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Image-to-Image Training for Spatially Seamless Air
Temperature Estimation With Satellite

Images and Station Data
Peifeng Su , Temesgen Abera, Yanlong Guan, and Petri Pellikka

Abstract—Air temperature at approximately 2 m above the
ground (Ta) is one of the most important environmental and
biophysical parameters to study various earth surface processes.
Ta measured from meteorological stations is inadequate to study
its spatio-temporal patterns since the stations are unevenly and
sparsely distributed. Satellite-derived land surface temperature
(LST) provides global coverage, and is generally utilized to estimate
Ta due to the close relationship between LST and Ta. However,
LST products are sensitive to cloud contamination, resulting in
missing values in LST and leading to the estimated Ta being
spatially incomplete. To solve the missing data problem, we propose
a deep learning method to estimate spatially seamless Ta from
LST that contains missing values. Experimental results on 5-year
data of mainland China illustrate that the image-to-image training
strategy alleviates the missing data problem and fills the gaps
in LST implicitly. Plus, the strong linear relationships between
observed daily mean Ta (Tmean), daily minimum Ta (Tmin),
and daily maximum Ta (Tmax) make the estimation of Tmean,
Tmin, and Tmax simultaneously possible. For mainland China, the
proposed method achieves results with R2 of 0.962, 0.953, 0.944,
mean absolute error (MAE) of 1.793 ◦C, 2.143 ◦C, and 2.125 ◦C,
and root-mean-square error (RMSE) of 2.376 ◦C, 2.808 ◦C, and
2.823 ◦C for Tmean, Tmin, and Tmax, respectively. Our study pro-
vides a new paradigm for estimating spatially seamless ground-level
parameters from satellite products. Code and more results are
available at https://github.com/cvvsu/LSTa.

Index Terms—Air temperature, deep learning, image-to-image
mapping, land surface temperature, MODIS aqua, remote sensing.

I. INTRODUCTION

SURFACE air temperature (Ta), generally measured at ap-
proximately 2 m above the ground, is one of the most
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important parameters for a wide range of research fields such
as climatology [1], [2], hydrology [3], human health [4], and
climate change [5]. The patterns of spatio-temporal variations of
Ta are critical to understand several near-surface environmental
and biotic processes as most terrestrial life lives within the
near-surface of the earth [1].

The collected Ta from the meteorological stations is sparsely
and unevenly distributed in the spatial dimension, leading to
inadequate or biased comprehension of the spatio-temporal pat-
terns of Ta that are strongly determined by the surface properties
varying in both space and time [6], [7].

Spatially seamless Ta can be generated from weather station
data by leveraging spatial interpolation methods such as Kriging
and inverse distance weighting interpolations, while the inter-
polation accuracy may not be satisfying if the density of the
weather stations is low or the topography is complex [8].

Remotely sensed datasets, such as the moderate resolution
imaging spectroradiometer (MODIS) land surface temperature
(LST) derived from the thermal infrared channels, provide global
coverage to estimate Ta [9], [10], [11]. However, due to cloud
contamination, the LST products contain missing data, making
estimation methods, such as temperature-vegetation index meth-
ods, energy balance methods, and statistical methods (traditional
machine learning and deep learning methods), mostly suitable
for clear-sky conditions [12], [13], [14], [15], [16], [17], [18].

Microwave remote sensing and climate reanalysis datasets
can also be applied to estimate spatially seamless Ta since they
are insensitive to clouds. Nevertheless, the spatial resolutions of
these datasets are typically rather coarse [19].

Daily mean Ta (Tmean), daily minimum Ta (Tmin), and daily
maximum Ta (Tmax) are three attributes of Ta. Previous studies
usually estimate Tmean, Tmin, and Tmax separately, which may
omit the relationships between Tmean, Tmin, and Tmax. Addi-
tionally, estimating Tmean, Tmin, and Tmax separately makes the
estimation process complex. In practice, estimatingTmean,Tmin,
and Tmax one at a time will make data preparation laborious and
error-prone, especially when different weather conditions are
also considered [9], [18].

