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Weighting for Hyperspectral Feature Selection

Jinjin Wang , Jiahang Liu , Member, IEEE, Jian Cui , Ji Luan, and Yangyu Fu

Abstract—Feature selection (FS) is an important way to achieve
high-precision and efficient classification of hyperspectral remote
sensing images. However, most existing FS methods use a fixed
scale to extract features and the relationship between spatial and
spectral dimensions is ignored. In fact, this correlation is useful for
classification. In this article, a multiscale feature fusion network
based on global weighting (MSFGW) is proposed in which a global
weighting mechanism is explored to catch spatial–spectral infor-
mation at multiple scales. First, the multiscale feature extraction
module composed of group convolution and dilated convolution is
utilized to extract the multiscale features. With the increase of the
dilation rate, the module takes the spatial differences at varying
scales. Second, a 3-D weighting mechanism is used to combine
the spatial and spectral correlated information for reducing the
interference of homologous and heterologous and boosting the fea-
ture discrimination ability. Then, multiscale weighted features are
fused to integrate the internal information of all bands at different
scales. Finally, the band reconstruction network is used to select
representative bands according to their entropy. The experimen-
tal results with the state-of-the-art FS algorithms on four widely
hyperspectral datasets demonstrate that the features selected by
MSFGW have obvious advantages in classification with only a few
training samples.

Index Terms—Attention mechanism, feature selection (FS),
hyperspectral image (HSI), multiscale spectral features fusion.

I. INTRODUCTION

HYPERSPECTRAL imaging is one of the most important
remote sensing detection methods because it achieves the

effective integration of target spectral acquisition and spatial
imaging. The full name of hyperspectral remote sensing is “hy-
perspectral resolution remote sensing,” which more intuitively
reflects the ability of hyperspectral remote sensing to character-
ize spectral dimension details. Therefore, hyperspectral remote
sensing is not only an important means of Earth observation
but also an indispensable component of the spatial information
network. In addition, it has also played an active role in many
tasks, such as urban mapping [1], geological exploration [2], and
military surveillance [3].
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However, hyperspectral remote sensing images have a large
number of bands, and there is a great correlation between the
bands. This makes the analysis and processing based on hyper-
spectral images (HSIs) involve a lot of computation and a heavy
computational burden. In practical classification applications,
after the number of feature dimensions increases to a certain
threshold, the performance of classification will deteriorate if
the number of features continues to increase, which is called the
“Hughes phenomenon” [4], [5]. Accordingly, feature extraction
or band selection for dimension reduction is a good choice to
overcome the above problems [6].

Feature extraction [7] achieves the purpose of dimensionality
reduction by performing different forms of function mapping
on the original features. Compared with feature extraction tech-
niques, the features obtained by feature selection (FS) [8], [9]
are subsets of the original set of bands, so the physical meaning
of the original bands is preserved. Therefore, this article mainly
discusses the related issues of band selection.

According to the different FS methods, the band selection is
divided into rank-based, cluster-based, search-based, etc. [10].
The rank-based FS method usually quantifies and sorts all the
bands according to a certain evaluation criterion and selects the
high-priority bands according to the sorting index threshold. For
example, maximum variance principal component analysis [11],
sparse representation (SpaBS) [12], [13], and geometry-based
BS (OPBS) [14]. The selection result is mainly influenced by
the ranking criteria. The search-based FS method regards FS as
the multiobjective optimization problem, which is essentially an
optimization problem of a criterion function, e.g., multiobjective
evolutionary algorithm [15], quantum search algorithm [16], and
particle swarm optimization [17], [18]. The search process is
usually time-consuming. The cluster-based FS method divides
the spectrum into multiple clusters according to the task re-
quirements from the perspective of considering the similarity
between the bands. Their typical ones are sparse nonnegative
matrix factorization clustering (SNMF) [19], affinity propaga-
tion clustering [20], [21], and (K-means) clustering [22], [23].
Nevertheless, the existing FS methods have problems, such as
large computation, high similarity, and easily falling into local
optimal solutions.

Recently, convolutional neural networks (CNNs) [24], [25]
in deep learning have received extensive attention by trans-
forming initial “low-level” feature representations into abstract
“high-level” representations through multilayer convolutional
network structures. This characteristic is suitable for solving
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the complex problem of band FS in HSI data. Zhan et al.
[26] proposed the algorithm to apply CNN to band selection
first, which models the relationship between bands by a simple
combination of convolution and pooling. BSNet-Conv [27] first
introduced the attention mechanism into band selection, which
uses the attention mechanism to consider the global information,
and simulates the global nonlinear correlation between spectral
bands instead of estimating each band independently. However,
the method is weak in capturing long-range contextual infor-
mation in both spatial and spectral directions. On this basis,
Roy et al. [28] utilize a dual attention mechanism (DAM) to
capture long-range nonlinear contextual information in spectral
and spatial directions and achieves information weighting in
both channel and spectral dimensions. Objects at different spatial
scales have their specific spectral features, but most algorithms
do not address the spatial scales of various objects. They use a
uniform spatial scale to measure the feature information of all
objects, which may affect the choice of representative bands.

