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Mapping Invasive Aquatic Plants in Sentinel-2
Images Using Convolutional Neural Networks
Trained With Spectral Indices

Elena Cristina Rodriguez-Garlito

and Antonio Plaza

Abstract—Multispectral images collected by the European Space
Agency’s Sentinel-2 satellite offer a powerful resource for accu-
rately and efficiently mapping areas affected by the distribution of
invasive aquatic plants. In this work, we use different spectral in-
dices to detect invasive aquatic plants in the Guadiana river, Spain.
Our methodology uses a convolutional neural network (CNN) as
the baseline classifier and trains it using spectral indices calcu-
lated using different Sentinel-2 band combinations. Specifically,
we consider the following spectral indices: With two bands, we
calculate the normalized difference vegetation index, normalized
difference water index, and normalized difference infrared index.
With three bands, we calculate the red—green—blue composite and
the floating algae index. Finally, we also use four bands to calculate
the bare soil index. In our results, we observed that CNNs can
better map invasive aquatic plants in the considered case study
when trained intelligently (using spectral indices) as compared to
using all spectral bands provided by the Sentinel-2 instrument.

Index Terms—Convolutional neural networks (CNNs), invasive
aquatic plants, remote sensing, Sentinel-2 (S2), spectral indices.

1. INTRODUCTION

EMOTE sensing has been widely used for water support
management in recent years. For instance, the work devel-
oped in [1] supported water quality management, and monitored
the spatial-temporal distribution of water turbidity. In [2], coastal
ecosystem health status was evaluated. Other studies, such as [3]
and [4], mapped flooded areas. In [5], polar sea ice leads in open
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water were mapped. Water body extraction was carried outin [6],
and permafrost areas were mapped in [7]. Many studies have
been focused on mapping vegetation, i.e., estimating vegetation
regions [8], monitoring vegetation growth [9] and vegetation
changes [10], predicting the location of algal blooms [11],
and discriminating between different macrophyte species [12],
among other applications.

A. Using Spectral Indices to Detect Invasive Aquatic Plants

Spectral indices exhibit a great potential for effectively map-
ping ecosystems affected by invasive aquatic plants [13]. To
detect Spartina alterniflora in Sentinel-2 images [14], several
indices have been used, including the normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI),
difference vegetation index (DVI), green difference vegetation
index (gDVI), green NDVI (gNDVI), soil-adjusted vegetation
index (SAVI), and a phenological vegetation index (PVI). The
work in [15] combined vegetation indices (e.g., NDVI) and water
indices such as the normalized difference water index (NDWI)
to detect Eichhornia crassipes (water hyacinth) in Sentinel-2
images. The work in [16] also focused on the detection of water
hyacinth by calculating fractional vegetation cover (FVC) in
Sentinel-2 images using SAVI.

Multispectral images acquired by unmanned aerial vehicles
were used in [17] to determine NDVI, enhanced normalized
difference vegetation index (ENDVI), normalized difference red
edge index (NDREI), normalized green-red difference index
(NGRDI), and green normalized difference vegetation index
(GNDVI). Landsat images were used in [18] to calculate NDVI
for water hyacinth detection. Other works used spectral indices
and spatial autocorrelation analysis to detect algal blooms in
Sentinel-2 and Landsat images [19], and also used MODIS
images to calculate the floating algae index (FAI).

In order to exploit the information provided by spectral in-
dices and take advantage of state-of-the-art machine learning
classifiers, several authors have combined both techniques in
their studies. For instance, the authors in [20] used Landsat-8
and Sentinel-2 data to develop a hierarchical classifier based
on three steps for water hyacinth detection. The steps can be
summarized as follows: 1) water detection with a modified
normalized difference water index (MNDWTI); 2) vegetation
detection with NDVT; and 3) detection of water hyacinth with a
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random forest (RF) classifier. The authors in [21] discriminated
between water hyacinth and water primrose in Sentinel-2 images
by using RF and nine spectral vegetation and water indices
(NDVI, NDAVI, WAVI, SAVI, NDVIRe2, NDVIRe3, NDWI,
NDII, and MNDWI). The authors in [22] mapped Spartina al-
terniflora using Sentinel-2 and Sentinel-1 data, SAR vegetation
indices, and seven spectral indices: NDVI, EVI, NDWI, land
surface water index, and automated water extraction index. To
the best of our knowledge, no studies have combined deep learn-
ing classifiers and spectral indices for detection and mapping of
aquatic invasive plants.