Since clouds cover a large area of the earth’s surface [19],
[20], a method that can directly use LST products that contain
missing values to predict Ta is necessary. Inspired by image
completion [21] and the image-to-image translation studies [22],
we adopt an image-to-image training strategy with the UNet
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Fig. 1. Distribution of weather stations (red dots) applied in this article. The
elevation in southwestern China is high (grey color). The density of stations is
relatively high for eastern China while low for western China.

model to convert MODIS Aqua LST images containing missing
values to spatially seamless Ta over mainland China during
2012–2016. The main findings and contributions of this study
can be summarized as follows.

1) We find that Tmean, Tmin, and Tmax have strong linear
relationships, illustrating the potential of estimating them
simultaneously.

2) The image-to-image training strategy can grasp the spatial
relationships in LST images and Ta images, which fills
the gaps in LST images implicitly and obtains spatially
seamless Ta.

3) Our study provides a new prototype to estimate spatially
seamless ground-level parameters from satellite products,
which is simple and straightforward. Experimental results
validate that the MODIS LST products can also be used
to estimate near-surface relative humidity (RH).

II. DATASETS AND METHODOLOGY

A. Study Area and Observed Ta

Mainland China is selected as the study area due to its vast and
versatile land area. China covers approximately 9.6 millionkm2,
between 3◦N to 54◦N latitudes, and 73◦E to 136◦E longitudes
(see Fig. 1). China has a variety of climate types, such as tropical,
subtropical, warm-temperate, temperate, cold-temperate, and
highland climates. The elevation in China, ranging from -154 to
8848 m, is generally high in the west and low in the east.

In addition, China also has different land cover types, such
as deserts, grasslands, croplands, forests, and urban areas [23].
The land cover types and topographical characteristics make the
landscape in China versatile. Numbers of subcategories exist
for each land cover type. For example, in China, forests include
subtropical forests, boreal forests, subalpine forests, and so on.

There are 836 weather stations that offer the observed Ta (see
Fig. 1), which is available from the China Meteorological Data
Service Center (CMDC).1

For the observed Tmean, Tmin, and Tmax, we discover that
they statistically have strong linear relationships (see Fig. 2),

1CMDC: http://data.cma.cn/en

Fig. 2. Strong linear relationships between observedTmean, Tmin, andTmax

over mainland China during 2012–2016. (a) Relationship between Tmean and
Tmin. (b) Relationship between Tmean and Tmax.

Fig. 3. Strong linear relationships for Ta measured worldwide in 2012.

Fig. 4. Strong linear relationships for Ta measured worldwide in 2015.

illustrating the potential of estimating them simultaneously.
In [18], a model is trained separately several times to estimate
Tmean, Tmin, and Tmax. In [9], different models are trained to
estimate Tmean under three different sky conditions, which is
rather complex. Therefore, estimating Tmean, Tmin, and Tmax

concurrently by leveraging only one model will be efficient.
The strong linear relationships can not only be found for Ta

measured in mainland China, but also worldwide.2

We display Ta collected from stations worldwide in 2012 and
2015 (see Fig. 3 and Fig. 4). To see the strong linear relationships
in other years, please refer to our code. Thus the strong linear
relationships seem to be a statistical property of Ta. Though the
underlying mechanism is not clear, the linear property makes the
estimation ofTmean,Tmin, andTmax possible. The proof is given
below.

