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Using Artificial Neural Networks to Couple Satellite
C-Band Synthetic Aperture Radar Interferometry and
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Gianluca Palermo , Edoardo Raparelli, Paolo Tuccella , Massimo Orlandi ,
and Frank Silvio Marzano , Fellow, IEEE

Abstract—This work presents a new approach for the estimation
of snow extent, height, and density in complex orography regions,
which combines differential interferometric synthetic-aperture-
radar (DInSAR) data and snowpack numerical model data through
artificial neural networks (ANNs). The estimation method, sub-
divided into classification and estimation, is based on two ANNs
trained by a DInSAR response model coupled with Alpine3D snow
cover numerical model outputs. Auxiliary satellite training data
from satellite visible-infrared MODIS imager as well as digital
elevation and land cover models are used to discriminate wet and
dry snow areas. For snow cover classification the ANN-based esti-
mation methodology is combined with fuzzy-logic and compared
with a consolidated decision threshold approach using C-band SAR
backscattering information. For snow height (SH) and density esti-
mation, the proposed methodology is compared with an analytical
inverse method and two model-based statistical techniques (linear
regression and maximum likelihood). The validation is carried out
in Central Apennines, a mountainous area in Italy with an extension
of about 104 km2 and peaks up to 2912 m, using in situ data collected
between December 2018 and February 2019. Results show that the
ANN-based technique has a snow cover area classification accuracy
of more than 80% when compared MODIS maps. Estimation bias
and root mean square error are equal to about 0.5 cm and 20 cm
for SH and to 5 kg/m3 and 80 kg/m3 for snow density. As expected,

Manuscript received 15 March 2022; revised 15 September 2022 and 20
December 2022; accepted 18 February 2023. Date of publication 10 March
2023; date of current version 29 March 2023. This work was supported by
the Sapienza University of Rome and CETEMPS and in part by the Agenzia
Spaziale Italiana through the Project SMIVIA (Contract no. 2021-9-U.0 CUP
F85F21001230005). (Corresponding author: Gianluca Palermo.)

Gianluca Palermo is with the Dipartimento di Ingegneria dell’Informazione,
Elettronica e Telecomunicazioni, Sapienza Università di Roma, 00184 Rome,
Italy (e-mail: gianluca.palermo@uniroma1.it).

Edoardo Raparelli is with the Dipartimento di Ingegneria dell’Informazione,
Elettronica e Telecomunicazioni, Sapienza Università di Roma, 00184 Rome,
Italy, and also with the Center of Excellence CETEMPS, Università dell’Aquila,
67100 L’Aquila, Italy (e-mail: edoardo.raparelli@uniroma1.it).

Paolo Tuccella is with the Department DSFC and the Center of Ex-
cellence CETEMPS, Università dell’Aquila, 67100 L’Aquila, Italy (e-mail:
paolo.tuccella@aquila.infn.it).

Massimo Orlandi is with the Progressive Systems for ESA, 00044 Frascati,
Italy (e-mail: orlandi.massimo@gmail.com).

Frank Silvio Marzano, deceased, was with the Dipartimento di Ingeg-
neria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Univer-
sità di Roma, 00184 Rome, Italy, and also with the Center of Excel-
lence CETEMPS, Università dell’Aquila, 67100 L’Aquila, Italy (e-mail:
frank.marzano@uniroma1.it).

Digital Object Identifier 10.1109/JSTARS.2023.3253804

worse results are associated with low DInSAR coherence between
two repeat passes and snow melting periods.

Index Terms—Data fusion, differential interferometry, inversion
methods, neural networks, snow cover modeling, snow cover
retrieval, synthetic aperture radar (SAR).

I. INTRODUCTION

S EASONAL snow cover is the largest cryospheric compo-
nent, covering more than 50 million square kilometers of the

Earth surface (more than 31% of its land area) every year [1].
Snow cover area (SCA), snow height (SH), and snow density
(SD) as well as snow water equivalent (SWE) are the main
parameters characterizing the snow accumulation in mountain-
ous regions. Snow cover patterns are governed by the effects
of topography, land cover, wind redistribution, solar irradiance,
and air temperature. Snow mapping is particularly important
in meteorology, hydrology, and climate monitoring applications
[2]. The considerable geographical extension of snow cover and
its spatial heterogeneity makes it impractical to monitor the
above parameters regularly (i.e., with a high spatial and temporal
resolution) by means of direct or indirect in situ measurements.
Moreover, in the last few decades, a general back-scaling of snow
observation networks occurred worldwide [3]. The exploitation
of satellite technologies can significantly help systematic snow
monitoring [3]. Among the spaceborne remote sensing systems,
synthetic aperture radar (SAR) instruments are particularly suit-
able for the analysis of snow deposits, providing data with spatial
resolutions down to some meters, a global scale coverage and a
few days revisit time [5], [6]. The centimetric wavelength of
radar signal, capable of penetrating into snow layers, makes
SAR spaceborne sensors particularly suitable for cryospheric
applications [7], [8], [9], [10], [11].

The power and phase information at different frequencies and
polarizations can be obtained from the specific processing of
SAR images. Such information can be used to retrieve snow
parameters and develop active-passive physical-electromagnetic
response models. SAR backscattered power strongly depends on
the air-snow and snow-ground interface reflections, as well as on
the snow volumetric effects [8], [9]. Differential interferometric
SAR (DInSAR) techniques have been successfully employed for
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SWE retrieval, exploiting the phase shift between two sequential
images and taking into account the effects of air-snow refraction
and the snow-ground reflection [25], [26], [27], [28], [29],
[30], [31]. The repeat-pass SAR interferometry can provide a
high-resolution mapping of snow depth, but it requires a good
coherence between two passes [27], [31]. These limitations for
snow detection and mapping may be approached by combining
SAR microwave observations with satellite optical spectrometer
data at high-moderate spatial resolution [33], [34], [35], [36].
Spaceborne SAR polarimetry can also be exploited since the
interaction between the polarized incident wave and the snow
anisotropic features causes depolarization effects and specific
scattering mechanisms [37], [38], [39], [40], [41]. Satellite-
based passive microwave measurements may also be useful in
combination with SAR observations, even though with a spatial
resolution (tens of kilometers) much worse than the SAR typical
resolutions [42], [43].

Most snow remote sensing applications from space have been
focused on major mountain systems, such as Sierra Nevada,
Alps, and Himalayan regions [14], [15], [29], [31]. The Italian
Apennines, have never been considered for this kind of studies
by the scientific community, probably due to the high spatial and
temporal variability of their snow cover [44]. Nevertheless, the
central Apennines region holds a key role for the meteorological
dynamics in the Mediterranean area and, moreover, it hosts
the southernmost European glacier, the Calderone. The latter
is to be considered a glacieret rather than a glacier and its
evolution represents a relevant indicator, at least for the medium
latitudes, of the impact of climatic changes [45]. In such complex
geographical regions, snow cover numerical models, coupled
with meteorological weather forecast, can also be exploited to
characterize the microphysics and dynamics of the snow cover
[46], [47]. Snow cover model simulations can be used to provide
auxiliary information in the satellite-based retrieval of the snow
cover [48]. On the other hand, meteorological model predictions
can be used to mitigate atmospheric water vapor effects on SAR
interferograms [49], [50], [51], [52].

In this work, we present a DInSAR retrieval methodology
to estimate SCA, height, and density in complex orography
regions using Sentinel-1 satellite C-band data. The retrieval
methodology is subdivided into classification and estimation
subsequent stages. Classification is based on artificial neural
networks (ANNs) and fuzzy logic. Estimation is based on an
ANN trained by a forward DInSAR response model, coupled
with snow cover numerical model outputs. In order to discrimi-
nate between wet and dry snow areas, data from satellite visible-
infrared imager are used. A digital elevation model (DEM) and
a land cover database are also used to assist in the discrimination
process. For snow cover classification, the results obtained from
ANN-based retrieval methodology are compared with results
from well-established decision threshold approaches. For SH
and density estimation, the proposed methodology is compared,
in terms of the obtained results, with the well-known analyti-
cal inverse method and two model-based statistical techniques
(linear regression and maximum likelihood). The validation is
carried out in the Italian Central Apennines, using in situ snow
data collected between December 2018 and February 2019.

Results show that the ANN-based technique has a relatively good
performance in terms of SCA classification accuracy, together
with an estimation bias of about 0.5 cm and 5 kg/m3 for SH and
density, respectively. As expected, worse results are associated
with low DInSAR coherence between two repeat passes and
snow melting periods.