B. Mapping Invasive Aquatic Plants Using CNNs

One of the species that is considered to be most invasive is the
water hyacinth. This plant tends to cover the river surface due
to its tapestry-like distribution. Great efforts have been made
to control the spread of this plant, with negative effects on
biodiversity, the environment, and the economy [23]. In order
to successfully manage these species, current strategies aim at
their removal when present on the water surface to prevent their
dispersal [24].

Our previous studies began a new line of research were
invasive aquatic plants in the Guadiana river, the second longest
river in Spain, were mapped by using remote sensing and deep
learning techniques. In order to facilitate mapping, monitoring,
and control of the invasive aquatic plant distribution in the
Guadiana river, our previous work first focused on automatic
detection of the plant using all the spectral bands provided by
the Sentinel-2 satellite. In [23], a quantitative and qualitative
comparison of different machine/deep learning algorithms was
carried out, determining that convolutional neural networks
(CNNs) were effective for mapping purposes. This conclusion is
in agreement with other works, which concluded that CNNs are
successful for mapping vegetation species in remotely sensed
data [25], [26], [27], [28], [29], [30], [31], [32].

In a subsequent work [33], we used CNNs as a baseline to
monitor the spatio-temporal distribution of water hyacinth using
sparse training samples collected from only four images (out of
a total of 62 images available in the analyzed two-year time
series) independently of the phenological stage. To study the
dynamics of the spread of invasive plants over a two-year period,
a methodology for mapping the most frequent areas of water
hyacinth accumulation was developed.

C. Motivation and Innovative Contributions of This Work

The goal of this article is to provide a better training mecha-
nism for CNNs to identify invasive aquatic plants. In case of
methods based on spectral indices to detect invasive aquatic
plants, they use combinations of spectral bands to highlight pix-
els of the multispectral (MS) images with specific land-covers.
However, when vegetation indices (such as NDVI) are used,
invasive plants and other types of vegetation may coincide in
the same thresholds (as it actually happens in the two test areas
considered in our work). This requires manual segmentation
to differentiate between invasive and noninvasive plants. Ob-
viously, this entails a more costly and less automatic process.
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Therefore, in this study, the invasive aquatic plant detection
task consists of an automatic process by using deep learning
techniques. Moreover, this work takes advantage of band combi-
nations that are conducive to highlighting vegetation in the water.
This is accomplished by extracting suitable training samples for
the model. In summary, the main contributions of this work can
be summarized as follows.

1) We introduce a new methodology for the automatic detec-
tion of invasive aquatic plants that simplifies the spectral
complexity of the images acquired by the Sentinel-2 satel-
lite. Specifically, we use spectral indices to improve the
training process of CNNs and determine if the obtained
results (calculated using a reduced set of carefully selected
Sentinel-2 bands) can improve the results obtained using
all available bands. Our approach uses remote sensing,
geographical information systems (GIS) techniques, and
a deep learning model. An additional advantage of using
fewer spectral bands is to reduce the amount of data
required for image downloading, preprocessing, and pro-
cessing.

2) We test our new automatic detection strategy in two areas
of the Guadiana river, Spain, which are heavily affected by
the presence of invasive aquatic plants. Our methodology
is tested in a quantitative and qualitative way. The first area
is affected by Mexican water lily, while the second one is
affected by water hyacinth.

3) We conduct a comprehensive comparison of the perfor-
mance of the CNN model with other classical machine
learning classifier, the RF, that was used as a standard in
other studies.

II. METHODOLOGY

Fig. 1 graphically illustrates the workflow adopted in this
work. First, multispectral images over the Guadiana river are
collected by the Sentinel-2 satellite. Next, a preprocessing of
these images is carried out where spectral indices are calculated.
Region of interest (ROI) extraction and management of nodata
values are also carried out as described in [23]. Then, automatic
detection of invasive plants is carried out using CNNs trained
with different spectral indices. Finally, the outputs are evaluated
by comparing the results with a ground truth image, generated
according to the procedure in [23], calculating different accuracy
metrics.

