiple features. Therefore, the key issue of
designing for UE metric is to find features that can completely
describe targets in SAR images to escape from the dependence
on GT. Its difficulty is first to examine the “goodness” of in-
trasegments, intersegments, and segmented edges according to
the features, and second, to design reasonable global metrics
to evaluate the quality of seg-results reasonably. The similarity
measures are used to measure the similarity between different
objects and are mostly used in various evaluation and determina-
tion situations. Therefore, we consider examining homogeneity,
heterogeneity, and edge validity according to characteristics of
SAR image different feature data and reasonable metrics.

More importantly, it can hardly find a special evaluation met-
ric designed for SIS results in existing UE methods. Therefore,
to solve the existing intractable problems in designing of UE
metric of SIS results, we proposed a novel global UE metric
G based on the heterogeneous features for SIS results in this
article. We designed an effective feature extractor and extracted
effective heterogeneous features of SAR images, proposed three
local evaluation metrics, and designed a strategy to combine
local metrics into a global evaluation metric, specifically. The
main contributions of this article are as follows.

1) We conducted the SISEM design using a multifeature-
based approach and extracted multiple features of SAR
images, which provide effective information for designing
G. In detail, we proposed an intensity feature extractor
(IFEE) based on edge-hold to extract intensity features
and used two fruitful methods to extract texture and edge
features. IFEE has the properties of keeping edges while
suppressing speckle noise. These heterogeneity features
can describe the targets of SAR images completely.

2) Based on the heterogeneous features, we evaluate the SIS
results in terms of homogeneity, heterogeneity, and seg-
mentation edge to design local metrics for segmentation

Fig. 1. Calculation flowchart of the proposed UE metric.

evaluation. We designed three local metrics to indicate
the quality of SIS results in three local aspects: global
intrasegment homogeneity (GHO), global intersegment
heterogeneity (GHE), and edge validity index (EVI).

3) We designed a combination strategy that maximizes the
intrasegment homogeneity, intersegment heterogeneity,
and edge validity to fuse GHE, GHO, and EVI into a global
UE metric G. The UE metric G with fused local metrics
can accurately and quantitatively evaluate the seg-results
of SAR images without GT.

The rest of this article is organized as follows. Section II
discusses the proposed methods. The experiments and results
are presented in Section III. Further analysis is discussed in Sec-
tion IV. Finally, the main findings are concluded in Section V.

II. METHODS

In this study, a global UE metric G was designed for eval-
uating SAR image seg-results accurately and objectively. G
metric was developed based on heterogeneous features of SAR
images and satisfied the principle of maximizing intrasegment
homogeneity, intersegment heterogeneity, and edge validity.
A calculation schematic of the metric G is shown in Fig. 1
according to the feature criterion of UE methods discussed in
Section I. First, input the SAR image I and the corresponding
seg-result Ik. The input image I = {x1, x2, x3, . . . , xi, . . . , xN}
is of size Nr ×Nc = N . The input SAR image is divided
into M (M > 1) different segments (A1, . . . , Ak, . . . , AM , 1 <
k ≤ M ) by a segmentation algorithm, and the seg-result is
J = {y1, y2, y3, . . . , yi, . . . , yN}, yi ∈ {1, 2, 3, . . . ,M}. Then,
the intensity, texture, and edge features of the SAR image were
extracted by three effective feature extractors, which involved
IFEE, Gabor filter banks, and multiscale edge detector (MSED).
These features are heterogeneous and can adequately describe
ground targets. Next, the intrasegment homogeneity metric
GHO, the intersegment heterogeneity metric GHE, and the edge
validity index EVI were calculated according to heterogeneous
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Fig. 2. Evaluation of the proposed metric on a 3-class seg-result.

features. Finally, the metric G was calculated according to
GHO, GHE, and EVI to evaluate SIS results. Fig. 2 illustrates a
schematic of the evaluation process of the metric G on a 3-Class
seg-result.

A. Extraction of Heterogeneous Features

Most existing UE metrics such as F [33] are generally com-
puted to evaluate the quality of seg-results based on a single
image feature. These metrics are effective if each ground object
has a uniform feature. Not only do SAR images show high spatial
complexity, but also the ground objects are typically character-
ized by intensity, texture, and edge features [34]. Therefore, it
is difficult for a uniform feature to describe all targets entirely
and accurately. The heterogeneous features of SAR images were
extracted, including intensity, texture, and edge features, in this
study. Our previous study [8] showed that these features com-
plement each other and can accurately and completely describe
the various targets in SAR images. Thus, the UE metric G based
on the heterogeneous features can get an objective and accurate
evaluation of SIS results.

1) Extraction of Intensity Feature: The magnitude of each
pixel in SAR images represents the intensity of the reflected
echo from the ground targets [41]. Therefore, the value of pixels
in SAR images has an essential difference from general optical
images, which fully reflect the radar echoes of ground objects
[42]. The intensity is a very significant feature of SAR images.
Speckle noise causes the intensity value to vary randomly in
SAR images, which seriously affects the accurate extraction of
intensity features. Therefore, we proposed IFEE to extract the
intensity feature of SAR images.

IFEE assumes that the natural scene radar reflection cross
section in SAR images obeys the Gamma distribution. IFEE
first applies the maximum a posteriori (MAP) probability cri-
terion [37] to suppress the speckle noise, and then combines
the image spatial proximity and intensity similarity to perform
region smoothing (RS) and edge preservation [34] to extract
intensity features. The input SAR images are first normalized
before applying IFEE.

