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Remote Sensing Image Recovery and Enhancement
by Joint Blind Denoising and Dehazing

Yan Cao , Jianchong Wei , Sifan Chen , Baihe Chen , Zhensheng Wang, Zhaohui Liu , and Chengbin Chen

Abstract—Due to the hazy weather and the long-distance imag-
ing path, the captured remote sensing image (RSI) may suffer
from detail loss and noise pollution. However, simply applying
dehazing operation on a noisy hazy image may result in noise
amplification. Therefore, in this article, we propose joint blind
denoising and dehazing for RSI recovery and enhancement to
address this problem. First, we propose an efficient and effective
noise level estimation method based on quad-tree subdivision and
integrate it into fast and flexible denoising convolutional neural
network for blind denoising. Second, a multiscale guided filter
decomposes the denoised hazy image into base and detailed layers,
separating the initial details. Then, the dehazing procedure using
the corrected boundary constraint is implemented in the base layer,
while a nonlinear sigmoid mapping function enhances the detailed
layers. The last step is to fuse the enhanced detailed layers and
the dehazed base layer to get the final result. Using both synthetic
remote sensing hazy image (RSHI) datasets and real-world RSHI,
we perform comprehensive experiments to evaluate the proposed
method. Results show that our method is superior to well-known
methods in both dehazing and joint denoising and dehazing tasks.

Index Terms—Image dehazing, image denoising, remote sensing.

I. INTRODUCTION

R EMOTE sensing imagery has been extensively used in
various applications, such as geoscience, military, agricul-

ture, and the environment. However, the remote sensing image
(RSI) has much more complex atmospheric conditions like haze,
water vapor, cloud, and noise, than the ground imagery due to the
long imaging path and the wide field-of-view. Thus, the captured
RSIs are usually suffered from serious degradation like detail
loss, blurring, and color distortion, which severely constrained
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the performance of remote sensing vision applications. Hence,
much attention has been paid to developing reliable and effi-
cient RSI recovery algorithms, such as dehazing, denoising, and
super-resolution [1], [2], [3], [4], [5], [6], [7].

For remote sensing image dehazing (RSID) task, the image
degradation under hazy conditions can be formulated by the
atmospheric scattering model (ASM) [8]. Therefore, there are
two main categories for the existing dehazing algorithms: model-
based methods and nonmodel-based methods. The model-based
dehazing methods recover the clear image based on the ASM,
while the nonmodel-based methods directly infer the haze-free
image without considering the degradation principle. Tradition-
ally, the nonmodel-based methods apply image enhancement
operations to improve the image’s quality in the spatial or fre-
quency domain [2], [5]. For example, Dharejo et al. [9] enhanced
the remote sensing hazy image (RSHI) using a piecewise linear
transformation and corrected the color distortion with histogram
equalization. Although the image enhancement operations can
improve the hazy image’s visual quality, the recovered image
may result in overenhancement and color distortion, especially
in real-world RSHI. Furthermore, they cannot achieve real de-
hazing without considering the hazy image’s degradation pro-
cess. In recent years, the convolutional neural network (CNN)
has been widely used in RSID task [10], [11], taking it as
learning-based dehazing method. Without considering the haze
imaging degradation principle, some learning-based dehazing
methods take the RSID as an image-to-image translation task
using a generative adversarial network (GAN). For example,
Zheng et al. [12] proposed an enhanced attention-guided GAN,
which can be trained without paired RSHI. Chen et al. [13] pre-
sented a memory-oriented GAN for RSID to handle real-world
nonuniform haze conditions. Although the GAN-based dehazing
methods benefit from preventing the labor-intensive paired data
collection, they cannot well restore the image’s full details and
the unsupervised learning process is hard to converge.

For model-based dehazing methods, the ASM [8] is widely
adopted for the haze removal task, which can be expressed as
follows:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I is the captured hazy image by satellites, J is the recov-
ered clear image, and A and t represent the global atmospheric
light and the transmission map, respectively. In order to recover
J from I , the t and A should be estimated. However, given
only a hazy image I is insufficient to recover the clear image.
Thus, some hazy image priors are proposed to solve the problem.
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For example, He et al. [14] observed the dark channel prior
(DCP) from the statistics of a large amount of haze-free image.
The DCP is simple and effective for dehazing, but it may fail
in areas like sky regions or large white objects. Recently, CNN
has been applied to solve the ASM. Zhang et al. [15] designed
a densely connected pyramid dehazing network to jointly infer
the parameters in the ASM.

Once the t and A are obtained, the clear image can be
recovered by reversing the (1). However, most of the existing
model-based methods neglect the noise term when conduct-
ing the image dehazing, but noise is inevitable during image
sensing, especially in poor environmental conditions, like haze.
Therefore, by taking the additive noise into account, (1) can be
reformulated as follows:

I(x) = J(x)t(x) +A(1− t(x)) + n (2)

where n is generally additive white Gaussian noise (AWGN)
[16]. To recover a haze-free image as per the degradation prin-
ciple, t and A should be estimated by a well-designed dehazing
method. Then, the final recovered haze-free image J can be
calculated as follows:

∧
J(x) =

I(x)−A

t(x)
+A+

n

t(x)
= J(x) +

n

t(x)
. (3)

Note that t is a positive decimal less than 1, so the last term
in (3) amplifies the noise (n). Therefore, model-based dehazing
methods can effectively remove haze, but noise amplification
may introduce undesirable results.