Inspired by the above research, in this article, a multiscale
fusion network based on global weighting (MSFGW) is pro-
posed to solve the mentioned problem. Based on the assumption
that all bands can be completely reconstructed from a subset
of bands, the appropriate band subset is selected according
to the contribution to the band reconstruction. First, MSFGW
applies a multibranch module consisting of group convolutions
and dilated convolutions to extract features with representa-
tion ability, fully considering the spatial structure and spatial
correlation of the target object. Then, to enhance the impact
of useful features and reduce the information dispersion, the
3-D convolution is used to enhance the information interaction
between channel and spatial. Finally, the features at different
scales are fused by integrating the information flow from dif-
ferent branches, revealing the inner connections of all bands.
The proposed model achieves state-of-the-art on several chal-
lenging datasets, demonstrating the effectiveness and superiority
of the method. The main contributions of this article are as
follows.

1) The multibranch convolution module is employed to ex-
tract various spectral features on different spatial scales. A
series of spectral features are extracted under the effect of
dilation rate and grouped convolution. As the dilation rate
increases, the obtained feature data cubes acquire the spec-
tral feature information of the features at an incremental
scale.

2) The information selection mechanism of human eye vision
is simulated by using 3-D attention to realize spatial at-
tention and channel attention together. Weights are applied
among channel, spatial width, and spatial height to realize
the combination of spatial and spectral information and
reduce information loss.

The rest of this article is organized as follows. We first define
the notations and review the basic concepts of group convolution
and dilated convolution in Section II. Second, we introduce
the proposed MSFGW for hyperspectral band selection in Sec-
tion III. Next, in Section IV, we explain the experiments on four
hyperspectral datasets and compare them with many existing FS
methods. Finally, Section V concludes this article.

II. PRELIMINARY

A. Definition and Notations

For convenience, in this article, the 3-D HIS cube is rep-
resented as I�RW×H×C, where W and H are the length and
width of the band image, respectively, and C represents the
number of bands. So, I can be regarded as the set containing
C band images B = {B1, B2, . . . BC}. The target of the band
selection is to select a subset D from the set B that meets the
task requirements, where D consists of b bands and satisfies
D ⊆ B, D�RW×H×b. In addition, only considering point pixels
will ignore the information related to the spatial arrangement
of pixels in the scene. Therefore, in the data processing stage,
a 3-D neighborhood block P�RS×S×C is extracted from the
original image I. Taking the spatial position x(i, j) as the center,
where i = 1, 2, …, W and j = 1, 2, …, H, its ground-truth
label is determined by this pixel. For convenience, the input and
output of the neural network are represented by tensors. For
example, the input of the convolutional layer is represented as
X�RN×M×C, where N×M is the spatial size of the input feature
map, and C is the number of channels.

B. Group Convolution

HSIs have the typical characteristics of a large amount of data,
so the convolution processing based on HSIs is computationally
intensive. Group convolution [29] can effectively alleviate this
problem without affecting the results.

The inspiration for group convolution comes from Inception
[30] and AlexNet [29] that separates the convolution of channel
dimension and spatial dimension. The feature mappings ob-
tained by different convolutional paths are less coupled with each
other and the features of interest are different, so better results
can be obtained. As the convolution can be split into multiple
paths, the model can be trained on multiple GPUs in parallel.
Moreover, the model parameters will decrease as the number of
groups increases, so it has the characteristics of efficient training.

As shown in Fig. 1, Fig. 1(a) represents the standard con-
volution operation. Suppose the size of the input feature
is H1×W1×C1, where the size of the convolution kernel
is h1×w1×C1, and the number is C2. The final output is
H2×W2×C2. Then, the parameter quantity of the convolu-
tional layer is h1×w1×C1×C2. Fig. 1(b) represents the group
convolution operation. Assuming that the input feature map
is divided into two groups, the input feature size of each
group is H1×W1×(C1/2). The size of convolution kernels is
h1×w1×(C1/2), and the number is (C2/2). The output feature
map size of each group is H2×W2×(C2/2). The parameters
of the two groups of convolutions are h1×w1×(C1/2)×(C2/2)
×2 = (h1×w1×C1×C2)/2. From the above example, it can be
concluded that the parameter amount of the group convolution is
1/g of the regular convolution, where g is the number of groups
(the number of groups in Fig. 1(b) is 2).

C. Dilated Convolution

In the deep convolution network, downsampling (such as
pooling) is performed to increase the receptive field and reduce
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Fig. 1. Flowchart of different convolution methods. (a) Convolution. (b) Group
convolution.

Fig. 2. Schematic diagram of convolution with different dilated rates.

the computation frequently. Although the receptive field can be
increased in this way, the spatial resolution will be reduced,
which will directly affect the subsequent application of HSIs.
To expand the receptive field without losing resolution, dilated
convolution [31], [32] is utilized to retain more feature map
information. Assuming that a variableα is used as the expansion
coefficient to measure the dilation convolution, the relationship
between the dilated convolution kernel size and the original
convolution is K = k + (k − 1)(α− 1), where k is the kernel size
of the original convolution, andα is the dilation rate. The dilation
rate can represent the degree of convolution kernel expansion.
As illustrated, when α = 1, 2, and 3, the receptive field of the
convolution kernel is shown in Fig. 2.