This article is organized as follows. Section II describes
data and models including Sentinel 1 SAR data, in situ and
auxiliary data as well as snow cover model data and DInSAR
forward model. Section III focuses on the retrieval methodology
investigating SCA mapping algorithms as well as SH and density
inversion techniques. Section IV discusses the results in terms of
SCA and height estimates. Section V presents the conclusions,
whereas Appendixes give some details on refractive models, the
DInSAR sensitivity analysis, winter 2018–2019 conditions, and
the density estimation.

II. DATA AND MODELS

SAR data are collected from the Sentinel 1 Copernicus mis-
sion, whereas ground data are those available from the area of
interest (AOI) in central Italy Apennines. Auxiliary data from
a land cover dataset, elevation models, and spaceborne optical
radiometers are also used. The SAR interferometric model is
based on a plane-wave assumption at the air-snow interface
neglecting multiple scattering effects. Details are given in the
next paragraphs.

A. AOI and In Situ Data

The AOI is the central Italy Apennines range between 41.5 °–
43.5 ° north latitude and 12.5 °–14.5 ° east longitude. This region,
bounded by the Tyrrhenian Sea on the west side and the Adriatic
Sea on the east side, is characterized by a complex orography
with deep valleys, medium-short rivers, small lakes, and rel-
atively steep mountains [44]. The highest peak is the Corno
Grande at 2912 m above sea level in the Gran Sasso Moun-
tain range which hosts the Calderone glacier, the southernmost
glacier (indeed, in the last decades transformed into a glacieret)
of the European continent.

Within the AOI, there are snow measurement sites, used to
validate SAR estimates of snow parameters. These measure-
ments, provided by the Meteomont Avalanche Warning Service
(MAWS), are daily acquired within a fenced area (to guarantee
the integrity of the snow cover, characterized by requirements
about orientation, exposure, and altitude) to allow an institu-
tional snow mantle assessment for reference areas. The mea-
surements provide SH hs, vertical thermal gradient, and density
of the snowpack top layer, which we used to derive the mean
snowpack density as described in Appendix D. Fig. 1 shows the
location of measurement sites available in central Apennines
for this study. The selected measurement sites in the AOI are
32, dislocated quite uniformly within the area itself, typically
collecting data during the early morning.

In this work, the period of interest is the winter between
December 2018 and February 2019. This winter in Central Italy
was characterized by a first small snowfall in mid-December
2018, but the high temperatures during the second part of the
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Fig. 1. AOI in Central Italy Apennines. Orange circles indicate snow Me-
teomont measurement sites, available within the Abruzzo region AOI. Red and
yellow rectangles indicate Sentinel 1 subswaths for the descending relative
orbit number 22 with acquisition time at 05:11 GMT [using Interferometric
Wide (IW) Swath to generate single look complex (SLC)]. The 3 subswaths
(from south-east toward north-west) of both coupled master and slave image
are shown, whereas the considered intersection area is represented as a white
semi-transparent rectangle. Sentinel-1 full swath is 250-km scan with 5×20 m2

resolution and VV/VH dual polarization.

month led to a complete melt of the snow cover in most of
the measurement sites. The largest snowfalls occurred during
January 2019, thanks to the formation of a low-pressure system
on the Mediterranean Sea. February 2019 was characterized
by warm and dry conditions, which caused the retreat of the
snow cover and the complete melting of the snow in most of the
measurement sites. After February 2019 only snowfall at high
elevations, higher than the measurement sites, were observed.
For these reasons, we limit our analyses to the period between
December 9, 2018 and February 25, 2019. Weather maps that
describe the synoptic conditions of winter 2018–2019 are shown
in Appendix C.

B. Sentinel-1 SAR and Auxiliary Data

As mentioned, C-band SAR data in SLC format from
Sentinel-1A and Sentinel-1B platforms have been used for ob-
taining differential interferograms. The Sentinel-1 low-Earth-
orbit (LEO) satellite acquisition modes include:

1) Strip Map mode (80-km swath, 5 × 5 m2 spatial resolu-
tion);

2) IW swath mode (250-km swath, 5 × 20 m2 spatial reso-
lution);

3) Extra-Wide swath mode (400-km swath, 20 × 40 m2

spatial resolution);
4) Wave mode (20-km swath, 5 × 5 m2 spatial resolution).
For the purposes of our study, IW swath products coming

from both platforms S1A and S1B are used. The nominal repet-
itiveness of Sentinel 1 constellation over the AOI is 6 days.

Fig. 1 shows the Sentinel 1 swath, characterized by the relative
orbit number 22, acquisition time at 05:11 GMT, a 250 km
scan width with 5 × 20 m2 resolution and vertical copolar
and crosspolar (VV/VH) polarizations. Table I shows the list

TABLE I
SENTINEL-1 MASTER/SLAVE COUPLES WITHIN DEC. 9, 2018, AND FEB. 25,

2019. ACQUISITION TIME IS 05:11 GMT (RELATIVE ORBIT NUMBER 22)

of Sentinel-1 acquisition dates for the SLC-IW images. This
set is used to generate 13 interferograms within the period of
interest. For all generated interferograms, the master and slave
image coupling is based on adjacent dates. Both unwrapped in-
terferometric phase maps and coherence maps are obtained by a
standard process of filtering and unwrapping, as better explained
later. For each Sentinel-1 SLC-IW image, the backscattering
coefficient in both vertical copolar and crosspolar polarizations
is also derived.

The applicability of DInSAR technique to the snow cover pa-
rameter retrieval is strongly limited by the relatively poor repet-
itiveness of the Sentinel-1 constellation, which is indeed quite
high if compared to other satellite SAR missions. Moreover,
the DInSAR signal features shows ambiguities over complex
orographic terrains and in presence of variable atmospheric con-
ditions between master/slave acquisitions. To overcome as much
as possible these SAR observation limits, auxiliary information
and data are employed.

Table II shows the list of external auxiliary data, used in com-
bination with Sentinel-1 data. The table reports the following.

1) DEM, used to enhance the accuracy of the interferometric
data processing and retrieval algorithms [5].

2) Atmospheric correction model data, used to mitigate Din-
SAR interferogram distortions caused by water vapor
variable pattern between master and slave image dates
[53].

3) A land cover map, used to assist with dry and wet snow
classification [54].

4) Snow-cover products obtained from the Terra-satellite’s
“Moderate Resolution Imaging Spectroradiometer”
(MODIS) instrument, used to assist in the discrimination
of snow-covered areas from snow-free areas [14].

The simulation of fundamental snow cover properties is based
on the Alpine3D model simulations. Alpine3D is a Lagrangian
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TABLE II
AUXILIARY DATA, USED IN THIS WORK, WITH ITS SOURCES AND MAIN

CHARACTERISTICS

numerical model used to simulate high-resolution surface pro-
cesses, and in particular snow processes in mountainous regions
[44], [47]. The Alpine3D model is driven by external data such
as measurements at stations or outputs from meteorological
models. The Alpine3D model consists of several component
modules.

1) The SNOWPACK one-dimensional (1-D) model of vege-
tation, snow, and soil [47].

2) A 3-D radiation balance model (which considers short-
wave scattering and longwave emission from terrain and
tall vegetation).

3) A 3-D drifting snow model solving a diffusion equation for
suspended snow and a saltation transport equation. Exam-
ples of the use of the Alpine3D model include the analysis
of snow cover dynamics for avalanche warning, studies
on permafrost development and vegetation changes for
the monitoring of climate change evolution, as well as
the estimation of soil moisture aimed at obtaining highly
accurate meteorological and flood forecasting models.

The Alpine3D model, driven by forecasted weather data, has
been validated in the AOI [44]. Results showed that Alpine3D
is able to reproduce the observed SH and SWE with a bias of
6 cm and 35 mm respectively, with a correlation coefficient of
0.87 for SH and 0.74 for SWE.

The Alpine3D map dataset has been generated with a 3-km
spatial resolution at 1-h temporal resolution and has been resam-
pled to a reference resolution of 100 m, which has been adopted
in this study to ensure uniformity across all employed spatial
data. We deem such a resolution to be sufficient to characterize
snow properties for a relatively large AOI, and to be an optimal
tradeoff in terms of computational costs [1], [3]. For each pixel
of the AOI, the Alpine3D model provides altitude, SH, SD, and
snow liquid water fraction as well as the temperature profile. In
this work, the generated Alpine3D dataset is basically used to
train snow estimation models from DInSAR data.