Let XB = {xB
1 , x

B
2 , . . . , x

B
N} represents normalized inten-

sity values of an input SAR image I. Applying MAP to XB can
obtain XM = {xM

1 , xM
2 , . . . , xM

N }, which operates xB
i through

a 3 × 3 window as follows:

xM
i =

(α− L− 1)μ+
√
μ2(α− L− 1)2 + 4αLμxB

i

2α
(1)

Fig. 3. Two real SAR images and the corresponding IFEE feature images.

where α = (1+1/L)/(δ2/μ2-1/L), δ2 is the variance of intensity
values in the 3 × 3 window, μ is the mean value, and L is the
image Look. Then, using a convolution kernel Wij with spatial
proximity, σs and intensity similarity σr to XM can obtain
the final intensity feature XI = {xI

1, x
I
2, . . . , x

I
N}. The Wij is

represented as follows:

Wij

(
XM

)
=

1

Ki
exp

(
−|ci − cj |2

σ2
s

)
· exp

(
−
∣∣xM

i − xM
j

∣∣2
σ2
r

)
(2)

where ci and cj are the coordinates of pixels xi and xj, and Ki

is a normalizing parameter to ensure that �jWij = 1. We set
σs = 5 and σr = 0.1 in the actual application after plenty of
verification.

Two real SAR images are shown in Fig. 3(a), and the corre-
sponding intensity features extracted by IFEE are Fig. 3(b). The
homogeneity within the target regions of the intensity features
extracted by IFEE is obviously enhanced. Meanwhile, the excel-
lent edge retention proves that instead of fusing the information
of different target regions, the IFEE operation enhances the
heterogeneity of different regions.

It can be seen that different surface objects are different in
intensity, such as the farmland in Fig. 3(b). However, it is hard to
distinguish these surface objects only according to the intensity
feature. Therefore, we will introduce the extraction of other
heterogeneous features in the subsequent sections.

2) Extraction of Texture Feature: The texture feature pro-
vides an accurate localization of boundaries and spatial infor-
mation that can delineate the actual forms of ground objects
adequately. This complementary information can discriminate
various objects which are similar to intensity. The feature rep-
resentation should be an excellent fit for the objects of human
vision [43].
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Fig. 4. Multiscale and multidirectional texture features of Fig. 3(a) second
row.

The Gabor filter is widely used in SAR image texture expres-
sion due to the perceptual structure of the filter being similar
to the human visual system [44], [45]. This study implements
a two-dimensional Gabor wavelet to characterize the texture
information, which is effective in our previous study [8]. The
Gabor wavelet is expressed as follows [46]:

G(x, y) =
‖k‖2
σ2

exp

(
−‖k‖2(x2 + y2)

2σ2

)

· exp
(
ik

[
x
y

]
− exp

(
−σ2

2

))
(3)

k =

[
kx
ky

]
=

[
kv cosϕu

kv sinϕu

]
(4)

where ‖ • ‖ donates the norm operator, 1 ≤ x ≤Nr and 1 ≤ y ≤
Nc denote the image space horizontal and vertical coordinates,
respectively, kv = 2−(v+2)/2π,ϕu = u · π/U , v and u represent
central frequency and orientation, U is the number of the orien-
tation parameters u, and σ is the ratio of the Gaussian window
width to the wavelength.

The study [43] demonstrated an efficient method of Gabor
filter bank setting parameters and can adaptively extract the
multiscale and multiorientational texture features of an input
image. Applying the bank of Gabor filters with V frequencies
and U orientations to a raw image XB can generate V × U
response images. Then, the pixel xi gets a Gabor texture feature
of V × U dimension, which is defined as follows:

xT
i =

[
xT
i1, x

T
i2, . . . , x

T
i(V ×U)

]
. (5)

The texture feature visualization results of Fig. 3(a) second
row were shown in Fig. 4, which the Gabor filter banks with four
scale parameters and six orientation parameters.

3) Extraction of Edge Feature: SAR images have abundant
edge information. Edge features in SAR images not only help
locate target edges but also assist in distinguishing quickly
between different targets. These advantages are not afforded by
intensity and texture features. Since SAR images are affected
by strong speckle noise, the signal-to-noise ratio is low, which
causes challenges for edge detection of SAR images. Traditional
edge detection operators applied to SAR images usually produce
more false alarm edges, which are poorly handled, and difficult

Fig. 5. Multiscale edge features of Fig. 3(a) second row.

to characterize the edge information at various scales in SAR
images.

An MSED in our previous study [8] proves to be extremely
effective in the SAR image edge detection process, which ex-
tracts multiscale SAR image edge features while dramatically
reducing the effect of speckle noise. MSED is based on the
Prewitt template, and the standard Prewitt template is expanded
to contain V scales by expanding the window size represented
as follows:

grm =

⎡
⎢⎣
−1 · · · −1 0 1 · · · 1

...
. . .

...
...

...
. . .

