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Cloud Image Retrieval for Sea Fog Recognition

(CIR-SFR) Using Double Branch
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Tianjiao Hu, Zhuzhang Jin

Abstract—Sea fog is a common weather phenomenon at sea,
which reduces visibility and causes tremendous hazards to marine
transportation, marine fishing, and other maritime operations.
Traditional sea fog monitoring methods have enormous difficul-
ties in characterizing the diversity of sea fog and distinguishing
sea fog from low-level clouds. Thus, we propose a cloud image
retrieval method for sea fog recognition (CIR-SFR) in a deep
learning (DL) framework by combining the advantages of metric
learning. CIR-SFR includes the feature extraction module and the
retrieval-based SFR module. The feature extraction module adopts
the double branch residual neural network (DBRNN) to compre-
hensively extract the global and local features of cloud images. By
introducing local branches and using activation masks, DBRNN
can focus on regions of interest in cloud images. Moreover, cloud
image features are projected into the semantic space by introducing
multisimilarity loss, which effectively improves the discrimination
ability of sea fog and low-level clouds. For the retrieval-based SFR
module, similar cloud images are retrieved from the cloud image
dataset according to the distance in the feature space, and accurate
SFR results are obtained by counting the percentage of various
cloud image types in the retrieval results. To evaluate the SFR
system, we establish a dataset of 2544 cloud images including clear
sky, low-level cloud, medium high cloud, and sea fog. Experimental
results show that the proposed method outperforms the traditional
methods in SFR, which provides a new way for SFR.

Index Terms—Cloud image retrieval (CIR), double
branch residual neural network (DBRNN), metric learning,
multisimilarity loss, sea fog recognition (SFR).

I. INTRODUCTION

EA fog is a phenomenon of low-level water vapor con-

densation that occurs at sea or in coastal areas, where the
accumulation of large amounts of water droplets or ice crystals
will reduce horizontal visibility to less than 1 km. Offshore ac-
tivities, such as shipping, fishing, and other maritime operations
can suffer significantly from abysmal visibility. Approximately
70% of ship collisions, groundings, and other events are caused
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by sea fog, making it one of the most serious disaster. Most
traditional sea fog monitoring relies on observation located at
seaorincoastal areas. Due to the shortage of stations and the high
susceptibility of observation facilities to corrosion by seawater,
large-scale continuous monitoring of sea fog is challenging.
Therefore, the development of the marine economy as well as
disaster prevention and mitigation depends on the exploration
of alternative and effective methods for sea fog monitoring.
With the development of satellite remote sensing technol-
ogy, the application of high-precision and multichannel satellite
remote sensing images in sea fog monitoring is getting more
and more attention. Eyre et al. [1] discussed the potential of
bright temperature difference in nighttime sea fog recognition
(SFR) by analyzing mid-infrared and far-infrared channels data
from the polar-orbiting satellite NOAA; Husi et al. [2] used
the brightness temperature difference between the mid-infrared
and long-wave infrared channels of the Himawari-8 satellite,
and combined it with the snow coverage index to establish a
daytime SFR model; Deng et al. [3] proposed a daytime sea
fog monitoring method on a dynamic threshold using FY2E
satellite data. These researchers implemented sea fog monitoring
by seeking a suitable threshold to exploit the difference in cloud
radiation between different imaging channels of remote sensing.
However, there are some problems in these methods, such as the
difficulty in determining the threshold, the difficulty in using the
spatial relationship between remote sensing image pixels, and
the sea fog monitoring model established that cannot make full
use of the satellite remote sensing data of different channels. In
recent years, with the development of research on the human
brain’s visual perception mechanism and computer technology,
DL has attracted significant attention from academics across
the globe. In particular, deep convolutional neural networks
(deep CNN5s) have made significant progress in applying remote
sensing image processing. In the field of satellite cloud image
analysis, a large number of research results have been achieved
in Cloud detection, tropical cyclone classification, and cloud
cover calculation based on DL, and the application potential of
DL in satellite cloud image analysis has been revealed.
Content-based image retrieval (CBIR) is a method that aims to
use the image’s content to find the same or similar samples from
an image database as the query image [4]. In general, different
types of clouds correspond to different weather information. If
the cloud image similar to the current cloud information can be
found in the historical cloud library, by analyzing the weather

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0009-0005-9352-7622
https://orcid.org/0000-0002-6844-4324
mailto:k592483107@outlook.com
mailto:fatejzz@foxmail.com
mailto:xincase@foxmail.com
mailto:1261416840@qq.com
mailto:jinwei@nbu.edu.cn

HU et al.: CIR-SFR USING DOUBLE BRANCH RESIDUAL NEURAL NETWORK

conditions and their development trends at a certain moment in
history, it is possible to provide supporting information for cur-
rent weather forecasts or warnings of catastrophic weather. As
a promising technology for monitoring severe weather, satellite
cloud image retrieval (CIR) is expected to play an important role
in sea fog monitoring. However, the characteristics of satellite
cloud images differ from those of natural images. For example,
satellite cloud images contain a wealth of spectral data, and
the properties of various cloud systems in terms of cloud type,
extent, boundary shape, and texture are intricate. Furthermore,
when people judge the similarity of cloud images, it is based on
the understanding of the meteorological semantic information
reflected in them, but not based on the similarity of the visual
content of the images. Therefore, how effectively understanding
and describing cloud images have become the key to satellite
CIR.

Before formally conducting the research on the CIR method
for SFR, we still need to solve the problems of sea fog diversity
and the distinction between sea fog and low-level clouds. Due
to the influence of various factors, such as geographic location
and season, the sea fog cloud patterns often show multiple
manifestations. Moreover, there is no essential physical property
difference between low-level clouds and sea fog, and their
spectral characteristics are also highly similar. The accuracy
of SFR will be hampered by intraclass diversity and interclass
similarity that often cause semantic discrimination errors in
sea fog recognition. To solve the above problems, deep metric
learning (DML) [5] provides a feasible idea.