2Relationships of measured Tmean, Tmin, and Tmax at the global scale:
https://github.com/cvvsu/LSTa/tree/main/datasets/images

http://data.cma.cn/en
https://github.com/cvvsu/LSTa/tree/main/datasets/images
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Assuming that we are estimatingTmean y utilizing the satellite
products x. That is, we find a model f

ŷ = f(x) (1)

where y means the observed Tmean and ŷ means the estimated
Tmean. We use coefficient of determination (R2), mean absolute
error (MAE), and root-mean-square error (RMSE) to evaluate
the model f , and then

R2
f = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳi)2

(2)

MAEf =

∑n
i=1 |yi − ŷi|

n
(3)

RMSEf =

√∑n
i=1(yi − ŷi)2

n
(4)

where ȳ is the mean of y.
Taking Tmin (or Tmax) z as an example, since z and y have a

strong linear relationship, we have a linear model h, and

ẑ = h(y) = ay + b (5)

where a and b are the parameters in the linear model h, and
a > 0. Then

R2
h = 1−

∑n
i=1(zi − ẑi)

2∑n
i=1(zi − z̄i)2

= 1−
∑n

i=1(zi − ayi − b)2∑n
i=1(zi − z̄i)2

(6)

MAEh =

∑n
i=1 |zi − ẑi|

n
=

∑n
i=1 |zi − ayi − b|

n
(7)

RMSEh =

√∑n
i=1(zi − ẑi)2

n
=

√∑n
i=1(zi − ayi − b)2

n
.

(8)

To illustrate that it is possible to estimateTmin ẑp according to
the strong linear relationships between z and y, we can suppose
that

ẑp = aŷ + b (9)

then

MAEp =

∑n
i=1 |zi − ˆzpi|

n

=

∑n
i=1 |zi − aŷi − b|

n

=

∑n
i=1 |zi − ayi − b+ ayi − aŷi|

n

≤
∑n

i=1 |zi − ayi − b|+∑n
i=1 |ayi − aŷi|

n

= MAEh + aMAEf (10)

and

R2
p = 1−

∑n
i=1(zi − ˆzpi)

2∑n
i=1(zi − z̄i)2

= 1−
∑n

i=1(zi − aŷi − b)2∑n
i=1(zi − z̄i)2

= 1−
∑n

i=1(zi − ayi − b+ ayi − aŷi)
2∑n

i=1(zi − z̄i)2
. (11)

According to Minkowski inequality [24]
n∑

i=1

(zi − ayi − b+ ayi − aŷi)
2

≤
(√∑n

i=1
(zi − ayi − b)2 +

√∑n

i=1
(ayi − aŷi)2

)2

=
n∑

i=1

(zi − ayi − b)2 +
n∑

i=1

(ayi − aŷi)
2 (12)

+ 2

√∑n

i=1
(zi − ayi − b)2

∑n

i=1
(ayi − aŷi)2. (13)

As a result

R2
p = 1−

∑n
i=1(zi − ayi − b+ ayi − aŷi)

2∑n
i=1(zi − z̄i)2

≥ 1−
∑n

i=1(zi − ayi − b)2∑n
i=1(zi − z̄i)2

−
∑n

i=1(ayi − aŷi)
2∑n

i=1(zi − z̄i)2
−

2
√∑n

i=1(zi − ayi − b)2
∑n

i=1(ayi − aŷi)2∑n
i=1(zi − z̄i)2

= 1− (1−R2
h)− a2(1−R2

f )−2
√

(1−R2
h)a

2(1−R2
f )

= R2
h + a2R2

f − a2 − 2a
√

(1−R2
h)(1−R2

f ). (14)

Similarly,

RMSEp =

√∑n
i=1(zi − ˆzpi)2

n

=

√∑n
i=1(zi − ayi − b+ ayi − aŷi)2

n

≤
√∑n

i=1(zi − ayi − b)2

n
+ a

√∑n
i=1(yi − ŷi)2

n

= RMSEh + aRMSEf . (15)

The above proof illustrates that within some error range (R2,
MAE, and RMSE), we can estimate Tmean, Tmin, and Tmax

simultaneously just by applying the strong linear relationships.