...
−1 · · · −1 0 1 · · · 1

⎤
⎥⎦
V

,

gcm = (grm)T , i = 1, . . . , V (6)

where grm and gcm represent the vertical and horizontal edge
detection templates in scale m, and V is the number of scales.
The number of scale parameters V is the same as the number
of scale parameters of the Gabor filter, which ensures that the
edges have the same scale as the texture. Next, the normalized
SAR image XB is convolved with grm and gcm, respectively, to
obtain vertical edge features Gr

m and horizontal edge features
Gc

m, which are performed as follows:{
Gr

m = XB ⊗ grm
Gc

m = XB ⊗ gcm
. (7)

The Prewitt template increases as m increases, allowing for
the detection of larger scale edges and better removal of speckle
noise. Finally, the vertical and horizontal edge intensities are
used as the final edge features operating as

xE
im =

√
(Gr

im)2 + (Gc
im)2 (8)

where xE
im is the mth dimension edge feature of the pixel xi,

Gr
im ∈ Gr

m and Gc
im ∈ Gc

m are the components of the vertical
and horizontal edge features in the pixel xi. Then, a set of
multiscale edge features is obtained for each pixel xi

xE
i =

[
xE
i1, x

E
i2, . . . , x

E
iV

]
. (9)

Thus, the extraction of multiscale edge features by applying
MSED is completed. Fig. 5 shows the edge feature images of
Fig. 3(a) second row at different scales. It can be seen that
the multiscale edge images can effectively represent the edge
information at various scales in SAR images.

B. Intrasegment Homogeneity, Intersegment Heterogeneity,
and Edge Validity Metrics

The widely recognized definition of ideal seg-results requires
rules of high intrasegment homogeneity, intersegment hetero-
geneity, and edge validity. Considering the purpose of perfect
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segmentation and heterogeneous features of SAR images, we
respectively design the intrasegment homogeneity metric (HOk)
for each segment Ak and the intersegment heterogeneity metric
(HEkd) between two segments Ak and Ad. All HOk were com-
bined into a global homogeneity metric (GHO) and all HEkd

into a global heterogeneity metric (GHO). And we designed an
EVI to reveal the edge quality of seg-results. GHO, GHE, and
EVI metrics are designed based on intensity, texture, and edge
features to evaluate the seg-results in different local areas.

1) Global Intrasegment Homogeneity Metric: The global in-
trasegment homogeneity metric GHO is based on intrasegment
homogeneity HOk to design. All HOk were summed up by
area-weighted for GHO due to segment with larger areas having
a more significant impact on the global evaluation than the
smaller ones. The GHO is calculated as follows:

GHO =

∑M
k=1 Nk ·HOk∑M

k=1 Nk

. (10)

The intrasegment homogeneity HOk of a segment Ak is de-
scribed by both intensity homogeneity vgk and texture homo-
geneity vtk, which is calculated as follows:

HOk = vgk · vtk. (11)

The vgk calculates the variance of the intensity features in
the segment Ak. The texture homogeneity vtk is based on chi-
squared test. The low variance of the intensity in the segment
indicates high homogeneity for the intensity feature. Therefore,
the smaller vgk indicates the higher intensity homogeneity. The
vgk and vtk are calculated as follows:⎧⎪⎨

⎪⎩
vgk = 1

Nk−1

∑
xi∈Ak

(
xI
i − μk

)2
vtk =

∑
xi∈Ak

∑V ×U
n=1

(
xT
in

−xT
nmax

xT
nmax

)2

Nk

(12)

where Nk is the number of pixels in segment Ak, xI
i (i = 1,

2, 3, . . . , Nk) is the intensity of the pixel xi in segment Ak,
and μk is the intensity values mean of Ak. The xT

in is the nth
dimension texture feature of the pixelxi,xT

nmax is the maximum
of all xT

in in Ak. We calculate the xT
nmax in each dimension of

texture features and get a texture maximum vector xT
max with

V×U dimension in Ak

xT
max = [xT

1max, x
T
2max, x

T
3max, . . . , x

T
nmax, . . . , x

T
V ×U max].

(13)
Three types of ground targets are noted as A, B, and C in Fig. 6.

The histograms of xT
max in A, B, and C have distinct differences,

as shown in Fig. 7. Therefore, xT
max can represent the texture

features of a single region for texture homogeneity calculation.
The essence of texture homogeneity vtk is the mean of the
similarity measures, which are calculated from the chi-squared
test measures of all xT

i with the xT
max of Ak. It can be noted that

the texture homogeneity vtk computed by vtk can compute not
only the difference between the two sets of texture features in
the range of values but also their similarity in the distribution.
The smaller vtk indicates the higher texture homogeneity forAk.

The HOk was obtained by multiplying vgk and vtk shown in
(11). The smaller HOk indicates the higher intrahomogeneity

Fig. 6. Three types of ground targets in a SAR image.

Fig. 7. xT
max of three types ground targets are in Fig. 6.

of Ak because the smaller vgk and vtk indicate the higher in both
intensity and texture homogeneity for a segment Ak. Thus, a
smaller GHO represents a higher global homogeneity for seg-
results.

2) Global Intersegment Heterogeneity Metric: The interseg-
ment heterogeneity metric GHE is based on intersegment hetero-
geneity HEkd to design. All HEkd were cumulated for global
heterogeneity calculation

GHE =
1

2

∑
k �=d

HEkd. (14)

The intersegment heterogeneity HEkd of any two segments
Ak and Ad is described by both intensity heterogeneity Sg

kd and
texture heterogeneity St

kd

HEkd =
Sg
kd

St
kd

. (15)

The Sg
kd calculates the similarity of the normalized intensity

histograms of the segments Ak and Ad , which is based on the
Bhattacharyya coefficient (BhC) [47]. Therefore, the texture het-
erogeneity St

kd is designed depending on the Canberra distance.
The Sg

kd and St
kd are calculated as follows:⎧⎨
⎩Sg

kd =
∑256

q=1

√
Histqgk · Histqgd

St
kd =

∑V ×U
q=1

|fk−fd|
|fk|+|fd|

(16)

where Histqgk and Histqgd denote the normalized intensity his-
tograms of Ak and Ad, and q represents the qth element of
the histogram. The normalized histogram eliminates the pixel
number difference between segments Ak and Ad. Then, the BhC
measures the similarity of the vectors in the range [0, 1], where 1
means perfectly similar and 0 means not similar at all. Thus, the
smaller Sg

kd indicates high heterogeneity of intensity features in
Ak and Ad. The fk is the texture feature descriptors of segments
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Ak and fd belongs to Ad

fk={Ek1, σk1, Ek2, σk2, . . . , Ekn, σkn, . . . , EkV×U , σkV×U}
(17)

where Ekn and σkn are the mean and standard deviations of the
nth dimension texture feature in Ak. The research [48] shows
that the descriptor fk can effectively describe the global texture
feature of the region and can be used to measure the texture
similarity of two regions.