In this study, in order to solve the problems encountered by the
traditional threshold method, using Himawari-8 satellite cloud
images as a basis, we propose the cloud image retrieval for sea
fogrecognition (CIR-SFR). CIR-SFR base on the characteristics
of sea fog itself, under the framework of DL, along with the
benefits of metric learning in displaying the meteorological
semantic features of satellite cloud images. CIR-SFR mainly
includes the feature extraction module and the retrieval-based
sea fog recognition module. In CIR-SFR, the feature extraction
module uses a double branch residual neural network (DBRNN).
The backbone structure of DBRNN is a double-branch network,
where the global branch contains the feature extractor (FE)
and generates the activation mask (AM), which acts on the
original input cloud image, and the local branch contains the
FE to extract the features of the main cloud regions in the cloud
image. Due to the high similarity between low-level cloud and
sea fog in satellite cloud image representation, the generated
cloud image features will show high intraclass differences and
interclass similarities in the embedding space. Therefore, in the
process of network training, DBRNN will be co-trained through
multisimilarity loss (MS Loss) and dual branches under the basic
requirement of CIR. The trained model embeds the cloud images
into a metric space in which the distance between different cloud
images increases and the distance between the same cloud im-
ages decreases. The retrieval-based sea fog recognition module
uses the cloud image features extracted by the trained DBRNN
to retrieve the historical cloud images, which are similar to
the query in the database according to the distances between
different cloud images in the feature space. By calculating the
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weight share of similar historical cloud images in various types
of cloud images, the category of the query is inferred, and
accurate SFR results are obtained. The main contributions of
this article can be summarized as follows:

1) Addressing the difficult to determine thresholds of tradi-
tional SFR methods encountered, we propose a CIR-SFR.

2) We construct DBRNN with DML to solve the problem
that the traditional deep features are high intraclass differ-
ences and interclass similarities of different categories of
satellite cloud images, so as to improve the discrimination
ability of sea fog and low-level cloud.

3) We establish a dataset containing the most significant
cloud categories, such as clear sky, medium high cloud,
low-level cloud, and sea fog. This lays the foundation for
further research on satellite CIR, cloud image identifica-
tion, and sea fog monitoring.

II. RELATED WORK

In this section, we present some work related to CIR-SFR,
including deep CNNs, DML, and satellite CIR.

A. Deep CNNs

In order to avoid the complicated image feature extraction
process, classical seep CNNs algorithms, such as AlexNet [6],
GoogleNet [7], VGGNet [8], and ResNet [9], which can better
map ordinary images to the feature space and portray the se-
mantic features of images in the form of space vectors. In recent
years, deep CNNs have also received extensive attention from
scholars in the field of satellite remote sensing [10]. However,
due to the rich spectral information contained in satellite cloud
images, and the cloud characteristics reflected in satellite cloud
images, such as shapes and textures are very complicated, ordi-
nary classical networks cannot effectively describe the meteoro-
logical information contained in cloud images. Therefore, vari-
ous improved versions of deep networks have emerged and been
applied in cloud image segmentation, cloud image recognition,
and cloud image classification. Kaur Buttar et al. [11] proposed
a segmentation method for clouds and certain terrians in satellite
images. The method combines the U-Net++ with a light weight
channel attention mechanism to create crisp cloud boundaries.
Shao et al. [12] proposed a CNN based on multiscale features.
The network combines high-level semantic information and
low-level spatial information generated during feature learning
to achieve the simultaneous classification of thin, thick, and
noncloudy pixels. However, the application of deep CNNs in
satellite cloud image is still few, the development time is short,
and the algorithm is not mature enough. Deep CNNs has also
been applied and developed in the field of sea fog detection and
prediction. Ran et al. [13] developed an algorithm for sea fog
detection during morning and evening hours in the framework
of DL combined with terrain constraints. Zhu et al. [14] used
U-Net DL model combined with PCA to accomplish effective
sea fog detection. In the field of SFR, the threshold method still
occupies the main position, and DL is still less. The algorithm
cannot reasonably use multichannel data, and the ability of dis-
tinguishing sea fog from low-level cloud is limited. Therefore,
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we use the multichannel satellite cloud image data, combined
with the advantages of DL, to further explore the SFR method.

B. DML

Traditional feature extraction methods based on DL have a
pair of contradictions: one contradiction is that the spatial posi-
tion relationship between samples will not be considered by the
deep network during training; the other is that when the extracted
features are used for image classification and image retrieval, itis
necessary to assume that there is a meaningful distance measure
in the input space [15]. The emergence of DML provides a
feasible idea to solve this contradiction. The purpose of DML is
to learn a low-dimensional image embedding function, through
which the image is embedded into a metric space. In this metric
space, the distance between images of the same class is smaller
than that between images of different classes, so as to minimize
the intraclass distance and maximize the interclass distance. At
present, DML is widely used in image retrieval [16], recogni-
tion [17], verification [18], and feature matching [19]. Triplet
training [5] is a common way to implement DML. The triplet
t={g%, g”, g" } consists of anchor samples, positive samples, and
negative samples, where anchor samples g“ and positive samples
g? are in the same category, the negative samples ¢g” belong to
different categories. During training, ¢g* and ¢g” form a set of
positive sample pairs, while ¢g* and g™ form a set of negative
sample pairs, which makes the distance between positive sample
pairs reduced and the distance between negative sample pairs
expanded through network training. In addition, contrastive
training based on the Siamese network and quadruplet training
based on triple adding a negative sample can also be practical for
DML. However, in the process of model training, multivariate
methods need to construct multivariate sample groups, which
will lead to the redundant selection of training samples, further
causing difficulties in model training convergence and model
performance degradation. In order to solve this problem, we
introduce multisimilarity loss (MS loss) [20] in CIR-SFR for
double-branch co-training and optimization. MS Loss combines
self-similarity and relative similarity, which can excavate diffi-
cult sample pairs suitable for training to reduce the total number
of sample pairs during training, which can not only effectively
improve the training speed but also obtain more discriminative
image features in the embedding space.