B. Remotely Sensed Data

We use LST data from the MYD11A1 version 6.1 daily
product from MODIS Aqua satellite as the overpass times of
MODIS Aqua are quite near the times that Tmin and Tmax

occur [25].
The daytime LST (LSTD) and nighttime LST (LSTN) prod-

ucts are downloaded from Google Earth Engine [26] with a
Python package geemap [27]. Since we try to estimate Tmean,
Tmin, and Tmax simultaneously, both the Aqua LSTD and LSTN
products are used. The daily LSTD and LSTN are stacked to
obtain LST images. Suppose that the size of the LSTD image
is m× n pixels, then the size of an LST image in this article
is m× n× 2 pixels. Because the study area is quite large and
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Fig. 5. Number of days for LSTD and LSTN that are with missing values.
For each pixel, (a) and (b) show the number of days that have no valid data for
LSTD and LSTN, respectively. There are 1827 days in 2012–2016.

if 1 km spatial resolution were applied, the image size of an
LST image would be 3492×6862×2 pixels. Thus, we reproject
the LST products to the World Geodetic System 1984 (EPSG:
4326) and resample LST images to 5 km spatial resolution (789
× 1373 × 2 pixels).

Only the good-quality pixels whose average LST error is less
than or equal to 1 K are kept, and other pixels are seen as
pixels with missing values. Since southeastern China is with
high humid, most of the days for LSTD and LSTN have no
valid value (see Fig. 5). In [9] and [14], the missing values in
LST products are replaced using temporal gap-filling methods.
But for the study area utilized in this article, some missing data
cannot be replaced since valid temporal adjacent LST values are
not available (see Fig. 5).

Contrary to [9] and [14], we replace the missing values in
LST images with a constant value rather than a temporal nearby
value. The filled value in this study has no physical meaning and
is only used for numeric computation. Since this investigation
is not an LST gap-filling study, the filled value has no effect on
the real LST products. The effects on estimation results caused
by the filled value will be discussed in Section III-A.

C. Previous Statistical Methods

There are many other auxiliary datasets, such as normalized
difference vegetation index (NDVI), that can be used together
with LST for Ta estimation. For simplicity, we only use LST to
illustrate the estimation steps of previous statistical methods.

To estimate spatially seamless Ta, no matter which machine
or deep learning model is applied, there should be a method to
impute the missing values in LST in advance [9], [14]. After
imputing the missing values, then the data pairs between LST
and Ta were established (green pixels in LST and Tmean images
as shown in Fig. 6). A model was trained based on the data pairs
and then applied to other pixels with valid values (blue pixels
in the LST image, Fig. 6). However, as shown in Figs. 5 and
6, there may be pixels that cannot be filled by nearby clear-sky
values when there is an area where most pixels are with missing
values. Furthermore, if a model was trained on the data pairs, it
may lose the spatial relationships between pixels in LST images
and the spatial relationships in Ta images.

Therefore, previous methods have to use land cover or eleva-
tion information to explicitly illustrate the spatial relationships
to the model. In fact, the information about NDVI, land cover,
and elevation has already been implicitly encoded into the LST

Fig. 6. Example LST andTmean images to illustrate data pairs, clear-sky LST
values, and missing values. The green pixels are data pairs between LST and
Tmean images. The blue pixels are with clear-sky LST values, and the white
pixels are with missing values.

products. That is, different land types or elevation leads to
different LST values.

D. Daily Ta Images

The Ta (Tmean, Tmin, Tmax) measured in meteorological
stations are data samples. Since Ta are not independent in space,
we convert the observed Ta samples to a Ta image for each day
(see Fig. 7) to keep the spatial relationships between the observed
Ta samples. The detailed steps are as follows.

1) An image with the size of m× n× 3 is created (stacked
Tmean, Tmin, and Tmax images, respectively), and all
pixels are given a constant value.

2) The values of those pixels whose geographical locations
coincided with the location of meteorological stations are
reallocated by the observed Tmean, Tmin, and Tmax.