To this end, this article aims to overcome the detail lost and
noise amplification issues for RSI recovery by joint blind denois-
ing and dehazing. First, we propose an efficient and effective
noise level estimation method based on quad-tree subdivision
that can be integrated into fast and flexible denoising convolu-
tional neural network (FFDNet) [17] to achieve blind denoising.
So the image denoising is performed before the following dehaz-
ing procedure. Then, the denoised hazy image is decomposed
into a base layer and detailed layers by a multiscale guided
filter (GF). To prevent detailed information loss, dehazing using
a corrected boundary constraint is only implemented in the
base layer, while a sigmoid-based nonlinear mapping function
enhances the detailed layers. Finally, the enhanced detail layers
and dehazed base layer are fused to produce the haze-free image.
In summary, our main contributions are as follows:

1) To tackle the problem of noise amplification of dehazing,
we propose an efficient and effective noise level estimation
method based on a quad-tree subdivision algorithm. And
we integrate it into FFD-Net to achieve blind denoising as
the preprocessing before the following dehazing.

2) To preserve image details, we decompose the hazy image
into a base layer and detailed layers using a multiscale
GF, so the dehazing and detail enhancement are conducted
separately. We improve the boundary constraint dehazing
by introducing a tolerance factor to solve the overen-
hancement of the sky region. And an adaptive sigmoid-
based nonlinear function is proposed for detailed layers
enhancement.

3) Comprehensive experiments were conducted to show that
the proposed method has superior performance in RSI
denoising, dehazing, and joint denoising and dehazing.

II. RELATED WORK

A. Single Image Dehazing

The existing image dehazing methods can be categorized into
two groups: one is classic dehazing methods, and the other is
learning-based dehazing methods. For classic dehazing meth-
ods, some try to improve the visual quality of the hazy image
through image enhancement. For example, Dharejo et al. [9]
enhanced the RSHI using a piecewise linear transformation and
corrected the color distortion with histogram equalization. Ju
et al. [18] integrated the traditional gamma correction into the
dehazing task to boost efficiency. In order to improve the image’s
overall contrast, Ni et al. [19] developed a linear intensity en-
hancement algorithm based on local property analysis. Rather
than simply improving the visual quality of the hazy image,
some methods propose various hazy image priors to tackle the
ill-posed dehazing problem, such as the DCP [14], nonlocal prior
[20], and color attenuation prior [21]. However, the hazy image
prior may not be sufficient to handle the complex hazy situations.
For instance, the DCP fails in processing hazy image with a
bright sky and may introduce undesired artifacts.

In recent years, CNN has been dramatically applied to solve
the RSID problem, termed as learning-based methods. Jiang
et al. [22] integrated the wavelet transform (WT) into the
CNN to remove the nonuniform haze in RSHI. Dong et al.
[23] developed a two-branch network by combining the novel
transformer and ResNet for RSHI. The dehazed results em-
brace the advantages of better detail preservation and color
consistency. Similarly, Chen et al. [24] presented an end-to-end
dehazing network based on hybrid high-resolution learning to
recover the fine spatial details of RSHI. Although learning-based
dehazing methods have met with some success in improving
performance, the high computation cost of the training pro-
cess limits their application. Furthermore, since many manual
synthetic datasets are required for training, these methods are
unsuitable for removing haze caused by complex remote sensing
imaging degradations, and may fail in recovering real-world
RSHI.

B. Single Image Denoising

Image denoising is one of the most fundamental prepro-
cessing tasks in low-level computer vision [25]. Dabov et al.
proposed block-matching 3-D filtering (BM3D) [26], which
uses collaborative filtering to group similar 2-D blocks into 3-D
data arrays. Given its strong denoising performance, BM3D has
become the gold standard for single image denoising. Similar to
BM3D, many other transform domain filters have been used for
dehazing, including Fourier transform [27] and WT [28].

Owing to the large modeling capacity and advanced network
design, many CNN-based methods have emerged for image
denoising [29]. Zhang et al. [30] proposed a denoising con-
volutional neural network (DnCNN), which can handle blind
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Fig. 1. Flowchart of the proposed dehazing method. H is the hazy input image. I is the denoised hazy image, which is decomposed into the base layer IB and
the detailed layers ID0 − IDn by a multiscale decomposition module. I ′D and I ′B are the enhanced detailed layer and the dehazed base layer, respectively, and J
is the final recovered haze-free image.