C. Satellite Cloud Image Retrieval

Satellite CIR belongs to the category of remote sensing image
retrieval. Compared with other common images, the retrieval
accuracy of satellite cloud images depends more on the model’s
understanding and description of the cloud image itself, which
is the representativeness and comprehensiveness of the features
extracted by the model. Traditional satellite CIR relies on the
accuracy of manually extracted features, which are divided into
three main visual features: 1) hue, 2) structure, and 3) texture.
Acqua et al. [21] used point diffusion technique to compare
the shape similarity between cloud images, thus realizing CIR.
Gurve et al. [22] extracted morphological, color and texture
features from satellite cloud images, respectively, and developed
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a content-based image retrieval system. With the continuous
progress of DL, its advantages in feature extraction have grad-
ually emerged, and DL is gradually applied to remote sensing
image retrieval. S Roy et al. [23] proposed a DML based on
hash network, which integrated transfer learning and a triple
training scheme to optimize the target retrieval task and obtain
binary hash codes for fast search. Y Liu et al. [24] adopted
the similarity-based conjoined CNN (SBS-CNN) to generate
compact image features, and proposed an unsupervised deep
transfer learning method based on similarity for remote sensing
image retrieval. Although DL has made much progress in re-
mote sensing image retrieval, little research has been applied to
CIR. In order to solve the problem that traditional SFR method
based on the threshold is difficult to depict cloud image spatial
information, and the traditional SFR method based on classi-
fication model cannot effectively use cloud image of history
information. Inspired by the success of DL in the field of remote
sensing image retrieval, in this article, we study in DL framework
and carry out the work on CIR-SFR.

II. CIR-SFR

In this section, we propose the motivation for the study of
CIR-SFR, then present the general framework of CIR-SFR,
and finally show the implementation and optimization of the
components of CIR-SFR.

A. Problem Formulation

Different types of clouds correspond to different weather
information. If the features of two temporal clouds are similar,
the weather development processes corresponding to them are
likely likewise identical. Therefore, if the cloud image that is
similar to the current cloud information can be found in the
historical cloud library, by analyzing the weather conditions
and its development trend at a certain moment in history, it is
possible to provide auxiliary information for current weather
forecasts or warnings of catastrophic weather. Sea fog has
specific spectral and textural characteristics on satellite cloud
images as a type of catastrophic weather. Therefore, the problem
of SFR can be solved by cloud class recognition of satellite
cloud images. However, traditional cloud image classification
based on DL can only give the discriminant result, but not
fully express cloud meteorological semantics, which results in
poor interpretability of the method. Therefore, to increase the
accuracy of sea fog detection and simultaneously improve the
recognition results, this work presents a SFR method based
on CIR with the support of similar historical cloud images.
Considering the rich spectral information and complex texture
characteristics of satellite cloud images, the features extracted by
a single network structure are difficult to comprehensively and
pertinently describe the meteorological information contained
in cloud images. In this article, a double branch residual neural
network (DBRNN) is used as the backbone structure of the
model, MS loss is introduced to conduct CIR, and finally realize
SFR based on the retrieval results. In order to improve the clarity
of the text, we have installed the following Table I to illustrate
some important symbols and definitions in the article.
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I. Training of DBRNN

Double Branch CNN
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II. Retrieval-based Sea Fog Recognition
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Fig. 1. Structure of the proposed CIR-SFR.
TABLE 1 - ' .
NOTATIONS AND DEFINITIONS Clear Sky
B viia-High Cloud
Notation Definitions -
X Raw images. Sea Fog
C Category of cloud image. - Low-level clouds
F Feature map.
max () Maximum value function. (a) (b)
min() Minimum value function.
IA{ Aggregated feature map. Fig. 2. Cloud image labeled as sea fog with its semantic segmentation mask.
H Activation map. (a) Sea fog cloud image. (b) Cloud image corresponds to the semantic segmen-
a, B,y Hyperparameters. tation mask image.
reuse samples by constructing sample groups. On the other hand
B. CIR-SFR >

The structure of CIR-SFR proposed in this article is shown in
Fig. 1. The backbone network of CIR-SFR includes the training
of DBRNN module (the feature extraction module) and the
retrieval-based SFR module. In the training of DBRNN module,
first, we choose one cloud image as the anchor sample, and
its similar and nonsimilar cloud images form the positive and
negative sample sets, respectively. Second, in order to construct
the historical cloud image library, we introduce metric learning
to train DBRNN, using anchor samples and samples from the
positive (negative) sample sets. The trained DBRNN is used to
extract cloud image features and construct a historical cloud
image library. Then, in the retrieval-based SFR module, we
extract the features of query by the trained DBRNN. The Top-50
similar cloud images are retrieved from the historical cloud
image library based on the similarity among the features. Finally,
based on the feature distance between similar cloud images and
query, we calculate the weighted scores of different categories
of cloud images in the retrieval results by “weighted voting,” so
as to determine the category of query and realize SFR.

1) DBRNN: In this article, in order to recognize sea fog, we
try to use image retrieval to determine the query category, which
needs to solve two problems. The first problem is that satellite
cloud images are different from natural images. It is so difficult
to label the satellite cloud images that the number of labeled
samples are small, which often leads to overfitting and damages
the performance of CIR model during the deep network training.
In order to solve this problem, metric learning is introduced to
train the network. On the one hand, in order to alleviate the
problem of having few training samples, metric learning can

an embedding space is obtained by metric learning, in which the
embedding vectors of similar samples are pulled closer while
the embedding vectors of different samples are pushed away in
order to enhance the network’s ability to express the features
of samples. The second problem is that in the process of cloud
image labeling, if the proportion of a certain category of cloud or
fog regions in the cloud image is more than 50%, the label of the
cloud image is labeled with this category. However, the cloud
image often contains other types of clouds or fog regions, and
the ability of network to describe the essential characteristics of
the cloud image will be affected by these other types of cloud or
fog regions. A cloud image labeled as sea fog and its semantic
segmentation mask in the training set are shown in Fig. 2.

Fig. 2 shows that although most of this cloud image are the sea
fogregion, which is the main semantic object of this cloud image,
there are still some medium high clouds, low-level clouds, and
clear skies mixed in. In order to reduce the interference of
nondominant semantic objects in the cloud image as much as
possible, this article constructs the DBRNN combined with
local features to extract features based on the traditional CNN.
The framework of DBRNN is shown in Fig. 3.

Fig. 3 shows that DBRNN includes the global branch and
the local branch, where the global branch extracts the global
features of the cloud image, and the local branch extracts the
local features of the main semantic objects in the cloud image
by the effect of the activation mask (AM). Both branches use
ResNet50 as the backbone network, and its feature extraction
is mainly divided into four stages, each stage is composed of a
number of residual blocks. Stage 1 and stage 4 have three residual
blocks each, stage 2 has four residual blocks, and stage 3 has six
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Fig. 3. Framework of the DBRNN.

residual blocks. After the fourth stage, the feature map will pass
through the global max pooling layer, and the fully connected
layer with the ReLu function as the activation function, each
channel’s spatial information is aggregated and mapped to the
low-dimensional embedding space to generate a feature vector
oflength K . Finally, for representing the cloud image, the feature
vectors of the double branches are concatenate to form a feature
vector of length 2 K.