The large St
kd indicates high texture heterogeneity between

Ak and Ad. And a small Sg
kd indicates high heterogeneity of in-

tensity features between Ak and Ad. Therefore, the smallerHEkd

represents higher heterogeneity between segments Ak and Ad. A
smaller GHE value represents a higher global heterogeneity for
seg-results.

3) Edge Effective Index: Edges with good quality seg-results
should contain more edges of real targets and fewer false
edges. Therefore, we propose the EVI. EVI aims to char-
acterize the validity of the segmented edges between the
segments in seg-results. According to the seg-result expres-
sion, J = {y1, y2, y3, . . . , yi, . . . , yN}, yi ∈ {1, 2, 3, . . . ,M},
then the edge of the seg-result is expressed as IE =
{z1, z2, z3, . . . , zi, . . . , zN}, zi ∈ {1, 0}. zi equal to 1 represents
the edge pixel of the seg-result. Based on the multiscale edge
features and IE, the edge effective index is expressed as

EVI =

∑V
k=1

∑N
i=1 zi · xE

ik

V ·∑N
i=1 zi

(18)

where V is the number of scales of edge features and N is the
number of SAR image pixels. The essence of EVI is the average
of the edge features xE

ik of different scales corresponding to the
seg-result edges. Valid edges correspond to larger feature values
xE
ik, and invalid edges correspond to smaller feature values xE

ik.
Poor quality edge seg-results usually contain false edges, which
correspond to low xE

ik values and different values at each scale.
Therefore, these false edges will balance out the real edge feature
values when calculating the average value resulting in lower EVI.

In addition, good quality edge seg-results have higher mean
values and thus higher EVI values since they are not affected
by false edges. Therefore, higher EVI indicates higher edge
validity of seg-results, and lower values indicate lower edge
validity of seg-results. Fig. 8 shows the general procedure of
EVI calculation. The color from blue to red in Fig. 8 indicates
the edge feature values from small to large. Fig. 8(a) represents
the segmented result and its segmented edges, (b) represents
multiscale edge features, and (c) represents multiscale edge
features under segmented edges.

C. Combination of GHO GHE and EVI Metrics

The GHO, GHE, and EVI quantitatively evaluate seg-results
from different aspects, which include global intrasegment
homogeneity, global intersegment heterogeneity, and edge
validity. However, it is meaningless to rely only on a single
homogeneity, heterogeneity, or edge metric to measure the
segmentation quality. Therefore, GHO, GHE, and EVI must be
sufficiently considered to achieve an objective, accurate, and
comprehensive global evaluation of seg-results. Combining the

Fig. 8. General procedure of EVI calculation. (a) The SAR image segmented
result and its segmented edges. (b) The multi-scale edge features of segmented
SAR images. (c) The multi-scale edge features under segmented edges.

above design and analysis of homogeneity, heterogeneity, and
edge metrics, the global metric G was designed in the following
manner:

G =
GHO ·GHE

EV I
. (19)

As discussed in Section II-B, a smaller GHO and GHE
indicate higher intrasegment homogeneity and intersegment
heterogeneity, and a higher EVI indicates better edge validity.
The principle of great seg-results requires high GHO, GHE,
and effective target edges. Therefore, we multiply GHO by
GHE using a strategy of minimizing intrahomogeneity and
interheterogeneity, then an edge validity is added to this measure
as the denominator to constraint. According to the combination
strategy in (19), a smaller G value means better segmentation
quality.

III. EXPERIMENTS

A. Experimental Data and Setup

In this section, we utilize a wide range of real and synthetic
SAR images [38], [39] to test the proposed method. Real SAR
images are processed products of SAR data, and SAR images are
generally composed of linear magnitude in terms of data. The
synthetic SAR images are mainly single-look-complex (SLC)
and multilook images. Therefore, the proposed method applies
to diverse images used for SIS studies, such as SLC, multilook,
and linear magnitude images. In addition, considering SAR
images contain rich intensity, texture, and spatial information,
the experiments require the synthetic objects to involve different
intensities and multiple texture regions. The images used in
the experiments and the corresponding experiment groups are
shown in Fig. 9.

The real SAR images A1–A4 are shown in Fig. 10, which
belong to magnitude images. Nördlinger Ries in Fig. 10 were
taken in the middle of the Swabian Jura mountains in southwest
Germany. The image size of A1–A3 is 512 × 512 and the A1
can be divided into three farmland areas and the A2 and A3
be four areas. The A4 is a Ku band image of the Rio Grande
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Fig. 9. Images used in experiments and the corresponding experiment groups.

Fig. 10. Real SAR images used in experiments.