A. Study Area

Two sections of the Guadiana river affected by invasive
aquatic plants have been selected for experiments (see Fig. 2).
The first ROI corresponds to an area affected by Eichhornia
crassipes, also known as water hyacinth, close to the city of
Meérida (ROI_ME). There, an invasive plant control barrier for
mechanical removal of these plants has been installed. The
second ROI (ROI_BA) is a section of the river affected by
yellow water lily (also known as Nymphaea mexicana). This
area crosses the city of Badajoz, in the SW of Extremadura
region, Spain. The main characteristics of these ROIs are given
in Table I.
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TABLE I
CHARACTERISTICS OF THE TWO SELECTED ROIS AND THE CONSIDERED
MULTISPECTRAL DATASETS

Mérida Badajoz
Latitude 38°50" - 38° 5I’N  38° 51" - 38° 53’N
Longitude 6°19-6° 18" W 7°01°- 6° 58" W
Study area 45 ha 192 ha

Datasets dimensions 189 x 173 pixels 451 x 236 pixels

Type of RS images Sentinel - 2 Level-2A (S2L2A) products

Projection UTM/WGS84
Satellite revisit time 5 days
12 bands

Spectral resolution (ranging from 442.7 nm to 2202.4 nm)

Spatial resolution
Format

Sentinel-2 datasets

10 m, 20 m or 60 m
8 bit

14 images

B. Remotely Sensed Imagery

Sentinel-2 images are open-access multispectral datasets
provided by ESA’s satellite, as part of the Copernicus pro-
gramme. Level-1 C (S2L1C) and Level-2 A (S2L2A) products
are offered. The data are collected in a discrete number of bands
(13 or 12 spectral bands, respectively) with different levels of
spatial resolution (from 10 to 60 m per pixel). Table II shows

Workflow of the procedure for mapping invasive aquatic plants in the Guadiana river. The CNN architecture used is also displayed.

the details of the 13 spectral bands available and their main
applications. Sentinel-2 has successfully contributed to many
studies for monitoring aquatic invasive plants, as indicated in
Section I-A. In this work, S2L2A products with atmospheric
correction are used. Moreover, the image datasets are acquired
from SentinelHub [34]. Here, six different band combinations
have been used as CNN inputs (details are given in Section
II-C). In addition, to compare results, we also consider all
Sentinel-2 bands as input to evaluate if the CNNs trained using
only spectral indices (resulting from specific band combinations)
can outperform the results obtained using all available bands.
Table I describes the main characteristics of the considered
multispectral datasets.

C. Band Compositions and Spectral Indices

In the following, we describe the spectral band combinations
and the spectral indices used in this work. The Sentinel-2 band
names (according to Table II) are also specified.

1) RGB: Composite of three bands: Red (B04), green (B03),
and blue (B02), also called natural color band combination. It
allows to display land covers in true color. The values range from
0 to 255 and they are normalized in this study to a range from 0
to 1.

2) NDVI: A well-known index [35] commonly used for
green vegetation quantification. Equation (1) defines this index
which is calculated by considering two bands: Red (B04) and
near-infrared, hereinafter NIR (B08). The values are normalized
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Fig. 2. (a) Geographical location of Spain. (b) Geographical location of the region of Extremadura, the Guadiana river and the Guadiana river basin. (c) Zoom

of a high resolution image including an area affected by yellow water lily in the city of Badajoz. (d) Zoom of a high resolution image including an area affected

by water hyacinth, close to the city of Mérida.

TABLE II
DESCRIPTION OF SENTINEL-2 BANDS

Band name BO1 B02 BO3 B04 BO5 B06 BO7 BO8 B8A B09 B10 Bl11 B12
Resolution
60 10 10 10 20 20 20 10 20 60 60 20 20
(meters)
Bandwidth
44277 4924 559.8  664.6 704.1 740.5 782.8 832.8 864.7 945.1 13735 16137 22024
(nanometers)
s Coastal Vegetation ~ Vegetation ~ Vegetation Narrow  Water .
Application acrosol Blue  Green Red red edger red edges red edges NIR NIR vapour Cirrus SWIR;  SWIR>
to a range from —1 to 1. range from O to 1.
NIR — Red FAI = (NIR - (Red + (SWIR; — Red)
NDVI= — . (1)
NIR + Red

3) FAI: Introduced in [36] to detect vegetation on the surface

of oceans. It is less sensitive to atmospheric effects than NDVI
and EVI. Equation (2) shows the definition of the index for
Sentinel-2 images, where three bands are considered: Red (B04),
NIR (B08), and SWIR; (B11). Its values are normalized to a

(ANIR — ARed) )>
<()»sw1R1 — ARed) @

where Anr = 832.8, Area = 664.6, and Agwir, = 1613.7.