Gaussian denoising and achieve competitive performance. Feng
et al. [31] implemented a restoration GAN with ResNet and
DenseNet in the WT domain to restore high-quality RSI. In
Zhang et al.’s work [17], a FFDNet was presented, which has
better computational efficiency than BM3D. By incorporating
the traditional denoising method into the network design, Ren
et al. [32] proposed a novel end-to-end deep denoising network,
named DeamNet. Although DeamNet can achieve superior
performance to DnCNN and FFDNet, the lower computation
efficiency constrains its application.

C. Joint Image Denoising and Dehazing

On hazy days, noise corruption is inevitable and the model-
based dehazing process amplifies the noise. Therefore, much
research [5], [16], [33], [34], [35], [36], [37] has proposed
joint image denoising and dehazing methods. Based on the
mechanism, such methods can be categorized into three groups:
1) cascade denoising and dehazing methods, 2) simultaneous
denoising and dehazing methods, and 3) image-decomposition-
based methods. Erik Matlin et al. [35] discussed the issue of the
removal of haze and noise, and concluded that when the noise
level is precisely known a priori, category 1 methods perform
better than category 2 methods.

In category 1, Xu et al. [38] designed a slimmer and deeper
network architecture for denoising and dehazing. Likewise, Su
et al. [37] proposed a two-stage U-Net-based cascaded denoising
and dehazing net to reduce haze and noise in a cascading pattern.
However, both of their networks are bulky, and the training pro-
cess is time-consuming. In category 2, Wu et al. [16] integrated
noise reduction and haze-free image recovery by learning an
interleaved cascade of shrinkage fields. However, this method
cannot handle severely noisy and hazy images. In category 3,
Liu et al. [34] separated the hazy image into high-frequency and
low-frequency parts using multiscale wavelet decomposition.
A similar approach was proposed by HSU’s work [36], and
although this approach removes haze in low-frequency areas,

denoising alone in high-frequency parts is not sufficient. Liu
et al. [5] proposed another decomposition strategy based on the
total variation. The DCP and color block-matching 3-D filtering
prior is selected for nighttime image dehazing and denoising,
respectively.

III. METHODOLOGY

The flowchart of the proposed joint dehazing and dehazing
method is shown in Fig. 1. A blind denoising module based on
FFDNet [17] first preprocesses the hazy input imageH to obtain
the denoised image I . Then, in the multiscale decomposition
module, I is decomposed into the base layer IB and the mul-
tiscale detailed layers ID0 − IDn using the multiscale GF. For
detailed layers, an adaptive nonlinear mapping is performed for
enhancement in each scale of the detailed layer to obtain I ′D. In
the base layer dehazing module, atmospheric lightA is estimated
using a quad-tree subdivision algorithm. The transmission map t
is recovered using the corrected boundary constraint and refined
by the weighted GF. When A and t are obtained, the dehazed
base layer I ′B can be obtained through ASM. Finally, I ′B and I ′D
are fused to recover the haze-free image J .

A. Blind Denoising

Due to the influence of haze and image capture system,
there is inevitably much noise in hazy images, and most of it
is additive gaussian white noise (AGWN) [16]. Moreover, it
can be inferred from (3) that the process of dehazing amplifies
the noise signal level. Therefore, image denoising is necessary
before dehazing. However, in many denoising methods [17],
[26], [39] with a strong performance, the noise level is regarded
as a known input, which confines their application to real-world
noisy images with an unknown noise level. Furthermore, Zhang
et al. [17] observed that the denoising performance of a nonblind
denoising model can be improved with a known noise level
map because additional information is provided as the input.
Therefore, accurate noise level estimation for image denoising is
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Fig. 2. Result of the quad-tree subdivision. (a) RSHI. (b) Quad-tree subdivi-
sion result.

important. However, though many AGWN noise level estimation
methods [7], [40], [41] have been proposed, their efficiency and
performance should be improved. To this end, we developed an
efficient and effective noise level estimation method based on a
quad-tree subdivision for hazy image denoising.

Inspired by the patch-based image denoising method [40],
[41], the main issue of noise level estimation is correctly se-
lecting flat and textureless patches in the image. According the
HI’s properties, the haziest patch is suitable for noise level esti-
mation. Therefore, we determine the best patch by a quad-tree
subdivision algorithm [3]. Given a hazy image, it is divided into
four blocks and we calculate the score for each block by

S(pi) = mean(pi)− std(pi) (4)

where pi is the ith block, and i ∈ {1, 2, 3, 4}. The block with
the highest score will be further divided and we repeat this until
the image block’s size is under a threshold. The thicker the haze
in the image, the larger the mean value of the corresponding
block pixel, and the smoother the image block, the smaller the
corresponding pixel variance. Thus, the block with the highest
score is the haziest and most textureless. We empirically set the
predefined threshold as 1/16 of the original image size to make
the algorithm adapt to images with different resolutions. As
shown in Fig. 2, the last selected block Ifinal marked in red is the
flattest and most textureless, so it is used for further evaluation.