Fig. 11. Synthetic SAR images and GT images with different classes.

basin near Albuquerque, New Mexico, USA, and can be divided
into three classes of size 553 × 432. It is extremely difficult to
build a rational GT for real SAR images. We did not provide
GTs for A1–A4 due to the time-consuming building process
and the differences in GTs marked by different people. Our
UE metric G for SAR image seg-results is proposed to address
this situation where GTs for a huge number of SAR images
are difficult to obtain. The synthetic images T1–T3, S1–S3, and
the GT are shown in Fig. 11, which includes 3–5 class images.

Intensity areas in T1–T3 are made up of different intensity
values. And the texture areas used in S1–S3 were extracted
from the USC texture database (https://sipi.usc.edu/database).
The speckle noise widely exists in SAR images, and the noise
is modeled by the multiplicative Nakagami distribution. Adding
various speckle noises to synthetic SAR images can obtain SLC
and multilook images for experiments, which have been proven
effective in current studies [15], [49], [50]. The speckle noise
was synthesized to T1–T3 and S1–S3, and then SLC (1Look)
and multilook (2-10Look) images were obtained of size 512 ×
512.

We designed two groups of experiments shown in Fig. 9 to
fully validate the effectiveness of the proposed method, includ-
ing GHO, GHE, EVI, and global metric G.

In the first experiments, metrics GHO, GHE, and EVI are
tested by real SAR images. We base the RSLC segmentation
algorithm with different classes to segment A1–A4 to obtain
seg-results. Then, we calculate GHO, GHE, and EVI for each
seg-result and combine these metrics into the G metric. These
experiments can prove the local validity of the proposed method
and the validity of the combined strategy.

In the second group of experiments, synthetic images T1–T3
and S1–S3 were segmented by three segmentation algorithms,
and 180 seg-results were obtained. The real SAR images A1–A4
are segmented by the different algorithms with different param-
eters, and 20 seg-results of each image are obtained for the
experiments. For each seg-result, different evaluation metrics
are calculated using the SE method’s segmentation accuracy
(SA) if it has a GT image and multiple UE methods including
the proposed method G. The experimental setup for seg-results
evaluation is shown in Fig. 12.

https://sipi.usc.edu/database


2858 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 12. Evaluation experiment setting of all seg-results.

TABLE I
DETAILS OF CURRENT UE METHODS AND OURS

We conduct two application experiments in Sections IV-E and
F after the above two experiments prove the effectiveness of the
proposed method. One group is the application of the G metric
in the equivalent application of parameter selection, and another
one is the evaluation of the G metric in seg-results of deep neural
networks (DNNs). The specific experimental setting is presented
in the corresponding section.

B. Existing Evaluation Metrics

There has been some research on segmentation evaluation
metrics, including SE and UE metrics. This section will in-
troduce the existing evaluation metrics, which will be used as
comparison metrics with our method in next experiments.

A performance metric, SA, [51] is an SE metric, which is
defined as the sum of the correctly classified pixels divided by
the sum of the total number of pixels. The SA is an extremely
widely used SE metric in evaluating SIS results. In the studies of
SIS such as [15], [16], and [51], the metric SA is used to evaluate
the quality of the SIS results. Although there are no UE metrics
specifically for SIS evaluation, some general UE methods have
been proposed. E [52] is a UE method based on information
theory and the minimum description length principle. E uses
the region entropy to measure intrasegment homogeneity, which
measures the entropy of pixel intensities within each segment. F
[53] measures the average squared color error of the segments,
punishing oversegmentation by weighting proportional to the
square root of the number of segments. Zeboudj’s contrast (Zeb)
[27] is a UE criterion based on the internal and external contrasts

of the segments measured in the neighborhood of each pixel. The
details of current UE methods and ours are given in Table I.

C. Segmentation Algorithms Used in Experiments

In this study, four image segmentation algorithms are used
for image segmentation to obtain seg-results, and the perfor-
mance of the G metric is verified based on the seg-results. The
SIS method (RSLC) [15] using RS and label correction (LC)
is specifically designed for SAR images. An improved FCM
algorithm (FRFCM) [54] based on morphological reconstruc-
tion (MR) and membership filtering (MF) is a fast and robust
image segmentation algorithm. Markov random field-based im-
age segmentation (Markov) [55] is a statistical-based image
segmentation algorithm with few parameters and solid spatial
constraints, which is more widely used in image segmentation.
Unsupervised image segmentation by backpropagation (UISB)
[56] is an unsupervised segmentation algorithm based on a DNN.

The four algorithms will segment SAR images in the exper-
iments to obtain the seg-results. Then the results are evaluated
quantitatively using the proposed metrics and the existing met-
rics to evaluate the proposed method. The details of the four
segmentation algorithms are shown in Table II.

D. Results and Analysis

1) Effectiveness of the Global Intrahomogeneity, Global In-
terheterogeneity, Edge Metrics, and Combination Strategy: The
RSLC algorithm was performed at A1–A4 on class parame-
ters, ranging from 2 classes (under-segmentation) to 9 classes
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TABLE II
MAIN PRINCIPLE AND APPLICATION FIELD OF SEGMENTATION ALGORITHMS

Fig. 13. Seg-results of A1–A4 with different classes by the RSLC.

(oversegmentation) to access the effectiveness of the proposed
measure across SAR images. The part of seg-results of each
testing image, corresponding to classes 2 and 7, is displayed in
Fig. 13. Different gray levels in the seg-results of Fig. 13 indicate
different segmentation classes.