2) AM: In order to extract features from the main semantic
objects of the cloud image, the AM is generated by performing
a series of processing on the feature map of the global branch
stage 4, and then the AM is multiplied with the original cloud
image as the input of the local branch, as follows.

We assume that the map of global branching stage 4 is
F € RC*LXW "where C, L, and W represent the number of
channels, height, and width of the feature map, respectively.
According to the characteristics of the CNN, different semantic
objects in the cloud image are represented in different positions
of the high-level feature map. Therefore, when the network
detects the existence of a certain semantic, the corresponding
region in the feature map will be activated. If the feature maps
of multichannels are activated in the same region, it often means
that the corresponding region in the original cloud image is
the main semantic object. For this purpose, we superimpose
the feature map F' along the channel dimension to obtain the
“aggregated feature map” H, it is defined as

C
): ZF(C,i,j)

where H (i, j) represents the amount of information at posi-
tion (7, 7) in the H. The greater the amount of information, the
more likely the corresponding region contains the main semantic
object. To measure the strength of the information at different
locations and to establish a one-to-one mapping between the

ey
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Fig. 4. Cloud image and its corresponding semantic segmentation labels,
activation masks, and local branching input.

information and each pixel of the original cloud, we normali;e
H and upsample it to the original cloud size to generate AM H,
which can be defined as follows:

where max() and min() return the maximum and minimum
pixel values of H, respectively, and upsample() indicates the
upsampling operation. In order to emphasize the main semantic
objects in the cloud image and suppress the interference of
other nonmain semantic objects, we multiply the original cloud
image with the AM. Several cloud images with their semantic
segmentation labels, activation masks, and local branching input
are shown in Fig. 4.

Fig. 4 shows that the AM well characterizes the main semantic
regions of the cloud image. Compared with the original cloud
image, the input of the local branch pays more attention to the
dominant cloud region in the cloud image to make the extracted
features better reflect the category information.

3) Design of Loss Function and Hard Sample Mining: The
loss function plays a significant role in DML, and many loss

H(i, j)
max(H)

— min(H)
— min(H)

H(i, ) = upsample ( )
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functions for DML are built on top of sample pairs or sample
triples. In the SFR task, there is no essential difference in
physical features between sea fog and low-level cloud, and the
spectral characteristics are also very similar, so the recognition
problem of nonidentical but extremely similar samples needs to
be solved. In order to solve this problem, we use the strategy of
sample pairs to train the network and introduce multisimilarity
loss (MS Loss) [20]. MS loss captures better information from
sample pairs by comprehensively considering three aspects of
the similarity of self-similarity of sample pairs, the similarity of
negative sample pairs, and similarity of positive sample pairs.
Since the proposed DBRNN has both global and local branches,
in order to combine the information of the sample pairs in the
double branches, we designed the following loss function based
on the cosine similarity of the sample pairs, which is defined as
follows:

X

1+ Z e—a(ka—A)]>

KePp;

Y eﬁ(S,m]

1 2
—_— 1
e >

L+ emir”D 3)

KGN,;

X

where D is the batch-size, S, and S, are the cosine similar-
ity between the features extracted from the anchor sample cloud
X; and the paired sample X, after global branching and local
branching; P; and NN; are the set of positive and negative samples
of the anchor sample cloud map X;; «, 3 are hyperparameters
as in Binomial deviance loss [20], where « controls the weight
of positive pairs and [ controls the weight of negative pairs; A
represents the margin of similarity. The processing of positive
samples in batch is shown in the top half of (3). In this part
of the loss, A controls the closeness of positive sample pairs
and penalizes those positive sample pairs with similarity < A.
The processing of negative samples in the batch is shown in the
bottom half of (3). This partial loss ensures that the similarity
of negative samples to the anchor is as low as possible, which
means that negative samples close to the anchor (i.e., with high
similarity) should be penalized more than negative samples far
from the anchor (i.e., with lower similarity). Therefore, through
(3), the network can learn an embedding space that brings similar
samples closer and pushes different samples away, so that the
extracted features are more conducive to completing the SFR
task.

When randomly selecting anchor samples and positive (neg-
ative) samples to form training sample pairs, a large number of
redundant samples are generated, which will reduce the training
speed and make little contribution to the improvement of model
performance [20]. Therefore, we introduce a difficult sample
selection strategy to retain only those sample pairs with more
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valuable information. Taking global branching as an example,
we assume that X; represents the cloud image anchor sample, y;
represents its label, and X; represents the cloud image chosen
randomly from the dataset such that it belongs to a class y;,
where y; # y;. Only when the similarity S;; between X; and X
in the corresponding negative sample satisfied (4), the two form
a valid negative sample pair. The process of negative sample
selection can be expressed as follows:

S;j > min Sik — € 4
Yi=Yk

where ¢ represents a preset threshold, whichis set to 0.1 in this
article. Equation (4) indicates that only negative samples whose
similarity to the anchor samples are larger than the minimum of
their positive sample’s similarity will be included in the training.
Similar to the negative sample selection rule, we assume that
X represents the samples of the same category as X;. Only
when the similarity S;; between X; and X satisfied (5) they
will form a valid positive sample pair. The process of positive

sample selection can be expressed as follows:

Sii < max S +e. 3)
YiFEYk
Equation (5) shows that only positive samples whose similar-
ity to the anchor samples are smaller than the maximum of their
negative sample’s similarity will be included in the training.

C. Cloud Retrieval and Sea Fog Recognition

The satellite cloud image pairs will be embedded into the
feature space by the trained DBRNN, and the retrieval is based
on the distance of the cloud image pairs in the feature space:
the same class is closer, while the different classes are far away.
The labeled training set data are used as the gallery set, and
the test set is used as the query set. Cloud class recognition can
be achieved by CBIR and majority voting. The details can be
defined as follows.

First, the query X is input to DBRNN to generate its global
features and local features, and they are concatenated to form
the feature vector characterizing the cloud image

x = [29,2] (6)

where x9 and z!, respectively, represent the outputs of the
global branch and local branch. Then, x will be compared with
the features of other clouds in the gallery set, and the retrieval
results are sorted by the distance between features from smallest
to largest. In order to avoid the problem that the proportion of
the two types of clouds in the returned results is the same, which
makes it impossible to complete the recognition task according
to the majority voting. We motivated by the weighted K-nearest
neighbor (KNN) algorithm, combined with the Gaussian func-
tion, and finally, defined the weight of the returned cloud image
based on the distance between the returned cloud image features
and the query features. The weight can be described as follows:

_ (disi(X,2)-b)?