TABLE III
DEFINITIONS, ACRONYMS, AND SYMBOLS

Fig. 2. Geometry of DInSAR signal propagation in a snow deposit, charac-
terized by a single uniform snow layer. The yellow ray path refers to the snow
absence, whereas the red one to the snow presence inducing refraction. Planar
interfaces are assumed, whereas the ground plane is tilted due to the ground
local slope where θ is the incidence angle, θl is the local incidence angle, θt is
the terrain slope angle, and θs is the Snell refraction angle, Δhs is the relative
SH, Δzs is the relative snow thickness. Other symbols are defined in the main
text, apart from g that represents the Earth gravitational acceleration vector.

C. SAR Differential-Phase Forward Model

The snow estimation methodology from SAR differential
interferometry, based on satellite repeat passes above the same
scene, takes advantage of the nearly linear dependence existing
between the SAR signal path delay and SH hs [7], [11]. Even
though widely explained in literature, we briefly summarize here
the principles to introduce the basic notation.

Table III lists the main definitions, acronyms, and symbols,
used throughout the text.

Fig. 2 illustrates how the SAR signal, supposed to be locally
approximated by a plane wavefront, is affected by the snow
refraction causing a path delay with respect to the same surface
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without snow. Note that the incidence angle θ is the angle
between the normal of the flat earth (ellipsoid) and the satellite
pointing, whereas the local incidence angle θl is the angle
between the normal of the topography and the satellite pointing.
Depending on the relief within the scene and the topography
slope angle θt, these two angles can be significantly different
(if θt = 0 in Fig. 2 then θl = θ). Each interface in Fig. 2
is considered as a specular plane, for simplicity, and possible
multiple scattering effects within the snow layer (due to ice
grains, ice lenses, and/or vertical refrozen structures larger or
comparable with SAR central wavelength) are disregarded [27],
[29].

In Fig. 2, we exemplify the problem geometry for one plane-
parallel uniform non-absorbing isotropic snow layer above a
surface with a local slope [25], [29]. The snow complex permit-
tivity can be expressed by [13]

εs (ρds, fw) = εRs − jεJs = εrs ε0 = (εRrs − jεJrs) ε0 (1)

with εRs and εJs the real and imaginary part of εs (with j the
imaginary unit), εrs the relative snow permittivity with εRrs

and εJrs the real and imaginary part respectively, and ε0 the
vacuum permittivity. The adopted snow permittivity models,
mainly depending on the dry SD ρds and liquid water fraction
fw as highlighted in (1) to include wet snow, are reported for
completeness in Appendix A [55], [57].

Note that the SD ρs differs from the dry SD ρds due to
the presence of liquid water fraction. Moreover, snowflakes are
usually compressed by weight after ground deposition (snow set-
tling) and some days later, recrystallization may form ice grains
that are spherical at first, vertically extended at later phases,
and which typically increase in size over time (snow metamor-
phism) [55], [56]. This snow microstructures typically cause
macroscopic anisotropy that reflects into polarization-dependent
effective dielectric constant of the air-ice mixture, perturbed by
liquid water from the melting process. As a result, the snow
complex permittivity in (1) can be polarization dependent and
snow can be modeled as an air medium populated by aligned
spheroidal ice particles using the Maxwell-Garnet theory [26].

The point P on the ground is covered by a snow layer whose
relative height is (see Fig. 2)

Δ hs = hs (t2)− hs0 (t1) = Δzs/ cos θt (2)

with hs the SH at time t2 (>t1) and hs0 the reference surface
(ground surface at time t1) height, whereas the quantity Δzs in
(2) is the relative snow thickness, measured along the terrain
normal. In (2), θt represents an important feature in complex
orography. If Rs is the distance between the SAR sensor and
snow surface, the plane wave fronts of the signal will be refracted
at point Q and, covering the distance ΔRs, will reach the point
P.

In absence of snow, no refraction would occur and propagation
distance in air to point P is Ra+ΔRa. If ns =

√
εRrs is the

snow refractive index real part, the geometric path differenceΔR
between the two conditions (i.e., snow presence and absence) is
determined by

ΔR = (Rs + ns ΔRs)− (Ra +ΔRa) (3)

being ΔRs =Δzs/cosθs and ΔRa =ΔRs cos(θl-θs). By apply-
ing trigonometry and using the Snell law sin θ = ns sin θs [13],
we obtain

ΔR = −Δzs

(
cos θl +

sin θl sin θs − ns

cos θs

)

= −Δzs

(
cos θl −

√
εRrs − sin2θl

)
. (4)

Changes in snow layer thickness Δzs by a positive (due to
snowfall) or negative (due to snow ablation) amount reflect into
a change of the SAR wave front two-way differential phase at
pp co-polarization given by ΔΦpps = 2 (2πΔR/λ). Using (2), it
holds for the differential phase due to snow

ΔΦpps = f
4πΔR

vs
= −2k

(
cos θl −√

εRrs − sin2θl
)

cos θt
Δhs

(5)
being k = 2π/λ with f the SAR operating frequency and λ =
vs/f0 the SAR wavelength in the snow layer propagating at
phase velocity vs = c/ns with c the vacuum light velocity. For
Sentinel-1 DInSAR, p = v using the copolar returns at vertical
(v) polarization. Note that for an anisotropic snow layer, due to
its polarization-dependent effective permittivity, ΔΦvvs is not
equal to ΔΦhhs thus causing a copolar differential phase shift
(or phase difference) Δ Φcos = ΔΦvvs −ΔΦhhs, fairly well
correlated at X band to the hs [26]. In the following text, we will
keep the notation ΔΦpps for generality.

The previous relation (5) constitutes the basic forward model
that can be used to translate the dry or wet snow thickness
into DInSAR differential phase ΔΦs. For a dry snow uniform
isotropic layer, using the permittivity model (A.1) illustrated in
Appendix A, it can be shown that (3) can be approximated with
an error less than 3% (for θ less than 50 °) by [27]

ΔΦpps
∼= kac

(
bc+θ

5/2
l

)
cos θt

ρs
ρw

Δ hs= kac

(
bc+θ

5/2
l

)
cos θt

Δhswe

(6)
being the terms ac = 1 (average optimal value) and bc = 1.59,
whereas the relative SWE height Δhswe is defined as follows:

Δhswe =
Δzswe

cos θt
=

1

cos θtρw

zs∫
z0

ρs (z) dz =
ρs
ρw

Δhs (7)

with Δzswe the relative SWE thickness (see Fig. 2). The last
term in (7) holds only for a uniform snow layer.

Moreover, the approximate expression in (6), in terms of
Δhswe, holds also for a non-uniform snow layer with a variable
density below the air-snow interface, i.e., [27]

ΔΦpps = kac

(
bc+θ

5/2
l

)

cos θt

N∑
i = 1

ρs(i)
ρw

Δhs (i)

= kac

(
bc+θ

5/2
l

)

cos θt
Δhswe (8)

where N is the number of the different snow ith layers.
For a wet snow layer, ΔΦs becomes a function of the snow

water fraction so that (6) must be replaced with the more general
expression (5) [29], [40]. As an example, since ns is a function
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Fig. 3. DInSAR differential phase ΔΦpps versus snow relative height Δhs
for some values of liquid water fraction and dry SD, using the analytical forward
model in (5) with θt= 0 ° and Wiesmann-Mätzler snow permittivity model of
Appendix A. (Top) θ = 20 °. (Bottom) θ = 40 °.

of ρds and fw, using the Wiesmann-Mätzler snow permittivity
model in Appendix A, Fig. 3 shows how ΔΦs is affected by
different values of ρds and fw for two incidence angles θ = 20 °
and θ = 40 °, assuming θt = 0 and setting the frequency at
5.6 GHz, the one of Sentinel-1 SAR. ΔΦpps is less sensitive to
hs variation for low snow densities and lower incidence angles,
even though the impact of the latter is relatively low. The increase
in liquid water fraction enhances the sensitivity in all cases.
For Δhs larger than a few centimeters, we expect a SAR phase
folding issue at C band (that is, ΔΦpps>180 °).

The analytical dependence betweenΔΦpps andΔhs in (5) can
also be used for carrying out an uncertainty analysis to evaluate
how errors on θl, ρds, and fw would influence ΔΦpps. Using the
first-order error propagation theory and assuming the statistical
independence of all uncertainties, the DInSAR differential phase
standard deviationσΔΦpps

can be expressed by the square root of
the error variance sum weighted by the respective square partial
derivative

σΔΦpps
=

√(
∂ΔΦpps

∂θl

)2
σ2
θl
+
(

∂ΔΦpps

∂ρds

)2
σ2
ρds

+
(

∂ΔΦpps

∂fw

)2
σ2
fw

(9)
being σθl , σρds

, and σfw the standard deviations of θl, ρds,
and fw, respectively. The three partial-derivative terms of (9)
are analytically derived and discussed in Appendix B using, as

an upper bound, the linear-mixing model for the snow relative
permittivity described in Appendix A.