We calculate the GHO, GHE, and EVI for all seg-results of
A1–A4 with classes 2–10, according to (10), (14), and (18).
Then, the GHO, GHE, and EVI of each seg-result are combined
into G according to (19). Fig. 14 shows that these three indica-
tors appropriately reflect the variation at different segmentation
classes for seg-results. And G values in Fig. 14 also reflect the
quality of seg-results. As the segmentation class increases, GHO
and EVI keep decreasing and the value of GHE keeps increasing.
The reason for generating the results in Fig. 14 is the seg-results
of A1-A4 experienced a change from under-segmentation to
over-segmentation as the class increased from 2 to 10. In Fig. 13,
the number of segments increases in the process of tending
to oversegmentation. The homogeneity within segments is in-
creasing, the heterogeneity between segments is decreasing, and
segmentation edges tend to occur with more false edges. The
curves of each metric in Fig. 14 correctly and clearly reflect
the variation in homogeneity and heterogeneity of the different
seg-results as well as the segmentation edges.

Meanwhile, A1 and A4 have three class targets, and A2 and
A3 have four in actuality. The G values in Fig. 14 also reflect the
seg-results of the optimal class corresponding to each set of seg-
results, which are consistent with human subjective conclusions.
Thus, the validity of each component of the proposed metrics
and the combination strategy are verified.

2) Effectiveness of the G Metric: The 1-10Look images of
T1–T3 and S1–S3 are segmented using three segmentation algo-
rithms to obtain 180 seg-results. The qualities of all seg-results
were evaluated by UE metrics E, F, Zeb, and G, respectively.
The SE metric SA was calculated for each SIS result as a precise
reference to test the performance of the UE methods. The SE
method is calculated based on GT1–GT3. Higher values of SA
show better segmentation quality for the same image. However,
the smaller the value of UE metric G, the better the segmen-
tation quality. Therefore, the reciprocal of UE metric values is
calculated to make the higher UE metric values correspond to
better segmentation. Thus, from this part until Section IV, the
values of E, F, Zeb, and G are represented as the reciprocal of
their original values, respectively.

First, the experiments are performed on the seg-results of
synthetic SAR images T1–T3. The part 1-10Look images of
T1–T3 and the three seg-results of each image are shown in
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Fig. 14. Results of GHO, GHE, EVI, and G for seg-results of Fig. 13. (a)–(d) Results of A1–A4.

Fig. 15. Seg-results of T1–T3 with different algorithms.

Fig. 15. The SA, E, F, Zeb, and G curves are plotted in Fig. 16
for all seg-results. As shown in Fig. 15, the seg-results of RSLC
are the best when Look < 5, whereas the seg-results of RSLC
are better than FRFCM, and the Markov seg-results are the
worst. The seg-results are all acceptable and near to perfect
segmentation when Look ≥ 5.

The SA curves of the synthetic image seg-results are shown in
Fig. 16 (SA). The SA curves of the seg-results accurately reflect
the human observation segmentation quality. Therefore, the SE
metric curves are a high reference to verify the UE methods. The
SA values of RSLC results are the biggest in the same image.

For the multiple seg-results evaluations’ of the same image, a
well-performing UE metric deserves the same conclusion as the
SA metric. The F and G values of RSLC results are higher than
FRFCM, and the Markov results are the lowest when Look < 6.
The F and G values of all results are almost equal when Look
≥ 6. The evaluation results of F and G are similar to the SA.
However, the relative magnitudes of the E and Zeb curves do not
consist of the SA curve. Therefore, the E and Zeb metrics do not
correctly evaluate the quality of the same image seg-results. The
experiments are next performed on the seg-results of synthetic
texture SAR images S1–S3. The part 1-10Look images of S1–S3
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Fig. 16. Segmentation evaluation results of T1–T3 with different algorithms.

Fig. 17. Seg-results of S1–S3 with different algorithms.

and the three seg-results of each image are shown in Fig. 17. The
SA, E, F, Zeb, and G values of each seg-result are calculated and
the curves are plotted in Fig. 18.

As shown in Fig. 17, the seg-results of RSLC are better than
FRFCM, and the Markov seg-results are not superior. The SA
curves of the images (3-Class) seg-results are shown in Fig. 18
(SA). The SA values of RSLC results are higher than FRFCM
while the Markov is the lowest. The G values of RSLC results are
higher than FRFCM, while the Markov is the lowest. Therefore,
the relative magnitudes between the curves of G are similar to
the SA curves. However, among the other three UE metrics E,
F, and Zeb, none of them correctly evaluate the strengths and
weaknesses of the same image seg-results.

The proposed UE metric demonstrates the superiority in
evaluating seg-results by analyzing the evaluation result curves
above. The G can obtain conclusions consistent with the SE
method in qualitative analysis for each class of image seg-
mentation. It is not difficult to find that the proposed metric
G is independent of the number of segmentation classes. This
further demonstrates the better applicability of our method. The
Pearson correlation coefficient is implemented to further verify
the accuracy of the proposed method quantitatively in evaluating
seg-results. The coefficients calculate the correlation between
the curves of UE metrics and SE metrics in Figs. 16 and 18. The
correlation value statistics of each group is given in Table III.
The correlation value statistics of each group is given in Table
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Fig. 18. Segmentation evaluation results of S1–S3 with different algorithms.

TABLE III
PEARSON CORRELATION COEFFICIENT BETWEEN EACH UE METHOD AND SE METHOD SA

III. The bold values in Table III indicate that the corresponding
UE metric has the highest correlation with the SE metric for
experimental results.

The proposed methods rank second in correlation with SE
methods for the evaluation of gray images [T1(1-10Look)]
seg-results while having the strongest correlation for all other
categories (T2 and T3) of seg-results. Our method has the
strongest correlation with the SE method in all segmentation
categories for texture images, and the correlation of other UE
methods with the SE method is a weakness.