W(X,Z)=ae ~— 22 . (7
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In the equation, dist(X, Z) is the Euclidean distance between
the query X and the returned cloud image Z features; a repre-
sents the peak of the Gaussian curve; b is the horizontal coordi-
nate corresponding to the peak; cis the standard deviation, which
is experimentally determined to be 1, 0, and 0.3, respectively,
to get better results. To get the score that the query belongs
to different categories, we summarize the weight sum of the
returned TOP N cloud images belonging to different categories
by category. The score can be expressed as

Score(X,Ci) = > W(X,Z;),j=0,1,....,N. (8
ZjEC,;

In the equation, C}; represents different cloud image cate-
gories, and we determine the category of the query by the highest
score, which is defines as follows:

c(z) = arg mcaux(Score(X7 Cy)) 9

where c(x) represents the category to which the query X is
interpreted by the model, and if this category is sea fog, then
SFR is achieved at the same time.

IV. CONSTRUCTION OF THE DATASET

A. Analysis of Spectral Characterization of Satellite Cloud
Images

In general, different types of cloud images often have differ-
ent spectral characteristics, but there is no essential difference
between low-level cloud and sea fog in physical properties
and spectral characteristics. Therefore, it is still a challenge to
distinguish low-level clouds from sea fog by remote sensing
detection. In order to solve this problem, first, we analyze
the remote sensing spectral characteristics of four types cloud
images, such as sea fog, medium high cloud, low-level cloud,
and clear sky. The purpose is to screen out the imaging channels
that can effectively reflect the characteristics of different types
of cloud images.

In the visible to near-infrared channel, the signal received by
satellite consists of a cloud layer, the solar radiation reflected by
the underlying surface, and scattered radiation of solar radiation
in the atmosphere, Earth’s atmospheric radiation due to the latter
than the former proportion is very small, negligible. Therefore,
the cloud image of this channel mainly reflects the reflective
nature of the cloud and the underlying surface to solar radiation.
Based on Mie’s scattering theory [25], clouds and fog have
obvious scattering effects, and their reflectance is significantly
greater than the information on the sea surface, land, and other
features, so the visible-NIR channel cloud images can effectively
distinguish between clouds and clear sky. Moreover, since the
sea fog is closer to the surface, its diffuse reflection from
the ground or other directions is less, which causes that if the
low-level cloud and the sea fog are of the same thickness, the
reflectivity of the sea fog will be smaller than that of the low-level
cloud. In addition, studies by Zeng-Zhou Hao et al. [26] also
pointed out that the particle size differences between cloud and
mist can cause them in visible to near-infrared wave channels
to have different reflection and scattering effects, which not
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only caused the cloud in near-infrared wave channel imaging
characteristic difference, also makes the low-level clouds and
the sea fog in the visible channel have different texture features.
Therefore, the visible-NIR channel can identify cloudy areas
and clear sky, low-level clouds, and sea fog.

In the far-infrared channel, the radiation received by satellite
mainly comes from the thermal radiation emitted by the target
feature itself, so the cloud image in the far-infrared channel
mainly represents the temperature and specific emissivity of the
target feature itself. The lower the target temperature, the lower
the specific emissivity, and the lower the radiation value received
by satellite. Medium high clouds have high altitudes and low
temperatures, so their bright radiation temperature is signifi-
cantly lower than other underlying surfaces, while low-level
clouds are close to the sea surface, and their bright temperature is
close to the clear sky. Therefore, the far-infrared channel can be
used as an auxiliary channel to distinguish medium high clouds
from low-level clouds.

Combined with the above analysis, in order to compre-
hensively utilize the information from the different imaging
channels, we select cloud image data in three visible chan-
nels, three near-infrared channels and one far-infrared channel
(11.2 pm) from the Himawari-8 satellite for the study of CIR for
SFR.

B. Cloud Images Acquisition and Annotation

We select the Bohai Sea and Yellow Sea waters which are lo-
cated at longitudes 116.5°-129.25°E and latitudes 30°-42.5°N
as the main study area. This region is affected by the encounter
between the warm current entering the Yellow Sea along the
northwest direction south of Jeju Island and the coastal current of
the Yellow Sea, so the sea fog occurs more frequently. According
to incomplete statistics, more than 80 offshore foggy weather
events occurred in this sea area during 2018-2020. In order to
obtain the appropriate satellite cloud image of sea fog, first, we
obtain the sea fog occurrence date according to the fog mon-
itoring report published by China Ecological Remote Sensing
Information Service Network. Then, we collect the Himawari-8
full-disk cloud image data of the sea fog occurrence date from
2017 to 2020. Finally, according to the longitude and latitude of
the study area, the cloud image data are intercepted to generate
the corresponding satellite cloud image of sea fog.

Referring to the cloud classification products of Himawari-8
and combining with the fog monitoring report, we collected
different categories of cloud images to form a cloud image
dataset, and the specific methods are as follows.

1) Cloud Image Segmentation: Himawari-8’s cloud clas-

sification product divides clouds into nine categories:
1) Cirrus, 2) Cirrostratus, 3) deep convection, 4) Al-
tocumulus, 5) Altostratus, 6) Nimbostratus, 7) Cumulus,
8) Stratocumulus, and 9) Stratus. Cirrus, Cirrostratus, deep
convective, high cumulus, high stratus, and rain stratus
clouds belong to medium high clouds; cumulus, stra-
tocumulus, and stratus clouds belong to low-level clouds.
Therefore, based on cloud classification products, through
pixel segmentation, we can classify satellite cloud images
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Fig. 5. Cloud image collection and annotation process.

into three categories: 1) medium high cloud, 2) low-level
cloud, and 3) clear sky.

2) Generate Semantic Segmentation Mask Maps. Combined
with the fog monitoring reports, the low-level cloud and
fog regions in the cloud image are further segmented
into low-level cloud and sea fog, so as to generate a
semantic segmentation mask map with four objects types:
1) medium high cloud, 2) low-level cloud, 3) sea fog, and
4) clear sky.