As shown in Fig. 2, although the size of the three convolutional
kernels is the same, that is 3×3, the receptive field observed by
the model is different. In Fig. 2(a), when α = 1, the size of the
convolution kernel at this time is 3×3, which is the same as
the general convolution. In Fig. 2(b), when α = 2, the size of
the convolution kernel of the dilation convolution is 5, here the

receptive field is 7×7. Similarly, when α = 3, the convolution
kernel size will change to 7, and the receptive field can grow to
11×11. From this, dilated convolution can obtain the larger re-
ceptive field without increasing the cost of parameter operation.

III. PROPOSED NETWORK

This section mainly introduces the backbone structure and
various components of the proposed band selection network,
including the multiscale feature extraction part, the 3-D feature
weighting, the feature fusion part, and the band reconstruction
network. The main idea is to extract the target features in the
multiscale spatial first. Second, different branches are weighted
in both channel and spatial dimensions based on the considera-
tion of the importance of cross-dimensional interactions between
the different bands. Then, to obtain the complete information
of all bands, the output features of each branch are fused in a
summation manner. Finally, the fused features are applied to the
band reconstruction, and the subset of bands that contribute most
to the band reconstruction is selected as the final result.

A. Multiscale Feature Extraction

Most of the existing algorithms based on CNN model use
the combination of convolution and pooling operations to learn
features, and the feature scale extracted by convolution is single.
However, in reality, the size and shape of objects in images are
different, so the features extracted from a uniform size are not
enough to meet the needs of complex situations. This requires
different sizes of receptive fields to obtain contextual informa-
tion. For images containing different objects or images with dif-
ferent resolutions, learning object features from different scales
can more compactly understand the spatial structure of objects.

Inspired by the work of the Inception model [30] and others
[33], [34], this article attempts to take target characteristics from
different scales. The Inception model first attempts multibranch
convolution with different kernel sizes, which extends the convo-
lution operation between layers of the neural network, resulting
in different sizes of perceptual fields. Similar to the Inception
structure, this section designs the multibranch module composed
of dilated convolution to extract features from different receptive
fields. The module decomposes the feature extraction of each
image patch into three different parts (branch A, branch B, and
branch C) in a manner of increasing the dilation rate to describe
the spatial characteristics of different scales.

Specifically, the multibranch feature extraction module is
shown in Fig. 3. The multibranch module consists of three
branches, and the characteristics of different scale are extracted
from the input image cube in an increasing manner. For the
input image cube X ∈ RS×S×C , apply different operations sep-
arately: F ′ : X → U1 ∈ RS×S×C , F ′′ : X → U2 ∈ RS×S×C ,
F ′′′ : X → U3 ∈ RS×S×C , whereF ′,F ′′, andF ′′′ are composed
of grouped convolution and dilated convolution. The kernel size
of the three branches is 3 × 3. However, the dilated rate of
branch A is 1, the dilated rate of branch B is 2, and the branch C
is 3. From the content of Section II, we can see that the dilated
rate has a direct relationship with the receptive field obtained
by convolution. The larger the dilated rate, the larger the size of
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Fig. 3. Overview of the proposed multibranch network for band selection.

the receptive field obtained. In this article, different dilated rates
are used to achieve the effect of multiscale feature extraction
by multibranch modules. With the action of the dilated rate,
the convolution results obtained for each branch are the same
as using convolution kernel sizes of 3×3, 5×5, and 7×7. The
finally extracted features contain context information of multiple
receptive fields without significantly increasing the number of
parameters. In addition, to reduce the amount of calculation,
group convolution is adopted. After inputting the image cube
into different branches, the same grouping is performed in the
channel dimension. Each group of images is convoluted sepa-
rately and then spliced into a complete image. The outputs of the
final multiscale feature extraction module are U1, U2, and U3,
which contain the feature information on different scales for the
next step. However, since the number of image bands in the UP
dataset is 103, it cannot be grouped. So, in the experiment of this
dataset, the operation of grouped convolution is not applied. The
experiments are carried out in the way of ordinary convolution.

B. Feature Weighting and Fusion

The rich features extracted by the multibranch module de-
scribe the characteristics of the target at different scales, but the
features are not all useful for the task inevitably. Therefore, it
is important to measure the importance of features to filter out
useful features. In prioritizing feature importance, correlation
operations are usually performed from two dimensions, channel
and spatial [35], [36]. But they often ignore the global interaction
between spectral and spatial information of bands.

In contrast to previous weighting mechanisms, we adopt a 3-D
convolution method, taking into account the interaction informa-
tion of spatial and channel. The main difference between the 2-D
convolution and 3-D convolution is the spatial dimension of the
filter sliding. In 3-D convolution, 3-D filters can move in all three
directions (the height, width, and channel) of all three directions.
At each position, the multiplication and addition of elements will
provide a value. Because the filter slides through a 3-D space,

the output is a 3-D data. The advantage of 3-D convolution is
to describe the object relationship in the 3-D space. There is
also the advantage of reducing information dispersion while
capturing important features in three dimensions. The size of
the convolution kernel is set to (1, 3, 3), the stride is set to (1, 1,
1), and the padding is set to (1, 1, 0).