The constant value in Ta images will not affect the estimation
results as the specific value will not participate in the loss
calculation (illustrated in Section II-G).

E. Image Completion

Matrix completion is a method to predict the missing entries
in a matrix by assuming that the matrix is highly sparse [28],
[29], [30], and it has been widely used in many fields, such as
computer vision and recommendation systems [31].

The sparsity property is also known as a prior for images [32],
[33], [34]. According to [35], convolutional neural networks
(CNNs) are popular tools for image generation and restoration
as they can learn realistic image priors. For instance, CNNs are
able to restore an image with a complex degradation [35], such
as denoising, super-resolution, and inpainting.

Both studies on image inpainting and matrix completion
demonstrate that there are priors in matrices and images, and
according to these priors, it is possible to recover the missing
entries in matrices and images. That is

x = f0(x0) (16)

where x is a matrix or an image, x0 is x with missing entries,
and f0 is a matrix or image completion method.

Though LST and RGB images have different imaging mech-
anisms, they share some common priors, such as sparsity and
locality. In this case, we can use CNNs to complete the missing
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Fig. 7. Illustration of the image-to-image training strategy with UNet. Given an input LST image, the UNet model will output the estimated (a) Tmean, (b) Tmin,
and (c) Tmax simultaneously. During the training phase (585 stations), the loss is calculated between the data pairs, and thus the filled value in Ta images (d, e,
and f) has no effect on estimation results.

entries in LST images and then use the gap-filled results to
estimate spatially seamless Ta.

Since we only focus on Ta estimation, a composite function
f can be applied to estimate Ta from LST images with missing
values directly

T̂a = f(x) = f1(f0(x0)) (17)

where x0 ∈ Rm×n×2 in this study is an input LST image, f1 is a
mapping function that represents the relationships between spa-
tially seamless LST images andTa images, and T̂a ∈ Rm×n×3 is
an estimated Ta image. We need to make sure that the estimated
Ta images are as close as possible to the observed Ta for paired
pixels. Thus, the inpainting processing for input LST images is
implicitly performed. It should be noted that, unlike image and
matrix completion methods, the composite function f should
also contain the priors in observed Ta.

F. UNet and Image-to-Image Training Strategy

As the relationship between LST and Ta is complex and
nonlinear, advanced machine learning or deep learning models
can achieve better estimation results than linear models [7], [14],
[17].

Deep learning techniques have powered various study areas,
such as remote sensing, computational physics, and environ-
ment [36], [37], [38], [39], [40], [41]. UNet [42] has been widely
applied to remote sensing and medical image processing accord-
ing to its capability on pixel-level tasks such as semantic seg-
mentation [43]. UNet is a specific encoder-decoder architecture
with skip connections, and through the skip connections between
mirrored layers, both the low-level and semantic features are
available for the final estimation [22]. Therefore, we adopt the
UNet model to perform the image-to-image training for spatially

seamless Ta estimation (see Fig. 7). In other words, UNet is
utilized to learn the composite mapping function f .

For each day in 2012–2016 (1827 days in total), the input is
an LST image with the size of 789 × 1373 × 2 pixels and the
output is a Ta image with the size of 789 × 1373 × 3 pixels.

G. Training Details

We randomly split the 836 stations into training, validation,
and test sets with a ratio of 70% (585): 10% (83): 20% (168).
To avoid overfitting, during the training phase, we pad the input
images and then randomly crop the desired size out (789×1373).
As a result, the UNet model only “see” a portion of the whole
input image during the training phase. Horizontal random flip
transformation is also applied during training.

There are 200 epochs and the batch size is 8. The initial
learning rate is 1.6 ×10−4, and the cosine annealing schedule
for the learning rate is utilized [44]. Please refer to the code3 to
see more training details and results.