4) NDWI: It combines two bands: green (B03) and NIR
(BO0S). It was proposed in [37] for determining vegetation water
status. The index is defined in (3) and its values are normalized
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Fig. 3. Invasive aquatic plants detection results using different indices with the CNN: (a) Badajoz case. (b) Mérida case.

to a range from —1 to 1

NDWl = —M—-

Green + NIR

5) BSI: Introduced in [38] to discriminate bare soil and fal-
low land from vegetation and other land cover classes by com-
bining four bands: SWIR; (B11) and red (B04) bands (which
determine the soil mineral composition), while NIR (BO8) and
blue (B02) determine the presence of vegetation. Their values
are normalized to range from —1 to 1. This index is defined as
follows:

3)

BSI — (SWIR; + Red) — (NIR + Blue) 4

~ (SWIR; + Red)) + (NIR + Blue) “®

6) NDII: Developed by [39] as infrared index and later used
at [40] as NDII. It uses two spectral bands: NIR (B08) and SWIR
(B11). This index can also be seen as a normalized version of
NDMI when using Sentinel-2 BO8 (or BSA) and B11 bands [41].
NDII (or NDMI) gives information on the changes in vegetation
water content. Leaf internal structure and leaf dry matter content

affect NIR reflectance, while the SWIR band gives information
on changes in the water content of the vegetation, as well as the
structure of the spongy mesophyll in vegetation canopies. Its
values are scaled to a range from —1 to 1. The index is defined
as follows:

NIR — SWIR;

NDIl = —————
NIR + SWIR;

)

Table III summarizes the main characteristics of the set of
images considered in this study, where spectral indices are used
to train the CNN adopted in our work for mapping purposes. It
should be noted that the resulting raster images after applying
spectral indices have 10 m of spatial resolution. To deal with the
different spatial resolutions between the spectral bands involved
in the calculation of the indices, we sampled every band toa 10 m
resolution. In this way, 20-m resolution bands (60 m would be
the same) are obtained by repeating their pixel values resampling
them (without modifying their values) to 10 m resolution. Since
there is at least one 10-m band in every index, all the pixels offer
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Invasive aquatic plants detection results using different indices with the RF algorithm: (a) Badajoz case. (b) Mérida case.
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dynamics in a time series, determining the areas where the
invasive plants were most frequently accumulated in the period

In this work, we adopt the same CNN architecture, but the
CNN is trained using spectral indices instead of all the spectral
bands from the Sentinel-2 satellite. A detailed scheme of the
CNN architecture is shown in Fig. 1. Specifically, the CNN
architecture has one convolutional 1-D layer with rectified linear
unit (ReLU) activation function, 20 filters, and a kernel size of
12, together with a reshaping (flatten) layer), a fully connected

(e ®
Fig. 6. Confusion matrices for ROI_BA. (a) All bands. (b) RGB. (c) NDVI. (d) FAL (e) NDWI. (f) BSI. (g) NDIL
TABLE III

INPUTS TO THE CNN USED FOR MAPPING PURPOSES
Index Number of spectral bands Spatial resolution (m) analyzed.
RGB 3 bands (Red, Green, Blue) 10
NDVI 2 bands (Green, NIR) 10
FAI 3 bands (Red, NIR, SWIR;) 10
NDWI 2 bands (Green, NIR) 10
BSI 4 bands ( SWIR1, Red, NIR, Blue) 10
NDII 2 bands (NIR, SWIR1) 10

different values when calculating the index, resulting in a final
10-m resolution raster image.