In three branches, the output of the multiscale module U1, U2,
and U3 is subjected to a 3-D convolution operation

Vt = conv3d
(
Ut,Θ

t
b

)
(1)

where Θt
b denotes the trainable parameters involved in the

conv3d. Vt represents the output of the third branch, t<3. The
spatial and channel 3-D feature weights obtained by the weight-
ing module can be used to measure the characterization capa-
bility of the features. In addition, considering the importance
of the features from a global perspective, spatial and channel
information fusion can be used to maximize the retention of the
3-D information of the features. To create an interaction between
the original input and the weights, the output of the multiscale
feature extraction module is multiplied by the weight matrix to
improve important features and suppress unwanted features

Yt = Ut ⊗ Vt. (2)

The information contained in Y1, Y2, and Y3 from the three
branches are different, so the single output cannot maximize
the effect of contextual information. To make the final output
contain features of different scales, the cross-channel connection
is adopted for information fusion next. For the weighted features
from each branch, the information is integrated by a summation
function to achieve the complementarity of spectral features on
different spatial scales

Y = Y1 ⊕ Y2 ⊕ Y3. (3)

The final output Y achieves the fusion of multiscale features,
which is beneficial to uncover the real structure of all spectral
bands.
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C. Reconstruction Network

The evaluation of the selected bands is based on the assump-
tion that the spectral bands can be reconstructed sparsely with a
small number of informative bands. For the selected bands set,
if the band reconstruction is performed better, it must contain
more useful information. Therefore, to demonstrate the repre-
sentativeness of the selected bands, a reconstruction network is
applied to achieve the reconstruction from the weighted fused
images to the original spectral bands [27]. The band with the
highest entropy ranking in the final reconstruction band set is the
selected band. For convenience, the band reconstruction network
is defined as a function Φ with the multiscale weighted output
Y as input

X̃ = Φ(Y,Θc) (4)

whereΘc denotes the trainable parameters involved in the recon-
struction network. The reconstruction network is a completely
symmetric coding and decoding structure strategy in which the
encoder mainly analyzes the object information, and then the
decoder corresponds the parsed information into the final image
form. The encoder is mainly composed of the convolution layer,
pooling layer, and batch normalization layer, but the difference
is that the decoder adopts deconvolution. The encoder classifies
and analyzes the low-level local pixel values of the image to ob-
tain higher level semantic information. The decoder upsampling
the feature image containing high-order information and then
convolves the upsampled image to restore the geometric shape
of the object. To illustrate the effectiveness of the network, it is
measured by mean-square error

L1 (Θd,Θe) =
1

2Stra

Stra∑

i=1

‖xi− x̃i‖1 (5)

wherex ∈ X, x̃ ∈ X̃, X̃ ∈ RS×S×C , is the reconstructed output
for the given input X ∈ RS×S×C , and Stra is the number of
training samples. For quantitative analysis of selected subsets of
bands, the entropy and mean spectral divergence (MSD) of the
reconstructed bands were calculated. According to Shannon’s
entropy theorem, entropy is related to the image information
contained in the band. The larger the MSD value, the less
redundancy between the selected bands [37], [38]

H(ci) = −
∑

h

p(h) log(p(h)) s.t.
∑

h

p(h) = 1 (6)

where h is the gray level of histogram bins in a band consisting
of S × S pixels and p(h) is the probability that h occurs

MSD =
2

b(b− 1)

b∑

i=1

b∑

j=1

DSKL (Ci ‖ Cj) (7)

where DSKL is the symmetrical Kullback–Leibler divergence,
which measures the dissimilarity between Ci and Cj. Specifi-
cally, DSKL is defined as follows:

DSKL (Ci ‖ Cj) = DKL (Ci ‖ Cj) +DKL (Cj ‖ Ci) . (8)

And DKL(Ci ‖ Cj) is calculated from gray-level histogram
bins.

Fig. 4. Indian Pines dataset. (a) False-color image of the Indian Pines data.
(b) Ground-truth map of the Indian Pine data.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effectiveness of the proposed method, we vali-
date our experimental results on four widely used datasets. In ad-
dition to qualitative analysis, three popular quantitative analysis
standards, overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (Kappa), are also used as experimental eval-
uation indicators. To illustrate the advancement of the proposed
algorithm, it is compared with the state-of-the-art band selection
methods, such as LvaHAI [39], EGCSR_BS [40], IBRA-GSS
[41], and NGNMF-E2DSSA [42]. Furthermore, comparative
experiments of all bands are added to intuitively analyze the
performance. According to the relevant contents of the article
presented in [43], we uniformly extract 3-D patches of size 9× 9
×C for training, where band C of IP, UP, and SA datasets is set to
200, 103, and 204. FDSSC [44] is used as the classifier to verify
the classification performance of all band selection algorithms.

The entire framework is implemented in PyTorch with CUDA
10.1. For all datasets, various FS methods are independently
computed ten times, with a learning rate of 0.0001, num epochs
are 200, and batch size is 32.

A. Hyperspectral Datasets

In this section, we use four well-known HSI datasets (ie.,
Indian Pines, University of Pavia, Salinas Scene and WHU-Hi-
LongKou) to demonstrate the classification performance of the
proposed method.