Only the data pairs are utilized for loss computation. The
smooth L1 loss lsmooth [45] is used as the loss function

lsmooth =

{
0.5 ∗ (y − ŷ)2, |y − ŷ| < 1

|y − ŷ| − 0.5, otherwise
(18)

where y is the observed value and ŷ is the estimated value. Thus,
the filled value in Ta images have no effect on estimation results
(see Fig. 7).

R2, MAE, and RMSE are applied to evaluate the estimation
results. Only the test results are reported if not specified.

3Code: https://github.com/cvvsu/LSTa

code
https://github.com/cvvsu/LSTa
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Fig. 8. Spatially seamless estimation results on four specific days in 2015 for Tmean, Tmin, and Tmax over mainland China, respectively. Estimation results for
Tmean, Tmin, and Tmax are shown from the top row to the bottom row. Estimation results for the March equinox (March 21, 2015), the Summer solstice (June
22, 201), the September equinox (September 23, 2015), and the Winter solstice (December 12, 2015) are shown from the left column to the right column. Not that
we do not provide the elevation and land cover information for the proposed method, but the proposed method automatically captures these pieces of information.
Zoom in to see the differences of Tmax for Summer solstice.

TABLE I
ESTIMATION RESULTS ON THE VALIDATION SET BASED ON DIFFERENT FILLED

VALUES IN LST IMAGES

TABLE II
ESTIMATION RESULTS FOR Tmean, Tmin, AND Tmax BASED ON INPUT LST

IMAGES

III. RESULTS AND DISCUSSION

A. Effects Caused by Filled Values

The filled value in LST images is a hyperparameter, and the
validation set is utilized to determine the value. To make the filled
value distinguishable from the valid value ranges in LST images,
we use −100, −200, and −500 ◦C to fill the gaps. According to
Table I, the filled values do not have a significant effect on the
estimation results, in terms of R2, MAE, and RMSE values. We
use -100 ◦C to fill all the missing data in LST images since it
achieves the best estimation results.

B. Overall Estimation Results

As shown in Table II, the R2 values are 0.962, 0.953, 0.944,
and the MAE values are 1.793 ◦C, 2.143 ◦C, 2.125 ◦C, and the
RMSE values are 2.376 ◦C, 2.808 ◦C, and 2.823 ◦C for Tmean,
Tmin, and Tmax, respectively. Though Tmean, Tmin, and Tmax

are estimated concurrently, the estimation results of Tmean is the
better than that of Tmin and Tmax.

We select four special days in 2015 to visualize the estimation
results (see Fig. 8) and videos that display the daily changes of
Tmean, Tmin, and Tmax during 2012–2016 is available online.4

Note that the Summer solstice is the hottest day in a year, and
the figure cannot display distinguish difference for Tmax in most
regions (please zoom in to see the differences in different areas,
Fig. 8). The estimated results display elevation information and
clear seasonal changes and daily changes ofTa (please see Fig. 8
and online videos).

Fig. 8 and the online videos verify that the proposed method
can implicitly fill the missing data in LST images and estimate
spatially seamless Tmean, Tmin, and Tmax, simultaneously. The
filling process is similar to image completion studies [21], while
we do not intend to fill the gaps in LST images but Ta images.
Though we only apply the LST images as the input and no other
auxiliary datasets, such as normalized difference vegetation
index and land cover, are used, the estimated Ta displays the
spatial heterogeneity in the study area. Southwestern China has
a high elevation (the Qinghai-Tibet Plateau, Fig. 1), and the
estimated Ta in this area shows relatively lower Ta compared
with its nearby regions (see Fig. 8), indicating that the proposed
method also captures the elevation information automatically.
The possible reason is that the image-to-image training strategy
grasps the spatial relationships in LST images and Ta images.