III. METHODOLOGY

The previous section was dedicated to the description of
data and DInSAR forward models. Starting from that analysis,
this section will be devoted to the illustration of the proposed
inversion approaches that will be applied in the next sections.

A. Retrieval Methodology

The adopted processing methods include DInSAR standard
processing schemes, inversion methods to obtain snow proper-
ties estimates from SAR sensor measurements, decision tree,
and validation steps. Three main branches are visible in Fig. 4.

1) SAR and DinSAR data processing modules.
2) SCA classification modules.
3) Snow cover parameter estimation modules.
For the retrieval processes, we have opted for two separate

ANNs as inversion methods [60]: one for the snow classification
and one for the SH and density estimation. Indeed, the diagram
of Fig. 4 can be easily adapted, with minor modifications, to
represent other retrieval methods, for instance, based on ana-
lytical and statistical approaches as discussed later. The overall
ANN-based retrieval scheme produces for the whole area.

1) Dry/wet SCA estimated maps.
2) SH estimated maps.
3) SD or SWE estimated maps. Each step is discussed in what

follows.
To properly handle data fusion, Fig. 4 shows the SAR-based

integrated approach for the ANN retrieval of SCA, type, height,
and density, coupling Alpine3D model and auxiliary data. Input
sources include the following.

1) Data from satellite SAR.
2) Data from auxiliary remote sensing observations such as

spaceborne optical and near-infrared sensors (these data
are used for the training of the ANN, which performs the
snow cover classification and also to validate results).

3) Data products derived from satellite data such as DEMs
and land cover classification maps (these data are used
within the ANN to improve the precision of the results).

4) Data from numerical models for snow cover evolution
simulations (these data are used for the physical-analytical
snow model, which requires the knowledge of some data
not retrievable with satellites like SD and liquid water
fraction).

5) Ground-based data (e.g., in situ measurements: these data
are used to validate results). As mentioned, all data listed
in Tables II and III have been reprojected and bilinearly
interpolated onto a common resample grid with a linear
resolution of about 100 m [1], [3].

As discussed in [27], the quality of the measured interfero-
metric coherence γppsm between two consecutive acquisitions
is crucial for the DInSAR method application. Incoherent gaps
between interferograms tend to degrade the overall DInSAR
signal-to-noise ratio. The possible coherence loss on snow-
covered areas may be caused by the variation of the liquid water
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Fig. 4. DInSAR-based integrated approach for retrieving snow cover properties. Symbols are defined in the main text as well as processing modules (indicated
by rectangular boxes), output products (indicated by elliptic shapes), and auxiliary inputs (indicated by rounded rectangles).

fraction due to positive temperatures, melting processes, and/or
rainfall. Coherence loss may also occur when strong winds lead
to a snow erosion and redistribution. Another possible cause
of the coherence loss is the snow structure collapse by gravity
or external forces over weak or thin snow layers. Finally, the
vegetation cover above the snow cover can also degrade the DIn-
SAR coherence due to the snow weight on the plant branches.
Using DInSAR lower frequencies, the coherence temporal loss
is slower, the penetration depth is larger due to less impact
of liquid water fraction and phase-wrapping errors are usually
smaller, but SH and density retrieval is less accurate due to longer
wavelengths. In this respect, the use of C-band SAR data may
be a good compromise.

In DInSAR, the measured differential phase ΔΦppsm at snow
surface is computed from the measured absolute phaseΦppsm of
2 repeated passes at time t1 (master image) and t2 (slave image),
that is [14]

ΔΦppsm (x, y) = Φppsm (x, y, t2)− Φppsm (x, y, t1) (10)

where Φppsm is the two-way propagation delay due to the
radar wave refraction in the snow cover, referred to snow-free
conditions (see Fig. 2).

In the flow diagram of Fig. 4, master and slave SAR SLC mea-
surements are processed according to a consolidated scheme.
Assuming a sufficiently high coherence between two SAR ac-
quisitions over the same snow-covered scene, the measured snow
interferometric phaseΔΦppsm (with the subscript m standing for
measured in the following text) at pp polarization is obtained for
the (x,y) pixel from the measured interferometric phase ΔΦppm

by (e.g., [12], [13]):

ΔΦppsm (x, y) = ΔΦppm (x, y)−ΔΦppflat (x, y)

−ΔΦpptopo (x, y)−ΔΦppatm (x, y)

−ΔΦppnoise (x, y) (11)

where ΔΦppflat and ΔΦpptopo are the differential phase differ-
ences due to changes of the relative distance between satellite

and target for flat Earth and for topography, respectively, whereas
ΔΦppatm is generated from changes in atmospheric propagation
due to ionosphere and troposphere, andΔΦppnoise is differential
phase noise.

Sentinel-1 C-band DInSAR data processing, underlined in
(10), includes the following.

1) TOPSAR splitting.
2) Orbit file application and geocoding.
3) Enhanced spectral diversity and interferogram generation.
4) TOPSAR debursting.
5) Topographic phase removal.
6) Goldstein phase and multi-look filter.
7) Masking and phase unwrapping.
8) Terrain correction.
The phase unwrapping is based on the Statistical-Cost,

Network-Flow Algorithm for Phase Unwrapping algorithm,
which is an effective and efficient two-dimensional phase un-
wrapping algorithm [63]. The atmospheric phase screen correc-
tion, derived from the Generic Atmospheric Correction Online
Service for InSAR (GACOS) products, has been applied to the
unwrapped phase values [53]. The SAR local incidence angle
information, required in (5), is obtained as a subproduct of
the interferogram terrain correction process. The final output
contains Sentinel-1 unwrapped phase interferograms, coher-
ence, and local incidence angle maps. SAR SLC data are also
processed to obtain the SAR backscattering copolar coefficients.

B. SCA Classification

For the SCA mapping, we need to address two separate
objectives.

1) Identifying the presence or absence of snow (primary
binary mask).

2) Discriminating the wet snow from dry snow within the
SCA (secondary binary mask).

When using only SAR backscattering data, the Nagler-Rott
empirical approach can be adopted [10], [28]. This technique
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uses the SAR backscattering coefficient σ0 to discriminate be-
tween wet and dry snow. For each pixel (x,y), two backscatter-
ing measurements are considered: 1) σ0

vvmref(x,y), the copo-
lar vertically polarized data from a reference SAR image; 2)
σ0

vvm(x,y), the copolar vertically polarized data from the SAR
image during the snow cover period.

According to the Nagler-Rott method, the copolar ratio
rvv(x,y) indicates the presence of wet snow in case its value
is below a threshold, and the presence of dry snow otherwise
[10]

rvv (x, y) =
σ0
vvm (x, y)

σ0
vvmref (x, y)

=

{≤ r0wet Wet snow
> r0wet Dry snow

(12)

where r0wet is the wet-snow threshold (in dB), very often
empirically set to about −3 dB. A further extension of (12)
is considering also the cross-polar backscattering coefficient
σ0
vvm(x, y) and θl so that the combined ratio rc is given by

[28]

rc (x, y, θl) = W (θl)
σ0
vh (x, y)

σ0
vhref (x, y)

+ [1−W (θl)] rvv (x, y)

(13)
where W is an empirically derived angular weighting tree func-
tion [28]. To identify the wet snow cover, the ratio rc(x, y, θl)
is typically set below the threshold of −2 dB.

A limitation of the Nagler-Rott approach is the exploitation
of SAR backscattering data only. From Sentinel-1 DInSAR
acquisitions, we can also extract the vv-copolar differential phase
difference ΔΦvvsm and coherence γvvsm as well as integrate
auxiliary data available from Table II. To perform an effec-
tive data fusion, we have designed an ANN and combined
it with a fuzzy logic algorithm to obtain snow/no-snow and
dry-snow/wet-snow cover maps.

The proposed Snow Cover Classification ANN (SCC-ANN)
employs a feed-forward backpropagation architecture with a
Bayesian regularization. The SCC-ANN is composed by a sin-
gle hidden layer with 14 neurons using a sigmoid activation
function. Formally speaking, we can write for each pixel (x,y)

x̂scc (x, y)=

[
f̂SC (x, y)

f̂w (x, y)

]

=ANNSCC

{
ymSAR (x, y) ;yap (x, y)

}
(14)

where x̂scc(x, y) is the estimated snow cover classification
parameter vector, whereas ymSAR(x, y) and yap(x, y) are the
input data parameter vectors extracted for each pixel from
Sentinel-1 SAR observations and a priori auxiliary data in
Table II, respectively. Specifically,

1) The input measurement vector ymSAR(x, y) includes: i)
DinSAR coherence γvvsm(x,y); ii) SAR copolar backscat-
tering coefficient σ0

vvm(x,y) for master and slave images;
iii) SAR backscattering cross-polar coefficient σ0

vhm(x,y)
for master and slave images; iv) SAR backscattering
copolar coefficient σ0

vvmref(x,y) at the reference (no-
snow) date; v) SAR backscattering cross-polar coefficient
σ0

vhmref(x,y) at the reference (no-snow) date.