D. Preprocessing

After downloading the Sentinel-2 images, spectral indices are
calculated for the pixels used for training as described in Section
II-C, and the NoData values are managed as explained in [23],
i.e., normalizing the pixel values between 0 and 1 and changing
the format from 8 bits to 32 bits. The CNN architecture and the
training process are explained in the following section.

E. Detection

As indicated above, the main novelty of our work is that the
detection of aquatic plants is performed using a CNN trained
using spectral indices. In the following, we describe the CNN
architecture and the training process.

1) CNN Architecture: For aquatic weeds detection on pre-
processed Sentinel-2 images, a CNN model was developed and
trained with all Sentinel-2 spectral bands in [23], outperforming
other traditional machine learning methods. The same CNN
model was also used in our previous work [33], in which the
training set was composed by samples collected from different
Sentinel-2 images, acquired on different dates. In those works,
the CNN model allowed us to detect water hyacinth at different
phenological stages and also to analyze the spatio-temporal

(dense) layer (including 128 neurons), a batch normalization
layer with ReLLU activation, and a fully connected (dense) layer
with 4 neurons and Softmax activation. The model is retrained
in this work as indicated in the following section.

2) Training Process: Asillustrated in Fig. 1, the CNN model
has been trained with different sets. Specifically, six training sets
(based on different spectral indices) have been used: Setrgp,
Setnpvi, Setgar, Setpar, Setnpwi, Setpst, and Setypyr. These sets
have been generated as follows. First, a ROl is defined to label the
pixels containing aquatic invasive plants in the image (here, two
case studies are considered: Badajoz and Merida). As explained
in [23], the ROI contours were carefully selected using high
resolution imagery and ground knowledge, so that the ROI
contours encompass only pixels that contain invasive aquatic
plants in the image. Then, a percentage of the pixels in the
ROI are selected for training the CNN architecture (while the
remaining pixels in the ROI are used for testing). In the selected
pixels, the per-pixel values of different indices are calculated,
resulting in six different training sets. These training sets are used
to train the CNN architecture. Table IV shows the total number of
pixels used for training in each considered case study (Badajoz
and Merida), resulting in two ROIs that are called ROI_BA and
ROI_ME.

F. Hardware/software Environment

The hardware environment considered in our experiments
comprises an Intel(R) Core(TM) i9-10900 k processor with
64-GB RAM memory and 2-TB SSD. Regarding the considered
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TABLE IV
NUMBER OF TRAINING SAMPLES (PIXELS) USED FOR TRAINING THE CNN
ARCHITECTURE IN THE BADAJOZ CASE AND THE MERIDA CASE

Number of training samples (pixels) ROI_BA ROI_ME
Aquatic weeds 195 162
Other 224 288

Total number and percentage

of training samples used 419 (2.58%)

450 (10.06%)

Total number of labeled

pixels inside each ROI 16 240

4471

Note: The percentage of the total number of labeled samples used for training in
each case are given in the parentheses. For testing, we used the rest of the available
labeled samples in each ROI.

software environment, the implementation was developed in
Python 3.10 by using TensorFlow and Keras framework. GIS
techniques have been considered for preprocessing operations
(raster clipping, image analysis, sample selection, etc.) by using
Python scripts and QGIS software tools. These tools have also
been used for the visualization of images and for the design of
map layouts.

III. EXPERIMENTAL RESULTS
A. Metrics for Accuracy Assessment

In order to evaluate the CNN models, the prediction errors are
calculated. For that purpose, ground truth data generated in our
previous work [23] have been used in this study. A confusion
matrix has been calculated for each CNN model. These are bi-
nary matrices that indicate whether a pixel of the image contains
invasive plants or not (zero value if invasive plants are detected
and one value it they are not). In the first column true negatives
(TNs), false positives (FNs) are represented. In the second one,
false positives (FPs) and true positives (TPs) are shown.

Moreover, different metrics have been implemented for eval-
uating the performance of the considered classification ap-
proaches. The different relationships between the model pre-
dictions and the real values (ground truth values) are defined in
the following equations: Overall accuracy [(6)], user’s accuracy
[(7)], producer’s accuracy [(8)]—also known as recall, sensitiv-
ity, or TP rate—and [ score [(9)].