The following noise level estimation method is motivated by
[7], which uses the eigenvalues of the covariance matrix within
an image to estimate the true noise variance. Assuming the image
size of Ifinal is H ×W × c. We first decompose it into a number
of patches Xs = {xt}st=1 with a patch size d = 1; that is, we
regard each pixel as a patch. Thus, Xs contains s = H ×W
patches of the size 1× 1× c. We select a patch sized = 1, which
is different from that in Chen’s method [7], for two reasons: 1)
the selected image block (Ifinal) is flat and textureless, and 2) a
small patch size reduces computational complexity. To simplify
the calculation, Xs is reshaped as a vector with a size of c× s.
Then, we obtain the covariance matrix by

∑
x

=
1

s

s∑
t=1

(xt − μ)(xt − μ)T (5)

Fig. 3. Diagram of multiscale decomposition and detailed layer enhancement.

whereμ = 1
s

∑s
t=1 xt. Finally, the median value of the eigenval-

ues {λi}ci=1 of the covariance matrix is selected as the estimated
noise level. Taking speed and performance into account, we
integrate the proposed noise level estimation algorithm into
FFDNet [17] for hazy image denoising.

B. Multiscale Decomposition and Detailed Layer
Enhancement

The GF [42] is an edge-preserving smoothing image filter,
which can be expressed as follows:

O = GF(I,G, r, ε) (6)

where I and G are the input image and the guidance image,
respectively. The regularization parameter ε is a smoothing
factor that determines whether a patch with radius r in I should
be preserved or smoothed based on the patch variance in G.
Therefore, the GF selectively smooths the input image I based
on the structure of the guidance image G.

When I ≡ G in (6), the GF acts as an edge-preserving mean
filter. Therefore, the details of image I can be extracted by
iteratively filtering the hazy image with multiple smoothing
scales ε = {ε1, ε2 · · · , εn}, (ε1 < ε2 · · · < εn), which can be
expressed as follows:

IBi = GF (IB(i−1), IB(i−1), r, εi) i = 1, 2, . . . , n (7)

IDi = IBi − IB(i−1) i = 1, 2, . . . , n (8)

where IBi is the filtered base layer with the associated smoothing
scales εi, and the initial image IB0 is the hazy input image. The
difference between the current base layer IBi and the previous
base layer IB(i−1) is the filtered detailed layer IDi. In addition,
the last filtered image IBn is selected as the final base layer for
further dehazing. An illustration of the multiscale decomposition
is shown in Fig. 3.

A linear stretch on grayscale is simple but effective for enhanc-
ing the multiscale detailed layers. However, it has overenhanced
details. Therefore, an adaptive nonlinear transform based on
the sigmoid function is selected for detailed layer enhancement
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Fig. 4. Functional graphs of sigmoid-based nonlinear mapping with different parameters. (a) Change w from 0.2 to 0.8 (Rs = 0.5, s = 40). (b) Change s from
10 to 60 (Rs = 0.5, w = 0.8). (c) Change Rs from 0.3 to 0.7 (s = 40, w = 0.8).

without introducing much noise [43], which can be expressed
as follows:

F (R) =

{
w

1+e−s(R−Rs) +Rs−w,Rs−0.5w<R<Rs+0.5w

R, otherwise
(9)

where R is the image to be enhanced, i.e., the detailed layer IDi.
w indicates the width of the nonlinear region centered at Rs.
Parameter s is the scale factor, which determines the enhance-
ment level. The functional graphs with different parameters are
illustrated in Fig. 4. As shown, a small change in the value
of s has a significant impact on the shape of the graph. The
larger the value of s, the stronger the enhancement. The width
of the nonlinear region increases as w increases. Rs determines
the center of the nonlinear region, which indicates that the
pixels in the darker area are enhanced when it is small. Oth-
erwise, it enhances the brighter areas. To achieve adaptive en-
hancement, we choose s = 50(Rmax −Rmin),Rs = mean(R),
w = 0.8, Rmax = max(R), and Rmin = min(R). Finally, the
enhanced detailed layer I ′D is calculated by summing the en-
hanced output of each detailed layer, expressed as expressed
follows:

I ′D=
n∑

i=1

F (IDi). (10)

C. Base Layer Dehazing and Haze-Free Image Reconstruction

In order to recover the clear image using (3), the A and t
should be estimated. Typically, A is a constant in a hazy image
and the value is close to the brightest pixel intensity. In literature,
Tan et al. [44] naively selected the brightest pixel in the hazy
image as the estimated atmospheric light. He et al. [14] picked
the top 0.1% of the brightest pixels in the dark channel as
the atmospheric light. However, these methods may have large
errors when there are objects whose pixel intensity is higher than
the atmospheric light. According to the noise level estimation,
we estimate atmospheric light based on two characteristics: high
intensity and no texture. Therefore, the mean value of the last
highest score region Ifinal by quad-tree subdivision is selected to
estimate A.