2) The input vector yap(x, y) includes: i) local incidence
angle θl(x,y); ii) SRTM DEM data htopo(x,y); iii) CORINE
land cover labels Lc(x,y).

3) The output vector x̂scc(x, y) includes two snow parame-
ters: i) the fractional snow cover (FSC) fSC(x,y), that is the
percentage of snow cover for each pixel; ii) the volumetric
liquid water fraction fw(x,y), that is the percentage of liquid
water in a unit volume of snow.

To train SCC-ANN, the output variables fSC(x,y) and fw(x,y)
have been extracted from MODIS and Alpine3D respectively,
after a bilinear interpolation and resampling onto a common grid
at 100-m resolution. By selecting more than 10.000 samples
within the area/period of interest and dividing the whole set
into a validation (15%) and test (15%), the SCC-ANN shows
relatively good results, as discussed later.

Based on the SCC-ANN estimated f̂SC(x, y), we can perform
the first task to identify the presence/absence of snow (primary
binary mask). This can be accomplished by a simple FSC
threshold algorithm, like the one of Nagler-Rott in (12), that
is

f̂SC (x, y) =

{≤ f0snow Snow absence
> f0snow Snow presence

(15)

where f0snow is an arbitrary threshold (in %), set to an optimal
value during the training stage (typically between 5% and 25%).
The SCA is finally computed by summing up all the snow pixels
satisfying snow presence in (15).

We can perform the second task to discriminate the dry/wet
snow (secondary binary mask) using the SCC-ANN estimated
fSC(x,y) and f̂w(x, y). Instead of relying on a fixed threshold for
the fraction of water, we have adopted a fuzzy logic approach
also involving the snow surface temperature Ts(x, y) as a third
parameter coming from the Alpine3D simulations. Fuzzy logic
is a form of many-valued logic in which the truth value of
variables may be any real number between 0 and 1, extending
de facto the Boolean logic [62]. Fuzzy logic models or sets
are an extremely convenient and suitable form of representing
uncertain information. Two membership functions Mw and Mt

are defined for the snow water fraction and snow surface tem-
perature, respectively:{

Mw

[
f̂w (x, y)

]
= Ramp

[
f̂w (x, y) , w1, w2,

]
Mt [Ts (x, y)] = Ramp [Ts (x, y) , t1, t2,]

(16)

where in our case the coefficients are w1 = 0.1%, w2 = 0.8%,
t1 = −0.2 °C, t2 = −0.1 °C, being Ramp the ramp function

Ramp (x, a, b) =

⎧⎨
⎩

0, x ≤ a
x (b− a)− a/ (b− a) , a < x ≤ b

1, x > b
.

(17)
If the inference function I is defined through a multiplicative

formula by means of

I
[
f̂w (x, y) , Ts (x, y)

]
= Mc

[
f̂w (x, y)

]
Mt [Ts (x, y)]

(18)
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then the following defuzzification rule is applied to the inference
function:

I
[
f̂w (x, y) , Ts (x, y)

]
=

{
> I0 Wet snow
≤ I0 Dry snow

(19)

where the threshold I0 is usually set to 0.5, equal to a uniform
probability of the 2 fuzzy states.

C. SH and Density Estimation

Once the SCA and wet/snow mask is obtained, we can ap-
proach the estimation of Δhs(x, y) for each image pixel from
SAR and DInSAR observations. In this respect, satellite optical
data and products are not useful due to the high snow and cloud
extinction at those wavelengths. Microwave remote observations
are the only ones that can provide a physically based estimate
of the snow depth.

The artificial Neural Network Inversion (NNI) method is
based on the use of an ANN, as already done in Section III-B.
The snow depth estimation operation is performed by a dedi-
cated neural network, named SnowPack Estimation ANN (SPE-
ANN). The architecture of the SPE-ANN is like the SCC-ANN
one, using a Bayesian regularization with 1 hidden layer and 14
neurons.

Formally speaking, we can write for each pixel (x,y)

x̂spe (x, y) =

[
Δĥs (x, y)
ρ̂s (x, y)

]

= ANNSPE {zmSAR (x, y) ; zap (x, y) } (20)

where x̂spe(x, y) is the estimated snow cover parameter vector,
whereas zmSAR(x, y) and zap(x, y) are the input data parame-
ter vectors extracted for each pixel from SAR observations and
a priori integrative data in Table II, respectively. Specifically, for
Sentinel-1 SAR data

1) input vector zmSAR(x, y) includes: i) DinSAR coherence
γvvs(x,y); ii) DInSAR co-polar unwrapped differential
phase ΔΦvvs(x, y); iii) DInSAR cross-polar unwrapped
differential phase ΔΦvhs(x, y).

2) input vector zap(x, y) includes: i) local incidence an-
gle θl(x,y); ii) atmospheric water vapor correction maps
ΔΦatm(x, y), derived from the GACOS algorithm; iii)
SRTM DEM data htopo(x,y); iv) CORINE land cover
labels Lc(x,y).

3) output vector x̂spe(x, y) includes two snow parameters:
i) snow relative height Δĥs(x, y); ii) SD ρ̂s(x, y).

To train SPE-ANN, the output variables Δĥs(x, y) and
ρ̂ds(x, y) have been extracted from Alpine3D, after a bilinear
interpolation and resampling onto a common grid at 100-m
resolution.

To intercompare NNI with other estimation approaches, we
have implemented the following inversion algorithms:

1) Physical-Analytical Inversion (PAI);
2) MonteCarlo-based Linear Regressive Inversion (LRI-

MC);
3) Alpine3D-based Linear Regressive Inversion (LRI-A3);
4) MonteCarlo-based Max Likelihood Inversion (MLI-MC);
5) Alpine3D-based Max Likelihood Inversion (MLI-A3).

A brief description of the these inversion algorithms is given
hereafter.

1) The PAI algorithm is obtained by analytically inverting
the DInSAR equation in (5), that is:

Δĥs (x, y) =

1

ΔΦppsm (x, y)

cos θt

2k
(√

εRrs − sin2θl − cos θl

) .

(21)

The PAI inversion algorithm requires that θl and θt are
known, but more importantly an assumption on ρds and
fw to estimate εRrs in (21) (see Appendix A). The latter
parameters are not usually known, and their arbitrary
assignment constitutes the main limitation of this inversion
method.

2) The LRI algorithms are based on the statistical linear-
regression approach, described in the following equation:

Δĥs (x, y) = ah0 + ah1 ΔΦppsm (x, y) (22)

where the regression coefficients ah0 and ah1 are derived
from the DInSAR forward model simulations.
The latter can be based on: 1) a MonteCarlo random
approach, where the input model parameters (i.e., hs, ρds,
fw in (5) using (A.2)) are uniformly varied between a
minimum and a maximum value (the algorithm is then
named LRI-MC); 2) Alpine3D numerical outputs, where
the same input model parameters are provided by the
Alpine3D simulations described in Section II-D (the al-
gorithm is then named LRI-A3).
In the LRI-MC, we have set these ranges:
0.05≤Δhs≤1.00 m, 50≤ρds≤500 kg/m3, 0≤ fw≤4%.
The main difference between LRI-MC and LRI-A3 is that
the input snow parameters are randomly selected in the
first case and physically constrained in the second case.
This implies that there are Monte Carlo triplets that do
not have necessarily a physical meaning.

3) The MLI algorithms are statistical approaches where the
error probability density function is maximized, that is
under a Gaussian hypothesis its negative argument is min-
imized [61]. If a forward model is available, minimizing
the error (or objective) function implies to minimize the
square difference between the forward model observable
ΔΦpps [derived from (5)] and the corresponding measured
one ΔΦppsm. Formally speaking, using the DInSAR ob-
servableΔΦpps(x, y), we can write the estimation through
the objective function as[

Δĥs (x, y)
ρ̂s (x, y)

]
=

argmin
{
[ΔΦppsm(x, y)−ΔΦpps(x, y)]

2
}

(23)

where argmin is argument-of-the-minimum operator resti-
tuting the elements Δĥs and ρ̂ds of the domain at which
the function values are minimized. With respect to PAI
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Fig. 5. Example of relative SH Δhs map, simulated by Alpine3D from Dec.
27, 2018 till Jan. 2, 2019.

and LRI algorithms, the MLI technique can provide a
statistical estimate of both SH and density.