TP + TN
Overall accuracy = + (6)
TP 4 TN + FP 4 FN
User’ TP )
ser’s accuracy = —————
Y = TP 1 PP
TP
Producer’s accuracy = ——— (8)
TP 4+ FN
2 x TP
F score = i ©)]

2 x TP + FP + FN

B. Assessment of Results

This section describes the results of invasive aquatic plants
detection after applying the CNN model, using the different
training sets considered in this study. Fig. 3 shows all the CNN
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detection maps. In addition, the ground truth (GT) images and
the Sentinel-2 (S2) images in true color are also shown, for
better visual interpretation of the results. In the Mérida case
[see Fig. 3(a)], by comparing the S2 and GT images with the
CNN algorithm outputs, we can see that there is water hyacinth
distributed in small masses on the river banks and in a large
mass upstream of the containment barrier. In general terms, it
can be seen from Table VI that better accuracies are obtained
with spectral indices than with the total number of bands offered
by the S2 satellite. In all cases, training with spectral indices
results in high accuracies (from 0.856 to 0.933 in terms of overall
accuracy, from 0.843 to 0.924 in terms of user’s accuracy, from
0.754 to 0.935 in terms of producer’s accuracy, and from 0.798
to 0.913 in terms of F} score). The index with the worst results
is the NDWI.

In contrast, in the Badajoz case, the invasive plant (Mexican
water lily) is distributed in several irregular masses over the
entire surface and along the banks. As it can be seen in Fig. 3(b),
very good accuracies (from 0.643 to 0.779 in terms of overall
accuracy, from 0.641 to 0.813 in terms of user’s accuracy, from
0.669 to 1.00 in terms of producer’s accuracy, and from 0.734 to
0.839 in terms of £ score) are obtained with spectral indices. In
two of the four accuracy metrics (user’s accuracy and producer’s
accuracy), better results are obtained with spectral indices than
with all the bands offered by the S2 satellite. In the cases in which
the best scores are obtained using all bands (overall accuracy and
F score), the difference with the accuracy of the index offering
the second best accuracy differs in less than 2% (in the case of
overall accuracy) and less than 1% (in the case of F} score).

IV. DISCUSSION

The results in Table V reveal that the CNN model provides
the best results when trained with spectral indices (RGB, FAI,
BSI, NDVI, and NDII) instead of all spectral bands offered by
S2L.2A in the case of Mérida. We also generated the same results
for the RF classifier and included them in Table VI to compare
our CNN with a classical classifier, and we can see all results are
improved by our method for both areas. However, as illustrated
in Fig. 3(a), the results obtained with NDVI show that some of
the accumulated water hyacinth is not detected upstream of the
large mass in the containment barrier. Moreover, as can be seen
in the confusion matrix in Fig. 5(c), the prediction success (i.e.,
the TPs and TNs) are higher and the prediction errors (i.e., the
FPs and FNs) are lower with indices than with the all bands used
as input. Therefore, the use of a large number of bands as input
(instead of a specific index) introduces some confusion in the
learning of the CNN. As it can be seen in Fig. 3(a), if we consider
the NDWTI as input, there is water hyacinth accumulated behind
the barrier and on the banks that has not been correctly detected.
This fact can also be appreciated in Fig. 5(e). In the same way,
the results in Table VI (in terms of user’s accuracy) show that,
when the CNN is trained with spectral indices, better results
are obtained than using all the bands as input. Regarding the
producer’s accuracy, as shown in Table VI, the spectral indices
that do not exceed the accuracy provided by using all bands are
NDVI, FAI and NDWI, because the percentage of TPs is lower
and the percentage of FNs is higher (as is shown in Fig. 5).
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TABLE V
PERFORMANCE EVALUATION FOR MERIDA CASE AND BADAJOZ CASE (BEST RESULTS IN BOLD) USING THE CNN ALGORITHM

Overall accuracy User’s accuracy Producer’s accuracy  F) score
All bands 0.903 0.843 0911 0.876
RGB 0.933 0.892 0.935 0.913
NDVI 0.920 0.924 0.857 0.889
Mérida
FAI 0.929 0.924 0.883 0.903
Case
NDWI 0.856 0.846 0.754 0.798
BSI 0.925 0.887 0.917 0.902
NDII 0.920 0.879 0914 0.896
All bands 0.779 0.784 0.901 0.839
RGB 0.643 0.641 1.000 0.781
NDVI 0.763 0.762 0914 0.831
Badajoz
FAI 0.691 0.813 0.669 0.734
Case
NDWI 0.658 0.652 0.997 0.788
BSI 0.763 0.789 0.860 0.823
NDII 0.746 0.795 0.811 0.803
TABLE VI