According to the boundary constraint proposed by Meng et al.
[10], the scene radiance of a hazy image is always bounded [45];
that is

C0 ≤ J(x) ≤ C1 (11)

where C0 and C1 are the lower and upper bounds of the given
image, respectively. From (3), (11) can be rewritten as follows:

C0 ≤ I(x)−A(1− t(x))

t(x)
≤ C1. (12)

Thus, the solution of (12) for each color channel is given by
the following inequalities:

t(x) ≥ Ac − Ic(x)

Ac − Cc
0

and t(x) ≥ Ic(x)−Ac

Cc
1 −Ac

(13)

where c ∈ {r, g, b}.
Therefore, the lower bound of t(x) can be computed by

tb(x) = min

{
max

c∈{r,g,b}

(
Ac − Ic(x)

Ac − Cc
0

,
Ac − Ic(x)

Ac − Cc
1

)
, 1

}
.

(14)
Unlike He et al.’s method [14], Meng et al.’s [45] method pro-

poses a new patchwise transmission, which is given as follows:

t(x) = min
y∈ωx

max
z∈ωy

tb(z). (15)

As shown in Fig. 5(b), the estimated transmission map t(x)
is coarse. Therefore, Meng et al. [45] proposed a weighted L1-
norm-based contextual regularization method to refine the rough
transmission map estimated by boundary constraint. However,
the large computation complexity is the primary problem with
this method, and overenhancement may occur in bright areas.
For example, the sky region of the image dehazed by Meng’s
method [45] is overenhanced in Fig. 5(d). On this account, we
use the weighted guided filter [46] for the transmission map
refinement to boost efficiency. The refined transmission map is
shown in Fig. 5(c), and the image dehazed using the refined
transmission map is shown in Fig. 5(e). However, it still suffers
from overestimated haze in bright areas [see the bright sky in
Fig. 5(e)]. The boundary constraint fails in bright areas because
there are no pixels whose values are close toC0 orC1. Therefore,
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Fig. 5. Diagram of multiscale decomposition and detailed layer enhancement. Image dehazing using corrected boundary constraint (C0 = (20, 20, 20)T ,
C1 = (300, 300, 300)T , patch size: 15× 15). (a) Input hazy image. (b) Patchwise transmission map t(x) by boundary constraint. (c) Refined transmission map
by the WGF. (d) Dehazed result by Meng’s method using L1-norm-based contextual regularization method [45]. (e) Dehazed result by Meng’s method [45] using
WGF. (f) Dehazed result using our proposed corrected transmission (K= 50).

when the pixel value in a hazy image is close to the global
atmospheric light A, the pixel value of the recovered scene
radiance J is much larger than C0, which results in overestimat-
ing the recovered image. The transmission map in large bright
areas needs to be corrected to tackle this problem. Thus, we
introduce a tolerance factor K. If |I −A| < K, it is regarded as
a white area, and the transmission map is corrected. Conversely,
if |I −A| > K, the transmission map stays constant. As a result,
the corrected transmission map is defined as

ttrue(x)=min

(
max

(
K

|IB(x)−A| , 1
)
�max (t (x) , t0) , 1

)
(16)

where t0 is a small constant as the lower bound of the trans-
mission map to preserve a small amount of haze in dense hazy
region. As shown in Fig. 5(f), the overenhanced sky region is
corrected, and the recovered haze-free image has a better visual
effect than Fig. 5(e).

In addition, a correction based on the variance of estimated
atmospheric light is implemented to prevent color distortion.
When the variance of the estimated A is larger than a threshold,
the color of the restored haze-free image is biased. Therefore,
a corrected atmospheric light AC is introduced for haze-free
image recovery, which can be expressed as follows:

AC =

{‖A‖ · VC , σ2
A > σth

A, else
(17)

where A and VC are the initial estimated atmospheric light
and the correction vector (1/

√
3, 1/

√
3, 1/

√
3), respectively.

σ2
A and σth are the variance of A and the predefined threshold,

respectively. AC is the corrected atmospheric light. Then, the
recovered haze-free base layer image I ′B(x) can be expressed as
follows:

I ′B(x) =
IB(x)−A

max(ttrue(x), t0)
+AC (18)

where t0 = 0.01, which is the lower bound of transmission map.
Once the enhanced detailed layer I ′D and the dehazed base

layer I ′B are obtained, the recovered haze-free image J is cal-
culated as follows:

J(x) = I ′B(x) + I ′D(x). (19)

As shown in Fig. 5(f), the recovered haze-free image obtained
using the proposed method retains the fine detail, and the haze
is removed.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Settings

We use both synthetic RSHI datasets and real-world RSHI
for evaluation. For synthetic datasets, we choose RICE-I [47]
which includes 500 pairs of RSHIs with uniform haze. Also, a
recently published large-scale realistic remote sensing dehazing
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TABLE I
NOISE LEVEL ESTIMATION RESULTS ON THE REAL-WORLD REMOTE SENSING HAZY DATASET

dataset (RSHaze [48]) is selected for the nonuniform haze re-
moval evaluation. The RSHaze contains RSHI with three haze
densities: light, moderate, and dense. To verify the real-world
image dehazing performance, we collected 30 real-world RSHI
and aerial hazy image s from Google and Flickr as the real-world
hazy dataset. As AGWN is one of the most dominant noises in
a RSHI, we add the AGWN to the clean RSHI to get the noisy
RSHI for the denoising test.