As for LRI, we can distinguish again between a Monte Carlo
random and an Alpine3D model approach, defining MLI-MC
and MLI-A3 respectively. For computational purposes, the min-
imization can be carried out by searching in a pregenerated
database and setting a confidence interval to provide an associate
uncertainty.

For hs estimate, we can further investigate a method combin-
ing MLI and Alpine3D simulations. This combined approach,
called MLI-A3C, can use Alpine3D model values of SH when-
ever the DInSAR coherence ρvvs is below a given threshold
(e.g., 0.3). This approach should improve the accuracy of the
estimated Δĥs when the DinSAR coherence is too low to
provide reliable estimates of SH. The combination between MLI
estimates and Alpine3D model values can be linearly weighted
by the coherence γvvm as follows:

Δĥs (x, y)=γvvm ΔĥMLI
s (x, y)+(1−γvvm)ΔĥA3D

s (x, y)
(24)

where ΔĥMLI
s and ΔĥA3D

s are the snow relative heights from
MLI and Alpine3D model, respectively.

IV. RESULTS

After introducing the retrieval methodologies, in this section,
we will illustrate the numerical results obtained from the forward
and inverse models.

A. Snow Cover Model Simulations

An example of a SH variation map, simulated from the
Alpine3D model between Dec. 27, 2018 and Jan. 2, 2019, is
shown in Fig. 5. The reason for the snow depletion in many
high-altitude areas is due to the lack of snowfall and temperature
raising during the considered week. This hs variation map is a

useful representation when compared with DInSAR interfero-
grams.

Fig. 6 shows bi-dimensional histogram of dry SD and volu-
metric liquid water fraction, generated by the Alpine3D snow
cover model within the area (see Fig. 1) and period of interest.
SD values range from 50 till 400 kg/m3, whereas fw spans from
0% up to 6% denoting relatively dry samples, probably due to
the exclusion of the last winter months. Note that a minimum
threshold of hs equal to 1 cm is applied to plot data in Fig. 6
(smaller values are considered not numerically significant).

The DInSAR forward model in (5) can be coupled with the
numerical outputs of the Alpine3D snow cover model for the
area and period of interest. Fig. 7 shows the simulated ΔΦpps

values using the Alpine3D dataset of Δhs, fw and ρs. The snow
cover model constrains the variability of the DInSAR differential
phase as a function of the simulated variability of the physi-
cal snow parameters. Moreover, the linear correlation between
ΔΦpps and Δhs is apparent from Fig. 7. This correlation can
be used as a precious a priori information within the inversion
process.

B. SH Estimation Expected Errors

A numerical intercomparison of the snow relative height
estimation algorithms can be carried out on simulated data. Fig. 8
shows the comparison between the estimated and “true” SH
using the Monte Carlo database for training (50% data) and test
(50% data). NNI shows a standard deviation error of about 5.7%
(with about zero mean) and an estimate correlation of 0.98. The
PAI technique with an average SD of 250 kg/m3 shows a better
estimate correlation (about 0.96) than using an extreme value
of 500 kg/m3 (0.92, not shown). The two inversion algorithms
LRI and MLI appear to be equivalently performing in terms of
estimate correlation (about 0.96), mean error, and error standard
deviation. These results confirm that the PAI approach is prone
to be more biased and inaccurate than other retrieval techniques.

The same analysis can be repeated using a realistic snow
scenario, provided by the Alpine3D model, instead of the Monte
Carlo random one, as shown in Fig. 9. The PAI algorithm
again better performs with an intermediate SD of 200 kg/m3

(estimate bias of −1.4% and estimate correlation of 0.78) than
with an upper bound SD of 430 kg/m3 (estimate bias of −1.4%
and estimate correlation of 0.74). LRI and MLI both show an
estimate bias of about zero and an estimate correlation of 0.72.
The NNI algorithm is overperforming all the other methods with
an estimate bias of 0.07% and an estimate correlation of 0.98.

C. SCA Classification

The dry/wet snow classification map, estimated by the pro-
posed SCC-ANN method, is shown in Fig. 10. With the purpose
of providing an independent reference, we have performed the
same classification using the Nagler-Rott algorithm, described
in (13), as shown in Fig. 11. A partial, but noticeable, correspon-
dence for the wet snow areas can be observed by comparing the
two maps, with a predominance of wet snow when applying the
SCC-ANN retrieval.
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Fig. 6. Bi-dimensional histogram of SD and liquid water fraction from Alpine3D snow cover model, using all simulated samples within the area (see Fig. 1) and
period of interest (Dec. 9, 2018 till Feb. 25, 2019).

Fig. 7. Same as in Fig. 3 but using liquid water fraction and SD from the Alpine3D snow cover model simulation for the whole period and AOI. (Left plot)
Incidence angle θ=20 °. (Right plot) θ=40 °.
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Fig. 8. Snow relative height error estimates using inverse models trained by
Monte Carlo random simulated database. Values of “true” SH are Monte Carlo
simulated data. (Top-left panel) Using physical analytical inversion (PAI) with
ρds= 250 kg/m3. (Lower-left panel) Using neural network inversion (SPE-
ANN). (Top-right panel) Using linear regression inversion (LRI). (Bottom-right
panel) Using maximum likelihood inversion (MLI).

Fig. 9. Same as in Fig. 8, but using the Alpine3D snow simulated data.

By applying the NNI technique to data of Figs. 10, 12 shows
the Δhs map, estimated on Jan. 2, 2019. For the considered
couple of dates, a validation has been performed comparing
results with the 32 in situ station measurements acquired on
Jan. 2, 2019. The comparison indicates a correlation of 0.77
for samples whose DInSAR coherence was found to be above
0.4 (corresponding to a subset of 9 samples on 32 total samples
available for that date).

SCA, estimated from the proposed SCC-ANN method, can
be validated by using MODIS satellite products expressed in

Fig. 10. Example of dry/wet snow cover map estimated by SCC-ANN on Jan.
2, 2019. The AOI is the same as in Fig. 1 and the snow area extent is the one
derived from SCC-ANN algorithm.

Fig. 11. Example of dry/wet snow cover map estimated on Jan. 2, 2019 with
the algorithm proposed by Nagler and Rott (2016). Magenta color indicates wet
snow, whereas cyan indicates dry snow. The AOI is the same as in Fig. 1 and
the snow area extent is the one derived from SCC-ANN algorithm.

terms of SCF at about 500-m resolution. This intercomparison
is quite cumbersome since MODIS-derived snow cover, even
though post-processed to avoid cloud coverage, shows some
residual errors that can lead to a significant underestimation of
the SCA. These effects may be dependent on the SCF percentage
threshold.



2880 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 12. Example of the snow relative height map, estimated by the NNI
technique (SPE-ANN) on Jan. 2, 2019.

Within these limitations, we have performed an intercom-
parison between MODIS SCF and SCC-ANN SCA estimates
using 50% of the available dataset. Apart from probability of
detection (POD) and false alarm ratio (FAR), we can also use
the classification accuracy ACC derived from the confusion (or
contingency) matrix elements, as follows [60]:

ACC =
TN + TP

TN + TP + FN + FP
(25)

where TN represents the number of True Negatives, TP repre-
sents the number of True Positives, FN represents the number of
False Negatives, and FP represents the number of False Positives.

Using a MODIS SCF threshold of 1% as a reference, nu-
merical results show that, for the SCC-ANN neural network
approach, POD is 0.451, FAR is 0.04 and ACC is 0.78. When
increasing the MODIS SCF threshold to 20% and 50%, POD
becomes, respectively, 0.55 and 0.60, FAR is 0.11 and 0.24 and
ACC 0.83 and 0.87. As mentioned, the POD should be read with
caution, but the accuracy is quite high and the FAR is relatively
low.

D. SH and Density Estimation

Considering the whole period from Dec. 9, 2018 till Feb. 25,
2019, we have at disposal 211 in situ measurements of SHs and
densities within the AOI, shown in Fig. 1. In order to validate
results, the SCC-ANN and SPE-ANN neural network retrieval
methods can be applied to retrieveΔhs andρs in correspondence
of each ground snow-measurement station.

To quantify the comparison, 4 further error statistical indexes
are used to evaluate the overall performance during the consid-
ered season. The estimate error can be defined as

δ (x, y, t) = Δhsm (x, y, t)−Δĥs (x, y, t) (26)

where Δhsm(x, y, t) and Δĥs are the measured and estimated
relative SHs, respectively, at the location (x,y) and time t. The
error metric consists of the error bias bδ , the root mean square

Fig. 13. Bar diagram of error indexes (error bias, RMSE, correlation, and IA)
for the snow relative height estimation using the different inversion methods:
PAI, LRI, MLI-MC, MLI-A3, MLI-A3C, and SPE-ANN using in situ snow
station “true” data between December 9, 2018 and February 25, 2019.