3) Cloud Image Collection to Generate Datasets. We sample
the original cloud image using a sliding window with a
window width of 128 pixels and a step size of 64 pixels.
During the sampling process, with reference to the seg-
mentation mask map, when the pixel share of a certain
category of clouds in the window is more than 50%, the
cloud image covered by the window is intercepted as a
sample and labeled with the corresponding category. This
process is shown in Fig. 5.

Fig. 5 shows an example of the acquisition and annotation
process for a sample of medium- high cloud images. According
to this method, the cloud image dataset we constructed contains
566 clear sky cloud images, 579 sea fog cloud images, 726
medium high cloud images, and 662 low-level cloud images,
for which we conduct the CIR-SFR studies.

V. EXPERIMENT

The experimental system was configured with a Windows 10
operating system, a 4.1 GHz Intel Core i5-10600KF CPU, and a
computer with 32 GB of running memory, the programming lan-
guage Python 3.7. The deep network model builds on the Keras
and Tensorflow frameworks, with all convolutional operations
performed on the graphics card NVIDIA GeForce RTX3060.
We divide the Yellow Bohai Sea sea fog dataset into a training
set and a test set in the ratio of 8:2, and add 11 sea fog cloud
images from 2021 to 2022 to the test set. In order to mitigate the
overfitting problem of the network, each training cloud image
will be rotated by 90°, 180°, and 270° to augment the training
set. We randomly select 16 cloud images from various types of
cloud images to form a batch and used Adam optimization [27]

Sliding window sampling > .

Splitting

Pixel ratio determination  ggo, . / Medium High Cloud
o [l
o [

20%

for network training, with the initial learning rate set to 10~°. By
referring to the analysis in literature [20], the hyperparameters
«, 3, and A of the loss function set to 2, 20, and 1, respectively.
The number of neurons /, in the fully connected layers of the
global branch and the local branch in the DBRNN model, is set
to 64. The goal of this article is to solve the SFR problem using
image retrieval, so the following experiments are conducted to
evaluate the performance of the proposed model in CIR-SFR.

For the SFR task, we divide all samples of the dataset into two
categories: 1) positive and 2) negative classes where all cloud
images belonging to sea fog are positive classes and all cloud
images of other categories are negative classes. After the test
dataset is discriminated by the model, there are four main cases:
1) True positive (1" P) represents the sample recognized by the
model as sea fog, which is actually also sea fog; 2) false positive
(F'P) represents the sample recognized by the model as sea fog,
which is actually not sea fog; 3) false negative (F'IV) represents
the sample recognized by the model as nonsea fog, which is
actually sea fog; 4) true negative (I'N) represents the sample
recognized by the model as nonsea fog, which is actually also
nonsea fog. We use precision (PRE), recall, and F1-score (F'1)
to evaluate the performance of the model for SFR. The PRE,
recall, and F'1 can be formulated as follows:

TP
PRE= ———— 10
TP+ FP (10)

TP
l=———— 11
= TP Y FN (i
Fl1= M (12)

PRE + recall

In the equation, PRE represents the fraction of sea fog cor-
rectly recognized by the model as sea fog over all the clouds
predicted to be sea fog, recall represents the proportion of sea
fog clouds correctly recognized by the model to all the sea fog
clouds, and F'1 can combine the PRE and recall of the model,
which is drawn within the range of [0, 1]. The higher values of
PRE, recall, and F'1, the better the model performance.

We also use the PRE, recall, and F'1 of the DBRNN model
for recognizing other types of cloud images and calculate them
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as an average metric to measure the performance of the model
in cloud graph classification, which can be defined as follows.

4

PRE,, = i Z PRE; (13)
1=1
1 4

recallyg = 5 Zrecalli (14)
=1
1 4

Flag = ; Z F1,. (15)
=1

For the cloud image retrieval task, we evaluated the per-
formance of the model using Precision@QL (PQL) and Mean
Average Precision (mAP) [28].

PQL = (16)
=1
Q AP

mAP = Z‘“Q (:) a7

where L is the number of returned clouds given at the time of
retrieval, m(z; ) represents the number of clouds images returned
in the same category as the cloud image x; to be retrieved, and
Q@ is the total number of images to be retrieved. For clarity
of presentation, we abbreviate Precision@/l as PQL in the
following. In (17), AP is the average precision of retrieval for
each cloud image, which is calculated as follows:

j
-— 18
I, (18)

where M (x;) represents the number of cloud images in
the same category as x; in the cloud image dataset. At the jth
retrieval, the system retrieves exactly j cloud images of the same
category when the number of returned cloud images is given as
L;.
A. Performance Analysis of DBRNN Model for Cloud Graph
Retrieval

In order to show the advantages of the DBRNN model
compared with state-of-the-art method, this article conducts a
comparison experiment with other retrieval algorithms on the
Yellow Sea and Bohai Sea sea fog dataset, and the comparison
methods include: DLBHS [29], Milan [23], and DSH [30]. The
length of cloud features of all methods is 64, DLBHS, Milan, and
DSH only use visible clouds to achieve retrieval. Experiments
were conducted to evaluate the retrieval performance of different
methods in terms of P@QL and m A P when returning 10, 20, 30,
and 50 clouds, and the results are shown in Table II.

As can be seen from Table II, compared with the traditional
methods that only use visible bands to extract cloud image fea-
tures, the DBRNN model extracts more discriminative features
from multichannels cloud images. The DBRNN has a mAP
value of 89.90%. It is 7.83%, 21.04%, 22.35% higher that
DLBHS, MilLan, DSH, respectively. The reason for this is that
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TABLE II
COMPARISON OF RETRIEVAL PERFORMANCE BETWEEN DIFFERENT RETRIEVAL
METHODS

Methods mAP(%) PQ10(%) P@20(%) P@30(%) PQ50(%)

DLBHS 82.07 83.13 83.42 83.57 83.34
MiLan 68.86 72.84 72.72 72.35 71.94
DSH 67.55 53.02 62.66 67.57 69.48
Proposed  89.90 90.58 90.57 90.53 90.48

The performance of our model is highlighted in bold.

through the operation of AM, the global feature and local feature
information of the cloud image are fused, so that the extracted
features can better describe the main meteorological semantic
objects in the cloud image. Moreover, during the training of
the network, the DBRNN model uses the MS Loss function to
optimize the distribution of samples in the embedding space,
which further improves the retrieval performance.

To visually show the retrieval performance of the DBRNN
model, we present the retrieval results of the same unlabeled
sea fog cloud images using the DLBHS and DBRNN models,
respectively. The results are shown in Fig. 6.