PERFORMANCE EVALUATION FOR MERIDA CASE AND BADAJOZ CASE (BEST RESULTS IN BOLD) USING THE RF ALGORITHM

Overall accuracy  User’s accuracy  Producer’s accuracy  Fj score
All bands 0.892 0.800 0.952 0.869
RGB 0.924 0.876 0.930 0.902
NDVI 0.900 0.877 0.855 0.866
Mérida
FAI 0.897 0.852 0.880 0.866
Case
NDWI 0.783 0.727 0.676 0.701
BSI 0.909 0.857 0.910 0.883
NDII 0.906 0.847 0.916 0.880
All bands 0.766 0.832 0.794 0.813
RGB 0.642 0.736 0.643 0.686
NDVI 0.694 0.803 0.690 0.743
Badajoz
FAI 0.662 0.805 0.621 0.701
Case
NDWI 0.658 0.652 0.997 0.788
BSI 0.703 0.802 0.710 0.753
NDII 0.702 0.791 0.724 0.756

Finally, considering the F score metric, the worst accuracy is
obtained with NDWI index.

In the Badajoz case study, it can be observed in Fig. 3(b)
that the worst results are obtained when training the CNN with
RGB, NDWI, and FAI, due to overdetection in RGB and NDWI
and under-detection in FAI. On the other hand, as shown in
Table VI, training with BSI, NDII, and NDVI provides similar
results to using all bands in terms of overall accuracy. It can
also be seen in Fig. 6 that there are higher FP values in RGB

and NDWI and lower TP values in the case of FAI. However,
when analyzing the user’s accuracy metric, it can be appreciated
that the worst results are obtained with RGB and NDWI and the
best ones with BSI and NDII. In the case of producer accuracy,
RGB and NDWI obtain very high results because they result in
a high percentage of TPs and a very low percentage of FNs and,
on the contrary, lower results are obtained in cases where the
percentage of FNs is higher (as with the BSI and NDII inputs).
Finally, analyzing F} score, the highest values in terms of FPs
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do have a negative effect, penalizing the RGB, NDWI, and FAI
indices, while favoring other indices such as NDVI, BSI, and
NDII. To visually compare the results, Fig. 4(a) and (b) were
generated with the same conditions but using the RF algorithm.

Our results also reveal that the accuracies vary if we consider
the case of Mérida or Badajoz. In the case of Mérida, higher
accuracies are obtained than in Badajoz. As it can be seen in
Fig. 3(b), the distribution of invasive plants on the surface of the
river in the area of Badajoz is presented in masses with more
irregular shapes than the masses of invasive plants present in the
area of Mérida. These masses are also responsible for the higher
percentage of FP detections.

Another significant benefit of using spectral indices (instead
of all bands) for training the CNN is computational efficiency.
Not only because fewer bands need to be downloaded from the
S2 satellite, but also because of the higher throughput resulting
from the fact that less information has to be processed. More-
over, since the results provided by all indices resulted in better
accuracies, a more efficient training of the CNN architecture can
be performed. If we compare the training times needed for the RF
and CNN algorithms, the mean time (after 10 runs) for training
the RF algorithm is about 0.3 s using indices or the whole set
of bands. Regarding the CNN training time, it is higher (about
115s).

V. CONCLUSION

In this work, we have developed a new method for invasive
aquatic plant detection in Sentinel-2 images that relies on a
CNN architecture trained with different spectral indices. This
represents a significant advantage over previous works, in which
the CNN was trained with all the spectral bands available (which
generally resulted in lower quality results despite using a higher
number of spectral bands). The index with better detection
accuracy depends on the evaluation metric that is considered,
but in general it can be concluded than the information provided
by spectral indices is more useful for training than the raw mul-
tispectral data provided by the Sentinel-2 satellite. This opens
new perspectives in terms of more efficient and effective data
processing. In future studies, we will perform a more detailed
assessment of computational performance and consider other
deep learning models.
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