Fig. 14. Same as in Fig. 13, but for the SD ρs estimation using MLI-MC,
MLI-A3, and SPE-ANN.

error (RMSE) rδ and the correlation coefficient ρδ , defined as⎧⎨
⎩

bδ = < δ (x, y, t) >

rδ = < [δ (x, y, t)]2 >

ρδ = < Δhsm (x, y, t)Δĥs (x, y, t) > /σhmσh

(27)

where the angle brackets represent the ensemble averaging over
time (number of interferograms) and space (snow measurement
sites), where σhm and σh are the standard deviations of Δhsm

and Δĥs, respectively. Moreover, the index of agreement (IA)
parameter can be useful to provide a comprehensive assessment
of the degree of similarity between estimates and measurements,
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Fig. 15. Intercomparison of ANN-based snow retrieval with in situ data. (Top panel) Average time-cumulated SH as a function of available overpass dates (see
Table II), obtained as a mean of all available in situ data and from all the snow-height retrieval algorithms compared in Fig. 13 (i.e., PAI, LRI, MLI-MC, MLI-A3,
MLI-A3C, and SPE-ANN). (Bottom panel) Average snow densities as a function of available overpass dates, obtained as a mean of all available in situ data and
from all the snow-density retrieval algorithms compared in Fig. 14 (i.e., MLI-MC, MLI-A3, and SPE-ANN).

and is defined as [64]

iδ=

〈[
Δĥs (x, y, t)−Δhsm (x, y, t)

]〉2
〈(∣∣∣Δĥs (x, y, t)−〈Δhsm (x, y, t)〉

∣∣∣+|Δhsm (x, y, t)|
)〉2
(28)

being 0≤iδ≤ 1 where 0 indicates no agreement and 1 indicates
complete match.

Using the in situ validation set, Fig. 13 shows a bar diagram
of the performance indexes bδ, rδ , ρδ , and iδ for the Δhs
estimation, according to different inversion algorithms. The
diagram includes six of the inversion approaches, described
in Section III and compared in this study, that is, SPE-ANN
(neural network) against PAI (physical analytical), LRI (linear
regression), MLI-MC (maximum likelihood trained with Monte
Carlo), MLI-A3 (maximum likelihood trained with Alpine3D),
and MLI-A3C (maximum likelihood trained with Alpine3D and
combined with Alpine3D).

Fig. 13 shows that, for the hs retrieval, the NNI estimation
method provides the best performances for all considered four
error indexes with a bias of about 0.7 cm, RMSE of about 17 cm,
correlation of about 0.5, and IA of about 0.6. The second-best
approach is the combined MLI-A3C followed by MLI-A3 and
MLI-MC with the PAI inversion algorithm showing the worst
estimation capability with a bias of about −2 cm, RMSE of
about 30 cm, correlation of about 0.05, and IA of about 0.4.
The behavior of PAI is indeed expected to be the worst due to
the assumptions that have to be necessarily made on the SD, as
discussed previously.

Results for the SD are similarly shown in Fig. 14, even though
only three algorithms, providing SD retrieval, are compared
(namely, MLI-MC, MLI-A3, SPE-ANN). For the SD estimate,
the results obtained from the SPE-ANN neural network ap-
proach are again better than maximum-likelihood, with an IA of
about 0.85.

Fig. 15 finally shows the average time-cumulated snow as a
function of available overpass dates, obtained as a mean of all
available in situ data and from all the SH and density retrieval
algorithms compared in Figs. 13 and 14. Relative SH retrievals

are converted into snow absolute height by starting from the
zero value at the initial date on December 9, 2018. Standard
deviations of all estimates at each site at a given date for SH and
density are also shown in Fig. 15.

These plots visually confirm what has already been dis-
cussed about the capability of ANN-based approaches to better
follow the accumulation and ablation of the snow deposit due to
snowfall and melting and/or mobilization factors, respectively.
In terms of estimate correlation with in situ measurements, the
SPE-ANN technique shows a value equal to 0.49 using all 211
total available samples (i.e., when no subselection based on a
coherence threshold is performed) that becomes about 0.55 for
the sample subset whose DinSAR measured coherence is above
0.4 (corresponding to a subset of 42 samples on 211 samples
totally available).

V. CONCLUSION

This work has been devoted to developing a new approach
for the estimation of snow cover extent, SH, and SWE, which
combines C-band SAR Sentinel-1 satellite data coupled with
numerical snow cover model data using ANNs. The AOI is
within the Italian central Apennines, which is novel to this
kind of studies. Besides the SAR C-band data, auxiliary data
sources adopted for this study include optical sensor data
(MODIS), atmospheric correction data (GACOS), land cover
data (CORINE), and DEMs.

An ANN-based approach has been developed for both wet
and dry SCA classification and estimation. Such approach has
been compared with other physical and statistical inversion
approaches. For the SCA classification, the proposed ANN-
based method has been combined with a fuzzy-logic scheme
to discriminate between dry and wet snow. For SH and den-
sity estimation, the proposed ANN-based method has been
compared with a physical-analytical method, linear regression-
based methods, and maximum likelihood methods. Synthetic
forward model simulations obtained using a uniform proba-
bilistic distribution (Monte Carlo database), as well as using
snow cover model simulations (Alpine3D database), have been
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used for training purposes in the SH and density estimation
methods.

The AOI, in the Italian central Apennines, has been ana-
lyzed with a spatial resolution of 100 m using three months of
the 2018–2019 winter. SCA retrieval has been validated using
MODIS satellite snow cover maps, obtaining accuracies from
0.78 up to 0.87 when discriminating between snow-covered
areas and snow-free areas. Maps of dry and wet snow cover ob-
tained from the SCC-ANN have been compared with analogous
maps obtained from the Nagler-Rott classification methodology,
noting a substantial similarity in SCAs, with more wet snow sub-
areas detected when using the SCC-ANN retrieval. SH estimates
have been validated using measurements from more than 200 in
situ observations. Imposing a DInSAR coherence larger than
0.4 (corresponding to 42 samples out of a total of 211 samples),
we have obtained an estimate correlation value of 0.55. The
ANN-based overall error has a bias and a root mean square
equal to about 0.5 and 20 cm for SH and to 5 and 80 kg/m3 for
SD. Worse results mainly depend on the low DInSAR coherence
values, as well as on snow melting effects and meteorologically
driven changes of snow state and accumulation.

The main advantages of a DInSAR-based retrieval of snow
cover are the achievable spatial resolution, the availability of
data in all weather conditions, and the capability of snow layer
probing (depending on the SAR frequency). On the other side,
the main DInSAR drawbacks consist of relatively small swaths
and long revisit periods, causing a coherence loss in the inter-
ferograms and, ultimately, unreliable estimates.

However, the growing interest in SAR satellite missions and
the current trend in deploying increasingly large satellite constel-
lations could gradually reduce this limitation up to acceptable
levels for snow cover retrieval applications.

Future developments of this work will include the extension of
the proposed approach to other SAR missions, possibly not only
at C band, but also at L and X band. By adopting a multifrequency
and multimission SAR approach, we might overcome, totally or
in part, some of the limitations we encountered in the present
work.

APPENDIX

A. Snow Permittivity Models

Snow relative permittivity can be calculated directly from dry
SD for the case of dry snow. A well-accepted model for dry
snow relative permittivity real part εRrds using only dry SD ρds
is expressed by, [27], [55], [56]

εRrds =

{
1 + a1ρds + a2ρ

3
ds ρds ≤ ρ0[

(1− rice) a
1/3
3 + ricea

1/3
4

]3
ρds > ρ0

(A.1)

where rice = ρds/ρice, a1 = 1.5995 cm3/g, a2 = 1.861 cm9/g, a3
= 1.005, a4 = 3.179, and ρice = 0.917 g/cm3. The dry density
threshold ρ0 is equal to 400 kg/m3 [note that in (A.1) ρds is
expressed in g/cm3].

In general, especially during the melting periods, snow is not
dry due to the presence of a liquid water fraction. A simplified
frequency-dependent model of snow permittivity is based on

the linear mixing (LM) approach that, for the (wet) snow, can
be formulated as follows [12]:

ε
(LM)
Rrs (f) = εRrds (1− fw) + εRrw (f) fw (A.2)

where fw is the volumetric liquid water fraction (%), f is the
frequency, and εRrw is the liquid water relative permittivity
following the Debye model [13]. At C band, the pure water
value of εRrw is about 66.7 (see later).