Finally, experiments are conducted on real images to verify
the validity of the proposed metric G. We apply the algorithm
FRFCM to A1 and A3 to obtain the seg-results on real SAR
images. The w is a significant parameter for FRFCM, which
represents the size of the filtering window. The various w can
affect the quality of seg-results.

We set the w to take values in the range [1], [19] with a step
size of 2 in the process of obtaining the seg-results. FRFCM
segmented A1 and A3 to get ten seg-results according to the
images shown in Fig. 19. Obtaining the GT of a real SAR
image is a certain degree subjective and time-consuming. We
cannot evaluate the quality of seg-results with the SE metric

SA. Therefore, four UE metrics including the proposed method
were used to evaluate the seg-results in experiments, and the
results were shown in Fig. 20.

The curve of G increases first and then decreases with in-
creasing w in Fig. 20. It is obvious that the seg-results of A1
and A3 gradually become better from undersegmentation with
w increasing from 1 to 5 and become oversegmentation after
W > 7 in Fig. 23. The curve of G is highly consistent with the
results of the manual evaluation mentioned above in Fig. 20,
which can evaluate the quality of segmentation accurately.

E. Equivalent Application Experiments of the Proposed
Method and SE Method in Parameter Selection

An important application of segmentation evaluation metrics
is to help segmentation algorithms choose appropriate parame-
ters. We hope the proposed UE metric is equivalent to the SE met-
ric in helping parameter selection applications. UE is important
for the automatic selection of optimal parameters in SIS [11].
RSLC is a novel segmentation algorithm explicitly designed for
SAR images. There is a parameter of RSLC that needs to be
selected: majority voting sliding window W. The accuracy of
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Fig. 19. Seg-results obtained by FRFCM segmenting images A1 and A3 with different w.

Fig. 20. Comparative results of real SAR image A1 and A3 seg-results evaluation.

Fig. 21. Seg-results of RSLC with different W.

the seg-results is affected by W. Therefore, experiments were
designed to verify the equivalence of using the G metric to the SE
metric in selecting the parameters of the segmentation algorithm.

In experiments, the RSLC is used to segment the image by
varying the parameter W from 1 to 10 and keeping the other
parameters constant. Then, ten seg-results with different W can
be obtained for the same image. The above segmentation was
performed on S1-5Look, S2-5Look, and S3-5Look. Then, 30
seg-results were obtained. The original images and seg-results
with different W are shown in Fig. 21.

The SA, E, F, Zeb, and G values of all seg-results are calculated
and plotted as the curves in Fig. 22 to determine the setting of
parameter W for the RSLC algorithm. As shown in Fig. 21, the
quality of seg-results changes from poor to excellent and remains
constant with the increase of W. The value of SA increases when
W < 5, and the value of SA is almost constant when W ≥ 5. The

ideal seg-results are obtained at the same time. The value change
in UE metric G also shows that the value of G hardly changes
when W ≥ 5, and the ideal seg-results are obtained. Therefore,
the parameter selection conclusions of the proposed metric are
consistent with the conclusions obtained by the SE metric. The
other UE metrics cannot correctly evaluate the pros and cons
of the seg-results, as well as have different degrees of change
with the increase of the W. The appropriate parameters cannot
be obtained. To quantitatively compare the performance of G,
E, F, and Zeb, the Pearson correlation coefficient was calculated
between each UE method and SE method SA. The correlation
experimental results are given in Table IV.

As shown in Fig. 22, methods E and Zeb perform poorly on
the results of RSLC with different W for all testing images.

The values of E and Zeb are unsteady with the increase of
W. Therefore, the correlation is weak and unsteady in Table IV.
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Fig. 22. Comparing G with current evaluation methods for testing images. (a) Evaluation for S1-5Look seg-results. (b) Evaluation for S2-5Look seg-results.
(c) Evaluation for S3-5Look seg-results.

TABLE IV
PEARSON CORRELATION COEFFICIENT BETWEEN EACH UE METHOD AND SE METHOD SA

The F performs well on the results of RSLC with different W for
S3-5Look [see Fig. 22(c)] but performs not enough on the results
for S1-5Look and S2-5Look [see Fig. 22(a) and (b)]. The F has
the second-rank correlation with the SA metric. The curves of G
in Fig. 22 are similar to SA for all testing images. The G always
generates higher correlations with the SE method SA than the
others for RSLC in experiments. Therefore, studies show that
the proposed UE metric achieves the effects of the SE metric in
the parameters set.

The “saw” shape of G is not fine in Fig. 22 for the case of
selecting the “W” parameter for RSLC when it is compared
with the metric SA. The reason is that the UE metric does not
provide better evaluation accuracy compared to SE methods
due to the lack of comparison of GT images. The SIS result
changes less with the increase in W, the SIS results quality looks
similar (W ≥ 5) to Fig. 21, and in theory, the evaluation metrics
should produce similar values. The SE metric SA can obtain
high accuracy results with the GT, and its “saw” shape looks
fine (W ≥ 5) in Fig. 22. However, the UE metric G does not rely
on GT, and the evaluation accuracy of the seg-results is almost
lacking; its “saw” shape looks not fine (W ≥ 5) in Fig. 22. We
wish all SAR images to have a suitable GT so that we can easily
choose parameters with the help of SE metrics, but most of the
SAR images without a suitable GT and, in this case, the SE
metrics fail. The experimental results shown in Figs. 19 and 20
can show that the proposed UE metric can help the segmentation
algorithm to select the appropriate parameters in the absence of
GT.