4Videos for estimated Tmean, Tmin, and Tmax: https://github.com/cvvsu/
LSTa/releases/tag/videos

https://github.com/cvvsu/LSTa/releases/tag/videos
https://github.com/cvvsu/LSTa/releases/tag/videos
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Fig. 9. Estimation results on pixels under different sky conditions. (a)–(c) Estimation results on pixels with clear-sky values in LST (part A). (d)–(f) Estimation
results on pixels with one missing value in LSTD or LSTN (part B). (g)–(i) Estimation results on pixels with two missing values (part C). Estimation results for
Tmean, Tmin, and Tmax are shown from the top to the bottom row. The gray line in each subplot represents y = x.

C. Effects of Missing Values

To show the effects caused by the missing values, we split
Ta into three parts: the paired pixels in LST are recorded under
clear-sky conditions (part A); the paired pixels in LSTD or LSTN
are with missing values (part B); the paired pixels in LST are
with missing values (part C). Note that LST images have two
channels (see Fig. 7).

According to Fig. 9, the missing values in LST do not affect
the estimation accuracy significantly. Specifically, theR2 ranges
from 0.956 to 0.969 for Tmean, 0.940 to 0.949 for Tmin, and
0.935 to 0.959 for Tmax, respectively. The MAE values fluctuate
from 1.606 ◦C to 1.842 ◦C, 2.081 ◦C to 2.274 ◦C, and 1.767 ◦C
to 2.234 ◦C for Tmean, Tmin, and Tmax, respectively. Similarly,
RMSE values range from 2.075 ◦C to 2.449 ◦C forTmean, 2.751–
◦C to 2.928 ◦C for Tmin, and 2.349 ◦C to 2.953 ◦C for Tmax,
respectively. The above results validate that the proposed method
alleviates the problem caused by missing values in LST.

D. Estimation Results Analysis

To analyze the estimate results, MAE values over space (see
Fig. 10), time (see Fig. 11), and elevation (see Fig. 11) are
calculated.

The MAE values of most stations are less than 3.000 ◦C (see
Fig. 10), illustrating that the estimation results are stable in most
regions. The stations with larger MAE values (≥ 3.000 ◦C) are
mostly located in western China (see Fig. 10) where the density
of stations is low, and stations with smaller MAE values (1.000
◦C–2.000 ◦C) are located in eastern China where the density
of stations is high. However, since the topography is much
more complex in western China (see Fig. 1), we cannot state
that the density of stations is the main reason accounting for
the estimation accuracy with 100% confidence. For instance,
in a flat region, the representativeness of a station should be
better than the station in a region whose topography is complex.
Thus, the representativeness of a station is not only determined
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Fig. 10. MAE values for estimated Ta over space (test set: 168 stations).

Fig. 11. MAE values over time and elevation for estimation results (test set: 168 stations).

by the number of stations nearby, but also by the topographic
complexity.

The MAE values are similar between different years, follow-
ing the same pattern: larger MAE values in winter and lower
MAE values in summer (see Fig. 11). The reason may be that in
winter the variation of Ta is higher compared with the variation
in summer, making Ta collected in winter more difficult to be
estimated. The seasonal pattern that Ta changes more signif-
icantly in winter than summer has also been reported in the
United States.5 Another possible reason is that the relationship
between LST and Ta is strong in late summer and fall, and weak
in winter and early spring [46].

5[Online]. Available: https://www.epa.gov/climate-indicators/climate-
change-indicators-seasonal-temperature

The MAE values rise first and then fall with the increase
of elevation (see Fig. 11). However, the estimation accuracy
is relatively stable at different elevations as the MAE values are
generally less than 3.000 ◦C.