Indian pine is the earliest test data for HSI classification.
In 1992, the airborne visible infrared imaging spectrometer
(AVIRIS) imaged an Indiana pine tree in Indiana, USA. The
ground object is imaged for 220 consecutive wavebands. How-
ever, since the 104–108, 150–163, and 220 bands cannot be
reflected by water, the remaining 200 bands after the removal
of these 20 bands are generally taken as research objects. The
data size is 145×145, including 16 classes of ground objects, as
shown in Fig. 4 and Table I. The spatial resolution of the image
formed by the spectral imager is about 20 m, so it is easy to
generate mixed pixels, which makes classification difficult

The data of Pavia University are a part of the hyperspectral
data of Pavia, Italy, imaged by the German airborne reflective op-
tical spectral imager in 2003. The spectral imager continuously
imaged 115 wavebands and the spatial resolution of the resulting
image was 1.3 m. Among them, 12 bands are deleted due to the
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TABLE I
NUMBER OF SAMPLES AVAILABLE IN THE INDIAN PINES DATASET

Fig. 5. Pavia University dataset. (a) False-color image of the Pavia University
data. (b) Ground-truth map of the Pavia University data.

influence of noise, so the image formed by the remaining 103
spectral bands is generally used, and the data size is 610×340.
The information on nine classes of the main ground objects is
shown in Fig. 5 and Table II.

Salinas data were taken by AVIRIS imaging spectrometer,
which imaged Salinas Valley in California, USA. Unlike the
Indian pine dataset, its spatial resolution is 3.7 m. The image
initially has 224 bands. Generally, 204 bands remain after re-
moving 108–112, 154–167, and the 224th band that cannot be
reflected by water. The size of the image is 512×217, which is
divided into 16 classes, as shown in Fig. 6 and Table III.

The WHU-Hi-LongKou dataset was collected in July 2018 in
Longkou Town, Hubei Province, China. This dataset is equipped
with an 8 mm focal length head-wall nano-ultrahigh specifica-
tion imaging sensor on the DJI Matrice 600 Pro (DJI M600 Pro)

TABLE II
NUMBER OF SAMPLES AVAILABLE IN THE PAVIA UNIVERSITY DATASET

Fig. 6. Salinas dataset. (a) False-color image of the Salinas data. (b) Ground-
truth map of the Salinas data.

TABLE III
NUMBER OF SAMPLES AVAILABLE IN THE SALINAS DATASET
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Fig. 7. WHU-Hi-LongKou dataset. (a) False-color image of the WHU-Hi-
LongKou data. (b) Ground-truth map of the WHU-Hi-LongKou data.

TABLE IV
NUMBER OF SAMPLES AVAILABLE IN THE WHU-HI-LONGKOU DATASET

drone platform. It mainly shoots for agricultural scenes, includ-
ing nine crops: such as corn, cotton, sesame, etc.

The image size is 550 × 400 pixels with 270 bands, and the
spatial resolution of the UAV hyperspectral imagery is about
0.463 m. The dataset is shown in Fig. 7 and Table IV.

B. Results on Indian Pines Dataset

To prove the effectiveness of the proposed algorithm, we
conducted two experiments using various FS methods. First,
hyperspectral classification is performed using band subsets of
different sizes, ranging from 5 to 30. Second, training samples
of different sizes are used for classification, ranging from 1%
to 25%. To ensure the reliability of the experimental results, the
training and test sets are randomly selected and each method
was run ten times independently.

1) Classification Performance With Different Numbers of
Selected Bands: Fig. 8(a)–(c) shows the average comparison
results of OA(%), AA(%), and kappa, respectively. It can be seen
that MSFGW achieves the best OA(%), AA(%), and Kappa.
When greater than 15, the classification accuracy of LvaHAI
[39] is higher than that of BSNet-Conv [27]. The results show
that the graph learning algorithm has advantages in mining HSI
band clustering structure over using spectral information alone.
From the trend of the results, compared with other methods,
the algorithm based on deep learning is powerful. In addition,

the experimental results can verify the aforementioned Hughes
phenomenon that the classification accuracy does not always
increase with the increase of the number of bands. For example,
both BSNet-Conv [27] and NGNMF-E2DSSA [42] have a clear
downward trend when the number of bands exceeds 15. This
phenomenon occurs earlier in SpaBS [12], and when the band is
greater than 10, there is a downward trend. However, MSFGW
occurs the phenomenon later than the other algorithms, which
means that the algorithm in this article is more robust and
efficient. In the interval of 20–25, the classification accuracy
is the best, which is consistent with the results of virtual dimen-
sion (VD) analysis [45], [46] evaluated using the false alarm
probability pF = 10−5.

2) Classification Performance With Different Proportions of
Training Samples: Fig. 8(d)–(f) shows the classification perfor-
mance under different percentages of training samples. In the
experiment, we fixed the band subset to 25 and changed the
training size from 1% to 25% in 5% intervals. The results showed
that MSFGW significantly outperformed other FS methods in
terms of OA(%), AA(%), and Kappa. The classification accuracy
keeps increasing as the number of training samples increases.