F. Experiments for Evaluating the Seg-Results of Deep Neural
Networks Based Algorithm

The research on image segmentation based on DNN is a hot
topic. Thus, we conduct experiments on the SAR image seg-
results of the segmentation algorithm based on DNN. The UISB

is an unsupervised segmentation algorithm based on DNN [56].
UISB first performs superpixel segmentation on the input image,
then extracts features using a neural network, next performs
superpixel merging by clustering and calculates the loss, and
finally updates the parameters using stochastic gradient descent.

The authors of UISB use SILC [57] to generate superpixels,
and a scholar has changed the original SILC to Felzenszwalb
[58] algorithm to obtain fel-UISB. After experiments, fel-UISB
has better segmentation quality on SAR images. Therefore, we
use the proposed metric to evaluate the seg-results produced by
fel-UISB for experiments. The scale parameter of Felzenszwalb
affects the generated superpixels, which in turn affects the qual-
ity of the seg-results. We segmented the A3 by setting the scale
to take a range of 32–76, step = 4, and obtained 12 seg-results,
as shown in Fig. 23. The seg-results are evaluated using G and
other UE metrics, and the results are shown in Fig. 24.

Fig. 24 shows that the quality of the seg-results of A3 varies
with the scale by different UE metrics. We can see the forest
and farmland areas that are better segmented from the red box
in Fig. 23. The seg-results of Fig. 23(b) and (k) are the best in
all seg-results. And the G values in Fig. 24 for scale = 72 and
36 are distinctly higher than the values of the other seg-results.
The G is low for scale = 68, indicating its poor segmentation
quality. Since the forest region within the blue box in Fig. 23(j)
is poorly segmented, splitting it incorrectly into three different
classes results in less interheterogeneity, thus strongly affecting
the G value. The experimental results again show that G can
obtain conclusions that are consistent with human vision. Our
method is more focused on the evaluation of seg-results and has
no evident relationship with the segmentation algorithms.

IV. DISCUSSION

It is worth noting that for different metrics we choose different
distance measures, such as vgk , vtk, Sg

kd, and St
kd, which are
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Fig. 23. Seg-results of A3 were obtained by fel-UISB with different parameters of Felzenszwalb scale. (a) Scale = 32. (b) Scale = 36. (c) Scale = 40. (d) Scale
= 44. (e) Scale = 48. (f) Scale = 52. (g) Scale = 56. (h) Scale = 60. (i) Scale = 64. (j) Scale = 68. (k) Scale = 72. (l) Scale = 76.

Fig. 24. Different UE metrics of seg-results are in Fig. 23.

chosen according to the data characteristics. The range of values
and the distribution are different in texture features xT

i , and
the texture homogeneity within the region can be described by
chi-squared test measures afterxT

max is obtained. The fk contains
data with different scales, Ekn, and σkn, and the Canberra
distance is insensitive to the data scale.

One of the issues with the proposed method is that it is
sensitive to small segmentation regions due to the proposed
metrics being represented based on global homogeneity and
heterogeneity. This leads to the metric not paying enough at-
tention to the local fine segmentation regions, especially the
wrong segmentation regions. The issue needs continued focus
and resolution in the next studies.

The proposed method is mainly based on SAR images that
are widely used in SIS as stated in Section III-A. We establish
a general framework for evaluating SIS results from the charac-
teristics of SAR images. Therefore, for different types of SAR

data, such as multiband and multipolarized, the application of
this general framework can extend the study of this article to
other data types.

We proposed a UE metric that does not rely on GT to evaluate
the quality of SIS results and helps in algorithm optimization
and parameter selection. However, since it does not rely on GT
images, the accuracy of our method is not as good as the SE
method for similar seg-results. Therefore, developing the study
of UE metric accuracy is important in the next work.

In further studies, more UE metrics and methods for SIS
results should be paid more attention to as follows.

1) We can explore more ways to effectively characterize the
heterogeneous features of SAR images and the methods
of features fusion due to SAR images containing rich
heterogeneous features.

2) We can design intrahomogeneity metrics and interhetero-
geneity metrics in different perspectives and more effec-
tive fusion strategies.

3) We can refine the evaluation contents, such as over- and
undersegmentation evaluation, to focus on the local seg-
mentation.

4) We can improve the accuracy of UE metrics in evaluat-
ing similar seg-results, which may rely on more refined
features and combination strategies.

V. CONCLUSION

This study aims to promote the development of SIS and seg-
mentation evaluation. A heterogeneity-features-based novel UE
metric was proposed for evaluating the SAR image seg-results
and helping in algorithm optimization and parameter selection.
In this method, we proposed an IFEE based on edge-hold and
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used other two fruitful methods to extract heterogeneous fea-
tures of SAR images, which include intensity, texture, and edge
features. Then, we designed GHO, GHE, and EVI metrics based
on heterogeneity features to reveal local segmentation quality.
Finally, we use a strategy to fuse these metrics into a novel
global evaluation metric (G) to indicate the quality of SAR image
seg-results.

The RSLC, FRFCM, Markov, and UISB algorithms were
applied to 60 synthesized SAR images and 4 real SAR images to
produce over 200 seg-results for experiments. The effectiveness
of the metric G is further demonstrated by comparing three
existing UE metrics and one SE metric. The results show the
effectiveness and superiority of the proposed metric. Moreover,
the mean correlation between the proposed UE metric and the
SE metric is more than 0.67 and 0.98, which indicates that
the proposed metric helps in choosing parameters of different
algorithms without GT.
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