The LM model of εRrs can be compared with the one from
Wiesmann and Mätzler (WM) whose general formulation ap-
plies also in wet snow conditions. The WM model exploits
the water relaxation spectrum so that the frequency-dependent
snow relative permittivity εRrs, for small values of fw, can
be decomposed in four additive terms, one of them being the
expression for dry snow in (A.1), that is [55]

ε
(WM)
Rrs (f) = εRrds +Re {εRra (f) + εRrb (f) + εRrc (f)}

(A.3)
being Re the real part operator with εRra, εRrb, and εRrc the
Debye frequency-dependent complex terms. The latter εRrk (k
= a,b,c) is expressed by

εRrk (f) = ε∞k +
εsk − ε∞k

1 + (f/f0k)
2 (A.4)

where the Debye parameters ε∞k, εsk, and f0k are depending
on the depolarization factors. Details can be found in (53)–(57)
of the WM-cited paper [55].

Another well-known frequency-dependent snow permittivity
model is the one proposed by Sihvola and Tiuri (ST) [58],
[59]. Based on measurements around 1 GHz scaled to higher
frequencies by using the Debye formulas, they proposed for the
snow relative permittivity real part εRrs the following formula
[59]:

ε
(ST )
Rrs (f) = ε

(ST )
Rrds +ΔεRrw (fw, f) (A.5)

where⎧⎪⎪⎨
⎪⎪⎩

ε
(ST )
Rrds = c0 + c1ρds + c2ρ

2
ds

ΔεRrw (f) =
(
c3fw + c4f

2
w

)
εRrw (f)

εRrw (f) = w0 + w1

1+(f/f0)
2

(A.6)

being c0 = 1, c1 = 1.7, c2 = 0.7, c3 = 0.1, c4 = 0.8 with w0 =
4.9, w1 = 82.8, and f0 = 8.84 GHz related to a relaxation time
of 18 ps [note that in (A.6) ρds is expressed in g/cm3 and f in
GHz].

Fig. 16 shows a comparison between the LM simplified model
and the more accurate WM and ST models for an average (250
kg/m3) and higher (500 kg/m3) dry SD. All models show a
substantial linear dependence on small values of fw (between 0
and 4%), being the LM providing values of about 60% larger than
WM and ST for water fraction larger than 3%. For low values
of fw (i.e., <1%), the overestimation of LM relative permittivity
reduces to less than 25%.

To evaluate the WM and ST approximations of snow rela-
tive permittivity, we can use the Alpine3D snow cover model
simulations which provide, among other snow parameters, both
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Fig. 16. Comparison of snow relative permittivity versus snow liquid water fraction using the LM, WM, and ST snow permittivity models. (Left panel) Using
dry SD equal to ρds= 250 kg/m3. (Right panel) Using dry SD equal to ρds= 500 kg/m3.

Fig. 17. Comparison of snow relative permittivity real part εRrs from the
ST model versus the WM model using Alpine3D simulations as inputs (see
Section II-C). Their discrepancy average and standard deviation are 0.048 and
0.098, respectively.

dry SD and liquid water fraction. Fig. 17 shows the correla-
tion between ε

(ST )
Rrs and ε

(WM)
Rrs using the Alpine3D outputs

for the area and period of interest. In this realistic scenario,
dry SD values range from 50 to 400 kg/m3, whereas the wa-
ter fraction ranges from 0% to 5% for most samples. The
discrepancy average and standard deviation between the two
snow permittivity models in (A.3) and (A.5) are 0.048 and
0.098, respectively, that is ST and WM models differ less than
3% on average. The overestimation of LM permittivity model
with respect to WM and ST models is (not shown) 0.28 and
0.33 on average, respectively, that is about 16% and 18% on
average.

B. Differential Phase Uncertainty Analysis

Starting from (5), we can use the LM snow permittivity model
for a dry SD less than 400 kg/m3 in (A.3) to derive the following

expression for the DInSAR differential phase, in the case of dry
snow, for θt = 0 °

ΔΦpps = f
4πΔR

vs
= −2k

(
cosθl −

√
εRrs − sin2θl

)
Δhs.

(B.1)
For a wet snow condition, we can employ the LM model

expressed in (A.2), a choice that may represent an upper bound
of snow permittivity values (see Fig. 16).

We can then generalize the previous expression for dry snow
as

Δ Φpps = f
4πΔR

vs
= −2k (cos θl

−
√

(1+a1ρds+a2ρ3ds) (1−fw)+εRrwfw−sin2θl

)
Δhs.

(B.2)

Using (B.2), the partial derivatives of the three terms of (9) in
Section II-C are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ΔΦpps

∂θl
= −2kΔhs

×
(

sin(θ) cos(θ)√
(1−fw)(1+a1ρds+a2ρ3

ds) + εRrwfw − sin2(θ)
− sin (θ)

)
∂ΔΦpps

∂ρds
= kΔhs

×
(

(1−fw)(a1+3a2ρ
2
ds)√

(1−fw)(1+a1ρds+a2ρ3
ds) + εRrwfw − sin2(θ)

)
∂ΔΦpps

∂fw
= −kΔhs

×
(

1+ a1ρds+a2ρ
3
ds− εRrw√

(1−fw)(1+a1ρds+a2ρ3
ds) + εRrwfw − sin2(θ)

)
(B.3)

Substituting (B.3) into (9), we get the ΔΦpps uncertainty
expression as a function of the key parameters θl, ρds, and fw.

Fig. 18 shows the sensitivity ofΔΦpps as a function ofΔhs for
lower and higher values of θl, fw, and ρds. The curves are linear
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Fig. 18. Uncertainty of DInSAR differential phase ΔΦpps versus snow relative height, using (9) varying the liquid water fraction (top panels with low value
fw= 0.1%, bottom panels with large value fw= 4%) and local incidence angle (left panels with lower value θl = 20 °, right panels with higher value θl = 40 °).
In (9), the standard deviations are set to σθl= 3 °, σfw=0.1 fw , σρds= 100 kg/m3.

and symmetric with respect to Δhs due to its proportionality
from (B.3). For a given incidence angle, a larger liquid water
fraction increases the differential phase uncertainty, especially
for lower SD. For a given SD, the differential phase is larger for
larger incidence angles. For larger water fraction, the effect of
the dry SD can be considered negligible, especially for smaller
snow thickness. The largest uncertainty of the differential phase
is expected for highly wet deep snow layers and larger incidence
angles.

C. Synoptic View of Winter 2018–2019

Fig. 19 shows that winter 2018–2019 was not abnormal
compared to 1981–2010 mean.

Indeed, during December 2018, the Central Apennines were
mainly influenced by a high-pressure system which caused a
positive temperature anomaly and a deficit of precipitations.
January 2019 instead was dominated by a low-pressure system
which brought low temperatures and a positive precipitation
anomaly. During February, again, a high-pressure system caused
a positive temperature anomaly and a small deficit of precipita-
tions.

Thus, monthly anomalies compensate each other and winter
2018–2019 results to be in line with the average of past winters.

D. Estimating Mean Snowpack Density From Snowpack Top
Layer Density

The density data collected daily by the Meteomont service
unfortunately refers only to the snowpack top layer, thus they
are not representative of the mean snowpack density.

To overcome this problem and to be able to use the snowpack
top density observations for validation, we used an independent
dataset of snowpack vertical profiles, still provided by the Me-
teomont service, to find a relation between the top and mean
snowpack density values.

The new dataset consists of 138 vertical stratigraphies of the
snowpack properties done during winters 2018–2019, 2019–
2020, and 2020–2021, which include the SD of each layer
identified in the snowpack. The stratigraphies are done weekly,
and since just a few of them occurred on the same day of SAR
acquisitions, we could not use them for validation.

Thus, for each vertical profile, we calculated the mean density
and we extracted the density of the top layer. Then we compared
top and mean density obtaining a correlation coefficient equal
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Fig. 19. Synoptic view of the situation of winter 2018–2019 is shown throughout the 12 panels. The columns of the figure represent the 500 hPa geopotential
height anomaly, the 850 hPa temperature anomaly, and the surface precipitation anomaly. The rows represent the December-to-February composite anomaly,
December anomaly, January anomaly, and February anomaly, respectively.

to 0.7 (see Fig. 20), and we found the following linear relation:

ρmean = 1.1ρtop + 55.5 (D.1)

where ρmean and ρtop are the mean and the top snowpack
densities, respectively.

Substituting to ρtop the density value coming from the daily
Meteomont dataset, we were able to estimate the corresponding
ρmean, and use it to validate the ANN estimations.
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