The top 1 row shows the retrieval result for the DBRNN
model, while the bottom 1 row shows the retrieval result for
DLBHS. As can be seen from the TOP 7 returned clouds, the
retrieval results of the DBRNN model are all sea fog clouds,
and the visual similarity between the cloud images and those to
be retrieved is well characterized by the distance. However, the
retrieval results of DLBHS contain several images of low-level
cloud, which indicate that the retrieval accuracy of DLBHS is
unsatisfactory, and the physical properties of low-level clouds
and sea fog are too similar to be effectively identified by
traditional method. This experiment shows that the proposed
DBRNN model can better solve distinguish the low-level cloud
and sea fog in sea fog monitoring. In order to further demonstrate
the cloud retrieval performance of DBRNN and DLBHS, we use
the T-distributed stochastic neighbor embedding (T-SNE) [31]
model.

From Fig. 7, it can be seen that in the embedding space, the
DBRNN model has better cloud image aggregation and better
differentiation ability than the DLBHS method for various types
of clouds and fog. As an example, in the case of sea fog images,
many sea fog samples of DLBHS method are scattered in the ag-
gregation region of low-level clouds, while the DBRNN model
can well achieve the separation of low-level cloud samples from
sea fog samples. Moreover, the DLBHS method suffers from
serious confusion between low-level cloud and medium-high
cloud samples, while the DBRNN model is advantageous for
low-level cloud and medium-high cloud identification.

B. Performance Analysis of DBRNN Model for Cloud Image
Classification

The CIR system based on the DBRNN model can infer the
category of the query by retrieving the historical cloud images
that are similar to the query in the cloud images library, so
as to achieve cloud image classification. In order to verify the
performance of the DBRNN model on cloud classification tasks,
the classical machine learning (ML) methods and conventional
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Fig. 6. Retrieval results of the same query.
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Fig. 7. Visualization of Embedding Spaces for Different Methods. (a) DLBHS. (b) Model we proposed.
DL methods are chosen to conduct comparison experiments with TABLE III
the DBRNN model-based methods. The classical ML methods CLOUD CLASSIFICATION PERFORMANCE OF DIFFERENT MODELS
include random forest classifier (RF) [32], logistic regression Mothod PREwvg(%)  recallag(%)  Flag(%)
(LR) [33], and support vector machines (SVM) [34]. In the RF 85.01 83.99 84.25
feature extraction stage, the model first generates gray level ~ ML S]\d/lli\/[ ;ggg ggg? gggg
coocc1.1rrence matrix (GLCM) aCC(.)r(%ing to the visible channel Resnet30(Vis) 36.01 36.06 3616
cloud images, and then extracts statistics, such as angular second DL  Resnet50(mc) 91.03 90.53 90.61
moment (ASM), contrast, and entropy as the texture features of DBRNN(GAN) 92.65 92.44 92.49
Proposed 94.95 94.71 94.76

the cloud images using GLCM. Finally, the model combines the
spectral features in different channels for cloud images to carry
out cloud classification experiments. For the DL methods, we
carry out two groups of experiments: the first group adopts the
traditional DL method, uses ResNet50 as the basic network, train
the network with visible channel cloud image data (vis), and mul-
tichannel cloud image data (mc), respectively; the second group
introduces the generative adversarial model (GAN) [35] based
on the original DBRNN’s model, and uses GAN to generate
pseudo-cloud images to increase the number of training samples.
They are compared with the DBRNN based cloud classification
model, and the experimental results are shown in Table III.

As can be seen from Table III that compared with other
classical ML methods, RF has the best performance, the
PRE,g, recallyyg, F'laye value of RF are 85.01%, 83.99% and
84.25%, but its performance is still lower than that of the
cloud classification model based on DL. In the traditional DL
approach, the PRE, recall, and F'1 values of the ResNet50
model trained using visible wavelengths are 86.91%, 86.06%,
and 86.16%, respectively. However, the network trained using
multiwavelength cloud image data shows further improvement

The performance of our model is highlighted in bold.

in the cloud classification task, indicating that the spectral
information reflected by multichannel cloud images is more
helpful to improve the performance of the model in the cloud
classification task. Cloud classification model based on DBRNN
not only alleviates the problem of uneven distribution and small
number of training samples through metric learning but also
builds on the global features of the cloud images extracted by
the backbone network, introducing local branch to extract the
cloud semantic information, so as to effectively improve the
performance of the model cloud classification. The PRE, recall,
and F'1 values reached 94.95%, 94.71%, and 94.76%, respec-
tively. However, the introduction of GAN makes the model take
longer to run. The base GAN model runs in nearly 15 min
on the 3060 RTX GPU, while it cannot be computed on the
CPU. And since there is no mask product as an aid and the
image representations of low clouds and sea fog are inherently
closer, the pseudo-cloud maps generated by the GAN model will
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Fig. 8. Confusion matrices for deep learning models. (a) Resnet50(vis). (b) Resnet50(mc). (c) Model we proposed.
TABLE IV TABLE V
SEA FOG RECOGNITION PERFORMANCE OF DIFFERENT MODEL CLOUD MODEL PERFORMANCE OF DIFFERENT NETWORK FRAMEWORKS
RETRIEVAL METHODS
Network Architecture PREavg (%) recallayg (%) F'1 4y (%)
Methods PRE (%) recall(%) F1(%) Single branch 92.55 92.21 92.27
Resnet50(vis) 93.14 74.80 82.97 Double branch 94.95 94.71 94.76
Resnet50(mc) 91.89 80.31 85.71 Res-CBAM 92.14 91.73 91.80
Proposed 96.58 88.98 92.62 The performance of our model is highlighted in bold.

The performance of our model is highlighted in bold.

produce greater ambiguity in the label definitions. This will lead
to some degradation in model performance.

To visualize the performance of the proposed cloud classifica-
tion model, the confusion matrix of cloud classification results
from the traditional DL and the method we proposed based on
the test dataset is shown in Fig. 8.