In Table V, the detailed classification performance of different
methods is presented by selecting the best 25 bands and using 1%
of the training samples. In the end, MSFGW achieves the highest
OA (87.36%), AA (88.32%), and Kappa (0.85). Among the 16
classes, 8 classes win, and the individual classes exceeded the
suboptimal results by 10% or 20%. The suboptimal algorithm
wins three classes, but most of them were similar to the results
of MSFGW, and the advantage are not obvious. According
to the analysis, the poor results obtained in class 4 are due
to the Corn class being similar to the Corn-min-till class and
the Grass-pasture-mowed class, thus making it easy to produce
incorrect classification results. The overall analysis of MSFGW
has no obvious disadvantages and has a strong ability to classify
various targets with a small number of training samples. Fig. 9
shows the classification results of different FS methods. The
shape of various objects is well preserved, and the internal
smoothness is higher. This proves the powerful capability of
the features extracted by MSFGW and the effectiveness of HSI
classification.

C. Results on Pavia University Data

To prove the applicability of the model, we did the same
experiment on the Pavia University dataset in this experiment.

1) Classification Performance With Different Numbers of Se-
lected Bands: We show the obtained OA(%), AA(%), and Kappa
in Fig. 10(a)–(c), respectively. As can be seen, the proposed
FS network significantly outperforms other FS methods. In
particular, after the number of selected bands is greater than
10, the classification accuracy and average accuracy results
are even superior to all bands, and the best can obtain about
2% improvements. The fact that the accuracy increases first
and then decreases with the increase of the number of bands
confirms the Hughes phenomenon exactly. MSFGW produces
a larger improvement in results compared with BSNet-Conv
[27], which also indicates that the combination of spatial and
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Fig. 8. Performance comparison of different methods with (a)–(c) different band subset sizes and (d)–(e) different training sample sizes on the Indian Pines
dataset. (a) OA. (b) AA. (c) Kappa. (d) OA. (e) AA. (f) Kappa.

TABLE V
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS USING 25 BANDS ON THE INDIAN PINES DATASET

spectral information better characterizes the internal structure
of hyperspectral responsibility. The results of LvaHAI [39] are
similar to BSNet-Conv [27], but the optimal results appear
earlier as the number of choices increases. The other algorithms
have poorer classification results with large fluctuations on this
dataset, so the algorithms are not as robust. From the curves
of changes, it can be derived that MSFGW achieves the best
classification performance when the band subset is around 15.
Similarly, according to the VD analysis [45], [46], by setting the
false alarm probability pF = 10−5, the optimal subset size for
the University of Pavia dataset is 13. It is consistent with the
experimental results in Fig. 10.

2) Classification Performance With Different Proportions of
Training Samples: Fig. 10(d)–(f) shows the classification per-
formance using different numbers of training samples. Com-
pared with other FS methods, MSFGW achieves the best classi-
fication performance. Specifically, MSFGW and all bands show
comparable performance. Under the same training samples,
such as 10% and 15%, the results are similar to all bands
overall. In Table VI, we compare the detailed classification
performance by setting the band subset size to 15 and the training

size to 1%. Finally, under the premise of limited samples, our
network achieves OA(%) of 90.23%, AA(%) of 91.36%, and
Kappa of 0.86 Meanwhile, OA(%) for all bands is 89.02%,
AA(%) is 90.2%, and Kappa is 0.88. Especially, our algorithm
wins four classes and the suboptimal algorithm wins one class
in the classification of nine classes. It can be seen from the
classification results that MSFGW has obvious advantages, and
the classification results of the nine classes are far superior to
other algorithms. At the same time, although the accuracy of
other classes is not the best, the gap is relatively small, which
proves the effectiveness of the algorithm. Fig. 11 shows the
classification results of different FS methods.

D. Results on Salinas Dataset

Similarly, we also verified the algorithm on the Salinas
dataset. Similar to the Indian Pines and Pavia University dataset,
it uses different band subsets and training samples of different
sizes for experiments.

1) Classification Performance With Different Numbers of Se-
lected Band: We show the obtained OA(%), AA(%), and kappa
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TABLE VI
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS USING 15 BANDS ON THE PAVIA UNIVERSITY DATASET

Fig. 9. Performance comparison of different FS methods on Indian
Pines Data. (a) SPABS. (b) SNMF. (c) BSNet-Conv. (d) LvaHAI. (e)
EGCSR_BS_Clustering. (f) IBRA-GSS. (g) NGNMF-E2DSSA. (h) MSFGW.
(i) Ground truth.

in Fig. 12(a)–(c), respectively. From the results, the proposed
FS network can achieve better classification performance than
SpaBS [12], EGCSR_BS_Clustering [40], IBRA-GSS [41], and
other networks. Moreover, the performance of the MSFGW
is not affected by the number of band subsets. The results of
BSNet-Conv [27] and LvaHAI [39] continue to outperform other
algorithms except for MSFGW, so deep learning algorithms
have obvious advantages in datasets of different resolutions.
The result of SNMF [19] is the worst, which has a large gap
with various algorithms, indicating that it cannot adapt to such
complex situations as hyperspectral. It also proves the powerful

capability of the proposed MSFGW. When the band set size is
greater than 20, the classification accuracy of most FS methods
does not increase anymore, which corresponds to the estimation
of VD analysis [45], [46].