E. Estimation of Other Parameters

Since relative humidity (RH, whose unit is %) is highly related
to Ta, we use the LST images to estimate RH by leveraging
UNet and the image-to-image training method. On the test set,
the estimation results are withR2 of 0.713, MAE of 6.725%, and
RMSE of 8.713% (see Fig. 12). To the best of our knowledge, we
are the first ones who try to estimate spatially seamless RH from
MODIS LST products.6 The estimation results of RH show the

6A video for estimated RH: https://github.com/cvvsu/LSTa/releases/tag/
videos

https://www.epa.gov/climate-indicators/climate-change-indicators-seasonal-temperature
https://www.epa.gov/climate-indicators/climate-change-indicators-seasonal-temperature
https://github.com/cvvsu/LSTa/releases/tag/videos
https://github.com/cvvsu/LSTa/releases/tag/videos
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Fig. 12. Estimation results of RH based on LST images. % is the unit of RH.

potential of using other satellite products that contain missing
data to estimate spatially seamless near-surface parameters. For
instance, aerosol optical depth (AOD) products, which can be
used to estimate PM2.5 [47], [48], [49], are also sensitive to cloud
contamination. By leveraging the proposed method, it should
be possible to obtain spatially seamless PM2.5 from the AOD
products that contain missing data.

F. Comparison With Other Methods

In 2022, a method is proposed in [18] to estimate Tmean,
Tmin, and Tmax by training a model several times. The RMSE
values reported in [18] are in the range of 2.15 ◦C–3.20 ◦C
for Tmax, 1.68 ◦C–2.79 ◦C for Tmin, and 0.86 ◦C–1.60 ◦C for
Tmean for five different parts of mainland China. We use only
one model and we do not use other auxiliary products, while the
error level is similar for the proposed method and the method
proposed in [18]. The climate reanalysis dataset ERA5 [50] has
the RMSE values of 2.543 ◦C, 3.324 ◦C, and 3.393 ◦C forTmean,
Tmin, and Tmax, respectively. Compared with ERA5 and Fang’s
results, our method is simple yet efficient. In addition, the spatial
resolution for the proposed method is 5 km, while it is around
27.8 km for ERA5 and 10 km for Fang’s results.

In [7] and [9], 1 km spatial resolution Tmax and Tmean are
estimated, respectively. However, they directly split the data
pairs to train models, and maybe independent stations are needed
to verify the spatial estimation results of their methods. Plus, the
estimation results in [7] are spatially incomplete, and in [9], there
is no value for water-body regions.

Despite that our method is simple and straightforward, our
method considers the spatial relationships between pixels in LST
images and the spatial relationships between observed Ta. As a
result, we do not have to explicitly provide other variables, such
as land cover and elevation, to the model to obtain estimated Ta.

We only consider the worst case for estimation. For instance,
we only use MODIS Aqua products, and according to [14], the
combination of MODIS Terra and Aqua products will obtain
better estimation results. We use the LST error flag ≤ 1 K, while

we find that the 3 K error flag will provide better estimation
results. This is not surprising since these pixels within the 3 K
error flag are much better than the pixels filled with the constant
value (−100 ◦C). In this case, we can say that our method would
obtain better results if more LST products and ERA5 datasets
were utilized as the input variables. However, to obtain the best
numeric accuracy is not our purpose, and we try to provide
a new paradigm for the estimation of Ta and other surface
parameters.

Our method also works well on fine-scale satellite products,
and please refer to our code to check the estimation results for
Finland with a 1 km spatial resolution.

IV. CONCLUSION

In this article, we propose a deep learning method to estimate
spatially seamless Ta (Tmean, Tmin, and Tmax simultaneously)
with the presence of missing data in LST products. Encouraging
estimation results are obtained with an image-to-image training
strategy and the UNet model. The estimation results of RH
illustrate that the proposed method provides a new paradigm
for estimating near-surface parameters from satellite products
that contain missing values.

In the future, the question of whether the topographic com-
plexity or the density of weather stations contributes most to the
estimation accuracy should be further investigated. Additionally,
the underlying mechanisms of why Tmean, Tmin, and Tmax

statistically have strong linear relationships need to be explored
and the image-to-image training strategy calls for lightweight
convolutional neural networks to deal with large-scale remote
sensing images.
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