As can be seen from Fig. 8, for clear sky cloud images, all the
three models can be correctly classified; for 127 sea fog samples,
the Resnet50(vis) model, misclassified six cases of them as
medium-high clouds, 23 cases as low-level clouds, and even mis-
classified three cases as clear-sky, Resnet50(mc) has improved
cloud classification performance due to the use of multichannel
information, and the samples misclassified as medium-high
clouds were effectively reduced. However, 23 cases are misclas-
sified as low-level clouds, which further expresses the difficulty
in distinguishing sea fog from low-level clouds. Not only does
the cloud classification model we proposed has much better
discrimination ability than the Resnet50(vis) and Resnet50(mc)
models between medium-high cloud and low-level cloud sam-
ples but also it has an excellent capacity to discriminate for sea
fog.

C. Performance Analysis of DBRNN Model for Sea Fog
Identification

In order to evaluate the effectiveness of the CIR method we
proposed on SFR, we compare it with the CIR methods based
on traditional DL models, and the results are shown in Table I'V.

As can be seen from the Table IV, compared with the methods
based on traditional DL models, the performance of the method
we proposed on sea fog recognition is greatly improved, with
PRE, recall, and F'1 values of SFR have reached 96.58%,
88.98%, and 92.62%, respectively. This is mainly due to the
fact that the DBRNN model not only utilizes the multichannel

information of satellite cloud images but also effectively fuses
the global and local features of satellite cloud images through
the global branching and local branching structures. Moreover,
the experimental results also show that it is feasible to achieve
SFR through CIR.

D. Validity Analysis of DBRNN Model

In this article, we construct DBRNN to extract the features of
the cloud image. The global branch of the DBRNN extracts the
global features, and the local branch extracts the local features
from the main semantic region of the cloud image through the
AM, which makes use of the feature map of the global branch to
enhance the network’s perception of the main semantic objects.
This mechanism is similar to the convolutional block attention
module (CBAM). To analyze the effectiveness of the double
branch structure and show the performance comparison between
the AM mechanism and CBAM, in this article, we conduct
a comparative experiment on cloud image classification with
Resnet50 as the backbone network and use different network
frameworks. The results are shown in Table V, where the
Res-CBAM represents the single branch combined with CBAM
structure.

As can be seen from the Table V, the model performance of
the proposed double branch structure is substantially improved
when applied to cloud class recognition, with an increase of
2.49% in F1 score, compared with the single branch network.
Moreover, although CBAM increases the weight of the spatial
or channel with critical information in the cloud image, the
performance of the model compared to the basic single-branch
network is not effectively improved. Therefore, the proposed
AM mechanism performs better than CBAM in SFR.

In general, the feature maps obtained at each stage of the
global branch of the DBRNN can be used for AM generation.
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TABLE VI
MODEL PERFORMANCE OF DIFFERENT INTERMEDIATE FEATURE MAPS
Feature map stage PREavg (%) recallayg (%) Flaye (%)
stage 1 93.20 93.04 93.09
stage 2 93.76 93.55 93.59
stage 3 93.87 93.78 93.80
stage 4 94.95 94.71 94.76

Stage : F : E : :
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Stage 2 ! r
L L
Stage ’ ! g n E

Fig. 9. Original image and its activation map in different stages.

Since the feature maps generated at different stages contain
different information, in order to analyze the influence between
the AM generated at different stages and the model performance,
in this article, we use feature maps generated at different stages
as AM to conduct a comparative experiment for cloud classifi-
cations, and the results are shown in Table VI.

As can be seen from the Table VI, the AM generated by the
bottom feature map has the worst performance of the trained
model. As the network deepens, the performance of the trained
model also improves. The model trained on the AM generated
by the top-level feature maps achieve the best performance with
an F1 score of 94.76%. Therefore, the proposed model in this
article uses the feature maps from stage 4 to generate the AM. To
visualize the semantic information of the cloud image reflected
by feature maps at different levels, the AM generated by feature
maps at different stage is visualized in Fig. 9.

As can be seen in Fig. 9, the AM generated by the low-level
feature maps is relatively clutter and mainly reflects the texture
and edge features of the cloud image. As the network deepens,
the activation regions reflected by the AM generated by the
high-level network gradually gather and can represent the main
semantic objects in the cloud image. Therefore, the high-level
AM applied to the original cloud images will improve the
model’s ability to perceive the main cloud and fog regions.

VI. DISCUSSION

This article proposes a CIR-SFR. The method fully investi-
gates the physical significance of each channel in the Himawari-
8 satellite, combines the advantages of DL in feature extraction,
and uses anovel CIR-SFR. This work has important implications
for further work on image retrieval, image classification, and
SFR.

One limitation of this article is that the model we created
relies on historical satellite cloud image data for loss function
optimization, and the limited number of historical satellite cloud
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image data can have an impact on the training of the model. This
article introduces deep metric learning to mitigate this aspect and
enable the model to present better recognition results.

Another limitation encountered in this article is that in the con-
struction of the dataset. Since the labeling of the dataset depends
on the cloud classification products of the Himawari-8 satellite,
this will prevent the dataset from being accurately subclassified
due to the problem of defining the cloud classification products.
In future work, we will consider introducing other derivative
products to further explore the precise classification of cloud
products.

Furthermore, in order to achieve more accurate SFR, we will
consider introducing other data that are important for SFR in our
future work: SST data, regional latitude, and longitude data, etc.

Despite a few limitations, the article mitigates the impact of
the limitation by using methods, such as deep metric learning,
and achieves excellent results in the experiments, which is
impossible in traditional methods. This approach can be applied
in global sea fog image recognition and provides a new way of
thinking for SFR.

VII. CONCLUSION

In this work, we construct the DBRNN to combine local
features and global features by using three visible channels,
three near-infrared channels and one far-infrared channel of
the Himawari-8 satellite cloud images. Based on the backbone
network, the proposed network introduces local branches and
uses the AM to enhance the main cloud regions in the cloud
image, which enables comprehensive extraction of global and
local features of the cloud image. In addition, during network
training, MS loss is introduced to map cloud features into seman-
tic space, which can not only effectively alleviate the problem of
insufficient number and uneven distribution of training samples
but also improves the discriminative ability of the model for
sea fog and low-level cloud. CIR-SFR not only deepens re-
searchers’ perceptual understanding of various types of clouds
but also facilitates researchers to carry out further analysis of
cloud images, intuitively enhancing the interpretability of the
sea fog identification method. The experimental results show
that the PRE, recall, and F'1 value of the proposed SFR method
reached 94.95%, 94.71% and 94.76% on the Yellow Sea and
Bohai Sea sea fog dataset, respectively, which is better than the
traditional SFR methods and provides a new idea to realize sea
fog recognition.
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