2) Classification Performance With Different Proportions
of Training Samples: Fig. 12(d)–(f) shows the classification
performance under different percentages of training samples.
In this experiment, we fixed the band set to 20 and changed
the training size from 1% to 25% in 5% interval. From
the results, even if the training sample is 1%, by compar-
ing EGCSR_BS_Clustering [40], IBRA-GSS [41], and BSNet-
Conv [27], our MSFGW obtains at least 2% improvements. With
the increase of training samples, the classification accuracy is
also growing, and the gap between MSFGW and the results of
all bands gradually decreases. In Table VII, we show the detailed
classification performance of different methods by selecting the
best 20 bands and using 1% of the training samples. The Salinas
dataset contains 16 classes, MSFGW wins eight classes and the
suboptimal algorithm wins three classes. In particular, class 6
achieves 100% of the classification results, although the training
samples are limited. For classes 7, 10, 13, etc., the classification
results are close to the best ones, although they are not optimal.
The final classification accuracy of MSFGW reached the best
OA (90.63%), AA (94.86%), and kappa (0.92). Fig. 13 shows
the classification results of different FS methods.

E. Results on WHU_Hi_LongKou Dataset

To prove the effectiveness of the proposed algorithm, in
addition to the above classic datasets, the newer dataset
WHU_Hi_LongKou is also tested. To be fair, the same veri-
fication method as the above experiment is used, that is, the
classification performance of different bands and the classifica-
tion performance of different proportions of training samples.

1) Classification Performance With Different Numbers of
Selected Band: Fig. 14(a)–(c) shows the comparison results of
OA(%), AA(%), and kappa, respectively. It can be seen that
for difficult experimental data, our MSFGW still achieves the
best OA(%), AA(%), and Kappa. When the number of band
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Fig. 10. Performance comparison of different methods with (a)–(c) different band subset sizes and (d)–(e) different training sample sizes on the Pavia University
dataset. (a) OA. (b) AA. (c) Kappa. (d) OA. (e) AA. (f) Kappa.

Fig. 11. Performance comparison of different FS methods on Pavia University Dataset. (a) SPABS. (b) SNMF. (c) BSNet-Conv. (d) LvaHAI.
(e) EGCSR_BS_Clustering. (f) IBRA-GSS. (g) NGNMF-E2DSSA. (h) MSFGW. (i) Ground truth.

Fig. 12. Performance comparison of different methods with (a)–(c) different band subset sizes and (d)–(e) different training sample sizes on the Salinas Dataset.
(a) OA. (b) AA. (c) Kappa. (d) OA. (e) AA. (f) Kappa.

subsets is greater than 15, MSFGW achieves better results
than all bands, proving that with the increase of band number,
the classification accuracy does not always increase, which is
consistent with the content described in the first section. During
the whole experiment, even when using the minimum number
of bands of 5, MSFGW achieved the best results except for
all bands, and it was close to the result of all bands. When the
number of bands is around 20, the classification accuracy of most
algorithms is optimal. Among them, EGCSR_BS_Clustering
[40] and IBRA-GSS [41] perform better than other algorithms

and can achieve results comparable to all bands. Overall, deep
learning has more advantages than traditional algorithms in band
selection. When the number of bands continues to increase, the
accuracy tends to decrease that just verifies the necessity of band
selection.

2) Classification Performance With Different Proportions
of Training Samples: Fig. 14(d)–(f) shows the classification
performance under different percentages of training samples.
In the experiments, we fixed the subset of bands to 20 and
changed the training size from 1% to 25% in 5% interval. The
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TABLE VII
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS USING 20 BANDS ON THE SALINAS DATASET

Fig. 13. Performance comparison of different FS methods on Salinas dataset. (a) SPABS. (b) SNMF. (c) BSNet-Conv. (d) LvaHAI. (e) EGCSR_BS_Clustering.
(f) IBRA-GSS. (g) NGNMF-E2DSSA. (h) MSFGW. (i) Ground truth.

Fig. 14. Performance comparison of different methods with (a)–(c) different band subset sizes and (d)–(e) different training sample sizes on the WHU_Hi_LongKou
Dataset.
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TABLE VIII
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS USING 20 BANDS ON THE WHU_HI_LONGKOU DATASET

Fig. 15. Performance comparison of different methods on WHU_Hi_LongKou dataset. (a) SPABS. (b) SNMF. (c) BSNet-Conv. (d) LvaHAI.
(e) EGCSR_BS_Clustering. (f) IBRA-GSS. (g) NGNMF-E2DSSA. (h) MSFGW. (i) Ground truth.

results demonstrate the strong capability of the bands selected
by MSFGW for hyperspectral classification. When the number
of training samples is greater than 5%, the results of MSFGW in
terms of OA(%), AA(%), and Kappa surpass all bands, achieving
the best classification accuracy. As the number of training sam-
ples increases, the experimental accuracy keeps increasing. In
Table VIII, the detailed classification performance of different
methods is obtained by selecting the best 20 bands and using
1% of the training samples. MSFGW achieves the best results
of OA (97.75%), AA (94.49%), and Kappa (0.96). Compared
with all bands OA (97.27%), AA (92.97%), and Kappa (0.96),
this signifies that the complete band set contains many noisy
bands, which will damage the classification performance. Out
of nine classes, MSFGW wins four classes and the suboptimal
algorithm wins two classes. Compared with the MSFGW results,
the advantage of the suboptimal algorithm is not prominent, and
the two classes it wins are similar to the results of MSFGW. The
results of other classes are close to MSFGW. It is proved that the
band selected by MSFGW also has strong classification ability
for the WHU_Hi_LongKou dataset with similar spectra between

classes. Fig. 15 shows the classification results of different
methods. The proposed MSFGW can generate more uniform and
smoother classification maps while preserving edges. From the
details in the white boxes, it is clear that MSFGW has excellent
performance on irregular shapes and small ground objects.