For noise level estimation evaluation, we choose Rakhshan-
far’s method [49], Liu’s method [41], and Chen’s method [7] for
comparison. To evaluate the blind denoising performance, we
integrate our noise level estimation method into two well-known
nonblind denoising methods, BM3D [26] and FFDNet [26], for
comparison. We select various state-of-the-art (SOTA) dehazing
methods for dehazing comparison, including prior-based dehaz-
ing methods (DCP [14] and BCDP [50]), supervised-learning-
based methods (AOD-Net [51], FFA-Net [52], and EMRA-Net
[53]), and unsupervised-learning-based methods (YOLY [54]
and ZID [55]). As there is no ground truth for real-world RSHI,
we use the dehazing tool of Photoshop 2020 to generate the
reference clear image for comparison. For a fair comparison, all
the methods are implemented in MATLAB R2019a or PyCharm
2020 environment on a PC with an i7-9700F processor @3.00
GHz, 24 GB RAM, and a NVIDIA RTX 3080 GPU.

B. Noise Level Estimation Evaluation

To test the performance of the proposed noise level estimation
method, we use our collected real-world RSHI dataset that
includes 30 real-world remote sensing and aerial hazy images
for evaluation. Synthetic AWGN with different noise levels (σ)
is added to each hazy image, and the original hazy image is
regarded as the noise-free image for measurement. As shown
in Table I, we calculate bias, standard deviation (Std), and root
mean square error (RMSE) for comparison. Std indicates the
standard deviation of estimated noise levels. Bias and RMSE
indicate the bias and RMSE between the estimated noise level
and the true noise level, respectively. The bias and Std evaluate
the accuracy and robustness of the noise level estimator respec-
tively, while the RMSE reflects the overall performance.

Compared with Rakhshanfar’s method [49] and Liu’s method
[41], our method is the most stable algorithm, with the lowest
Std in estimating all ranks of the noise level. In terms of bias
and RMSE, our method outperforms the other two methods in
most ranks of the noise level. This indicates that the proposed

TABLE II
EXECUTION TIME (UNIT: S) OF DIFFERENT NOISE LEVEL ESTIMATION

METHODS

TABLE III
PROCESSING TIME COMPARISON OF BM3D AND FFDNET INTEGRATED WITH

OUR NOISE LEVEL ESTIMATION METHOD (UNIT: S)

noise level estimation method is more accurate and stable than
the other methods.

To evaluate the computation complexity, we compare the
execution time of the proposed method with different methods
[7], [41], [49]. A total of 30 noisy images in different scenes
with a resolution of 1024 × 768 and 4096 × 3072 are selected,
and the average processing time is calculated. As shown in
Table II, our proposed method has the smallest processing time,
which is almost 1300 times faster than Liu’s method [41]. Even
compared with Chen’s method [7], which has a similar noise
level estimation principle, our method improves the efficiency
by 15 times. Therefore, our proposed method has high efficiency
and can estimate the noise level for a 4K resolution video at a
speed of over 50 frames per second.

C. Blind Denoising Evaluation

In this section, we integrate the proposed noise level esti-
mation method into two nonblind denoising methods [17], [26]
to achieve blind denoising. As shown in Fig. 7, we choose a
noise-free image from our collected real-world remote sensing
hazy dataset. Then, Gaussian noise with a noise level (σ) from
1 to 100 at a step of 2 is added to the image. The noisy images
are denoised by BM3D [26] and FFDNet [17] with the true
noise level and with our estimated noise level, respectively.
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Fig. 6. Comparison of the denoising performance of BM3D and FFDNet with the true noise level and our estimated noise level.

Fig. 7. Comparison of the denoising results by BM3D [26] and FFDNet [17] with the true noise level and our estimated noise level, where (a) is the noisy image
with different noise level from 5 to 50, (b) to (e) are the denoised results using (b) BM3D with the true noise level, (c) BM3D with our estimated noise level,
(d) FFDNet with the true noise level, and (e) FFDNet with our estimated noise level. The noise level and PSNR value are marked by red in (a) and (b) to (e),
respectively.
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Fig. 8. Comparison of various dehazing methods on real-world RSHIs and aerial hazy images, where (a) is the hazy input, (b) to (j) are the dehazed results by
(b) DCP [14], (c) BCDP [50], (d) AOD-Net [51], (e) EMRA-Net [53], (f) FFANet [52], (g) YOLY [54], (h) ZID [55], (i) ours, and (j) Photoshop.

As shown in Fig. 6, we compare the PSNR between the noisy
image and the denoised image. The performance of both BM3D
and FFDNet with our estimated noise level is almost the same
as that of the true noise level. One can also see that FFDNet had
better performance, with a higher average PSNR. Therefore, the
proposed method can be integrated into the nonblind denoising
method without reducing the denoising performance.