F. Ablation Experiment

In this section, the effectiveness of 3-D attention is ana-
lyzed by comparison with the attention mechanisms of other
structures. Specifically, we adopt PAM [35], CAM [47], DAM
[36], and no attention mechanism (NAM) in contrast to weight
multibranch extracted features. Compare the classification re-
sults with the proposed algorithm. For fairness, 1% of the
training samples are used for all datasets, while the number of
selected bands varies among datasets. The fix number of bands
for the Salinas dataset and WHU_Hi_LongKou dataset is 20, the
fixed number of bands for the Pavia University dataset is 15, and
for the Indian Pines dataset is 25. In both cases, the down arrow
(↓) indicates that MSFGW performed significantly better, and
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TABLE IX
CLASSIFICATION PERFORMANCE GAIN (%) USING DIFFERENT ATTENTION

METHODS ON FOUR DATASETS

TABLE X
CLASSIFICATION PERFORMANCE GAIN (%) USING SINGLE-BRANCH

ARCHITECTURE ON FOUR DATASETS

the up arrow (↑) indicates that the comparison method performed
significantly better than the proposed MSFGW.

Table IX presents the classification results of the algorithm
using different mechanisms as the weighting mechanism. Com-
pared with the method without adding the attention mechanism,
the classification results of other algorithms are improved to a
certain extent, which proves the effectiveness of the attention
mechanism in FS. The results of the DAM [36] can achieve
better classification performance than PAM [35] or CAM
[47], indicating that it has a stronger advantage than channel
information in the case of sufficient spatial information and
channel information. With 3-D attention, FS is performed in
both spatial and spectral dimensions to reduce information loss,
so it is better than the attention mechanism of parallel structure.
It can be seen from the table that the proposed algorithm achieves
the best OA (%) results on all four datasets.

Table X presents the classification results of each branch
as a feature extraction module. It can be seen from the table
that extracting features using a single-size convolution is not
sufficient to characterize the complex case of HSIs. Compared
with the multibranch fusion structure of the proposed algorithm,
the classification results for single-branch structures are worse.

In addition, it also shows that different scales have various effects
on images of different resolutions, so the multibranch structure
of the proposed algorithm is more adaptable to different datasets
and more robust.

G. Discussion

Aiming at the problem of information redundancy and curse
of dimensionality in HSIs, this article proposes an MSFGW for
FS of HSIs. From the experimental results, it can be seen that the
multiscale feature extraction module composed of multibranch
convolution proposed by MSFGW can effectively utilize the
advantages of different scales and the complementarities be-
tween different scales. For example, in the Indian Pines dataset,
compared with the other existing models, MSFGW achieved the
best results for the class 9 of a few samples and the class 2 of more
samples. In addition, compared with single-channel attention
[27], MSFGW can effectively extract and integrate spectral and
spatial information in HSIs using 3-D convolution. In the four
datasets, in terms of OA, the proposed MSFGW in this article
increased by 2%, 4%, 2.5%, and 1.4%, respectively. This shows
that the features extracted by MSFGW are more representative
and have better classification performance for HSIs.

In the comparative experiments on the classification of the
four datasets, the method of this article has achieved out-
standing results for the categories of urban buildings, plants,
and roads. However, due to the influence of various factors,
there are still some categories, such as the fourth category in
Table I and the first category in Table III, which are lacking
in performance and have a gap with the optimal results. Such
as Brocoli_green_weeds_1 and Brocoli_green_weeds_2 in the
Salinas dataset, as well as Corn and Corn-min-till in the Indian
Pines dataset, etc., are difficult to distinguish in terms of semantic
features. The difficulty of distinguishing similar categories in
semantic description also interferes with the feature extraction
of deep CNN models. Therefore, it also has a certain impact on
the classification performance of the overall model.

At the same time, due to the multiscale feature network itself,
the network model has efficient multiscale feature perception
capabilities. In this complex situation, our method significantly
improves the classification ability of datasets with different
resolutions and irregular shapes compared with other methods.
Hyperspectral datasets usually contain a large number of homo-
geneous regions, the use of spatial features has a greater effect,
and spectral features can characterize the spectral characteristics
of ground objects. Therefore, using a model that jointly extracts
spatial and spectral features can yield more robust hyperspectral
visual features. In the next step of research, more attention will
be paid to improve the classification performance of the model.

V. CONCLUSION

This article presents a new FS method MSFGW for hy-
perspectral remote sensing images to explore the spatial scale
problem of various ground objects. Considering the interaction
between channels and spectral information in different bands
from a global perspective, the proposed MSFGW adopts the
multiscale dilated convolution module to extract the spectral
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features of objects at different spatial scales. Then, the comple-
mentary information from multiscale spectral features combines
into a consistent map. Finally, the bands are selected by the
contribution to the band reconstruction task. The experimental
results on four public hyperspectral datasets validate the better
performance of the proposed MSFGW method than the other
state-of-the-art comparison methods, and indicate the effective-
ness of the proposed MSFGW in FS for HSIs.
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