Samples of the denoised images are shown in Fig. 7, where
Fig. 7(a) shows the noisy images, with different noise levels
(σ) marked in red. Fig. 7(b)–(e) shows the denoised images
by BM3D and FFDNet with the true noise level and with our
estimated noise level, and the PSNR value is marked in red. As
shown in Fig. 7, the visual effect and PSNR value of the denoised
image by BM3D and FFDNet with true or estimated noise
level are almost the same, which indicates that our proposed
method is effective for accurate noise level estimation. Also,
one can find that the FFDNet outperformed the BM3D, with a
higher PSNR and better visual effects. When the noise level is
over 20, BM3D can hardly recover the fine details, while the
FFDNet can better recover the clean hazy image. Therefore,
we integrate the proposed noise level estimation method into

the FFDNet to achieve blind denoising before the following
dehazing.

In addition, we compared the time complexity of BM3D
and FFDNet when combined with our noise level estimation
method. Table III compares the processing time of BM3D and
FFDNet for noisy hazy images with resolutions ranging from
600 × 400 to 4096 × 3072. The BM3D is executed solely
on the CPU, whereas the FFDNet is evaluated in CPU mode
and GPU mode. Using only CPU, the results demonstrate that
denoising time grows as image size increases. However, the
computation efficiency of FFDNet is vastly superior than that
of BM3D, requiring much less processing time. In addition,
GPU can significantly accelerate the processing of FFDNet, and
the processing time is less dependent on the image size when
utilizing GPU.

D. Dehazing Evaluation

To test performance, both qualitative and quantitative evalua-
tions are conducted. We compare our method with well-known
dehazing methods to evaluate the reliability and design progress,
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Fig. 9. Comparison of synthetic RSHI datasets, where the first and second rows are the images selected from RICE-I [47] and RSHaze [48], respectively. (a) is
the hazy input, (b) to (j) are the dehazed results by (b) DCP [14], (c) BCDP [50], (d) AOD-Net [51], (e) EMRA-Net [53], (f) FFANet [52], (g) YOLY [54], (h) ZID
[55], (i) ours, and (j) ground truth.

including prior-based dehazing methods (DCP [14] and BCDP
[50]), supervised-learning-based methods (AOD-Net [51],
FFA-Net [52], and EMRA-Net [53]), and unsupervised-
learning-based methods (YOLY [54] and ZID [55]). We use
real-world RSHI for qualitative comparison and synthetic RSHI
datasets for quantitative evaluation.

From Fig. 8(h), the ZID obtains the worst dehazing result
with severe color distortion. The dehazed images by EMRA-Net
have dark color [see the “Image 2” of Fig. 8(e)]. As shown
in Fig. 8(d), (f), and (g), the AOD-Net, FFANet, and YOLY
have poor dehazing performance with a lot of residual haze in
the dehazed image. The DCP, BCDP, and our method achieve
visually better dehazing effects among the various dehazing
methods. However, the DCP may result in dark color as shown
in Fig. 8(b), while the BCDP has slight overenhancement [see
“Image 2” in Fig. 8(c)]. Compared with the other dehazing

methods, the dehazed results by our method look closer to the
reference images by Photoshop in Fig. 8(j).

We selected RICE-I [47] and RSHaze [48] to conduct the
quantitative evaluation. For uniform dehazing evaluation, we
test the whole RICE-I. For the nonuniform dehazing test, we ran-
domly select 50 hazy images for each haze density from RSHaze,
so we have 150 images in total. We choose the PSNR, SSIM,
and LPIPS to quantitively measure the dehazing performance.
The definition of PSNR is given as follows:

PSNR = 20 lg
L− 1√

MSE
(20)

where L is the dynamic range of image and MSE is the mean
square error. The expression of SSIM is as follows:

SSIM(I1, I2) = L(I1, I2) ∗ C(I1, I2) ∗ S(I1, I2) (21)
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Fig. 10. Comparison of joint denoising and dehazing using different methods. The first row to fifth row of (a) is the noisy hazy images with different noise levels
marked in red, and (a)–(h) are the recovered results by different methods. (a) Input noisy hazy images. (b) DCP [14]. (c) EMRA-Net [53]. (d) FFDNet+DCP. (e)
FFDNet+EMRA-Net. (f) FFDNet+YOLY [54]. (g) HSU et al [36]. (h) Ours.

Fig. 11. Failure case of the proposed method in processing nighttime noisy
hazy image.

where L, C, and S are the luminance comparison, contrast
comparison, and structure comparison, respectively. Higher
PSNR and SSIM values indicate better image quality. Using
a predefined deep neural network [56], the LPIPS is estimated
to determine the perceptual similarity between two images. A
lower LPIPS refers to the closer perceptual similarity between
the restored image and the ground truth. As shown in Table IV,
our method obtains the best results for the three metrics on
average, which indicates that our method outperforms the other

methods in removing both uniform haze and nonuniform haze.
In addition, we can find that DCP, EMRA-Net, and YOLY obtain
the best result in the prior-based category, supervised-learning-
based category, and unsupervised-based category, respectively.
Samples of the dehazed results on synthetic remote sensing hazy
datasets are shown in Fig. 9. One can find that the BCDP and
ZID suffer from color distortion. The AOD-Net and EMRA-Net
result in dark color, while the FFANet cannot remove haze
properly. The DCP, YOLY, and our method obtain visually better
dehazed results.

E. Joint Denoising and Dehazing Evaluation

In this section, we conduct the joint denoising and dehazing
evaluation. As discussed in Sections IV-C and IV-D, we find
that the FFDNet [17] have better denoising performance, while
DCP [14], EMRA-Net [53], and YOLY [54] obtain the best result
in the prior-based category, supervised-learning-based category,
and unsupervised-based category, respectively. Therefore, we
compare our proposed method with pure dehazing methods
(DCP, EMRA-Net, and YOLY) and combined the FFDNet with
these dehazing methods for evaluation. Note that we integrate
our noise level estimation method into FFDNet as the blind
denoising module (see Fig. 1 in Section III), and the other
methods use the true noise level with FFDNet for denoising.
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TABLE IV
QUANTITATIVE EVALUATION ON SYNTHETIC REMOTE SENSING HAZY DATASETS (RICE-I [47] AND RSHAZE [48])

TABLE V
QUANTITATIVE EVALUATION RESULTS OF JOINT DENOISING AND DEHAZING ON RICE-I DATASETS

In addition, an SOTA joint dehazing and denoising algorithms
proposed by Hsu et al. [36] is chosen for comparison. Hsu
et al. [36] extracted the image’s low-frequency component for
dehazing by WT, while the other high-frequency components
are denoised. To achieve quantitative evaluation, we randomly
selected 50 RSHIs from RICE-I and added AWGN with five
noise levels (σ ∈ {5, 10, 20, 30, 50}), giving us a total of 250
noisy RSHIs for testing.

As shown in Table V, we found that the joint denoising and
dehazing had a higher PSNR and SSIM than pure dehazing in
most cases. Moreover, the change in SSIM is more sensitive
than that of PSNR when the noise increased. Thus, when there
is much noise in RSHI, joint denoising and dehazing will sig-
nificantly improve the recovered image’s quality. Also, HSU’s
method [36] cannot well remove the noise in high-frequency
domain, which indicates poor results for high noise level. Our
proposed method achieves the best results for both PSNR and
SSIM index in all ranks of noise level, except the second-best
SSIM value in the noise level of 10. Therefore, our method is
superior to the other methods in joint denoising and dehazing
evaluation.

Fig. 10(a) shows the noisy hazy images with different noise
levels (σ) marked in red, and (b)–(h) are the recovered results by
various methods. The results by DCP, EMRA-Net, and YOLY
have severe noise. By combining the FFDNet as preprocessing,
the noise is removed, and the visual effect is significantly im-
proved. However, both FFDNet+DCP and FFDNet+EMRANet
produce a loss of detailed information in darker areas or un-
der extremely noisy circumstances, while the FFDNet+YOLY

cannot remove haze thoroughly. As denoising is only operated on
high-frequency parts, HSU’s method obtains poor results when
the noise level is over 10. Overall, the proposed method has
better performance in both denoising and dehazing.

F. Discussions

Based the results of extensive experiments, our proposed
noise level estimation approach is effective and efficient to
be integrated into nonblind image denoising algorithms. The
multiscale decomposition enables the operation of dehazing and
detail enhancement independently, which is sufficient for the
preservation of image details. In addition, the joint denoising and
dehazing evaluation reveals that denoising prior to dehazing can
greatly improve the image’s quality. Nevertheless, our proposed
algorithm cannot effectively recover nighttime images that are
noisy and hazy. As shown in Fig. 11, even although the noise
has been greatly reduced, the low-light imaging conditions have
resulted in the loss of image’s details. Moreover, the glow caused
by artificial light may contribute unwanted artifacts into the
recovered result. Consequently, our proposed algorithm for joint
denoising and dehazing needs be enhanced for nighttime or
low-light image recovery, which is the subject of our future
article.

V. CONCLUSION

In response to the problem of details lost and noise am-
plification in RSID, we propose a novel image recovery
and enhancement method by joint denoising and dehazing.
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As preprocessing, a simple but effective noise level estimation
method based on a quad-tree subdivision algorithm is imple-
mented, and FFDNet denoising is performed to improve the hazy
image. The denoised hazy image is decomposed into base and
detailed layers to preserve the sharp details using a multiscale
GF. The dehazing method based on the corrected boundary con-
straint is implemented in the base layer, and the detailed layers
are enhanced by a sigmoid-based nonlinear mapping function.
Therefore, the haze can be removed without losing the sharp
details. Finally, the enhanced detailed layers and the dehazed
base layer are fused to obtain the recovered image. Overall, the
results show that the proposed dehazing method offers three
benefits: 1) good blind denoising performance with accurate
and efficient noise level estimation; 2) remarkable quantitative
results for PSNR, SSIM, and LPIPS indices on RSHI datasets;
and 3) superior performance for joint denoising and dehazing
evaluation.
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