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Abstract—Super-resolution (SR) aims to recover a high-
resolution image from a single or multiple low-resolution images,
compensating for the limitations of satellite sensor imaging. Deep
convolutional neural networks have made great achievement in
remote sensing image SR. In this article, we propose a novel
gradient prior dilated convolutional network (GPDCN) for remote
sensing image SR, which obtains contextual spatial connections
and alleviates structural distortions. The GPDCN comprises a
multiscale feature extraction network and a feature reconstruction
network. The former employs a double-path dilated residual block
with dilation convolution to increase a receptive field, a global
self-attention module to detect long-range reliance among image
patches, and a gradient propagation network to extract high-level
gradient information. The latter uses the mixed high-order atten-
tion module to reconstruct the feature by collecting the high-order
characteristics of multiple frequency bands. Experiments with
the Massachusetts_Roads and 3K VEHICLE_SR datasets demon-
strate that the GPDCN outperforms recent techniques concerning
both quantitative and qualitative measures.

Index Terms—Attention, dilated convolution (DC), gradient
prior, remote sensing super-resolution.

I. INTRODUCTION

IMAGE super-resolution (SR) is a popular topic in remote
sensing as it is intended to regenerate high-resolution (HR)

images from corresponding low-resolution (LR) equivalents.
Obtaining HR remote sensing images has become increasingly
meaningful in a variety of real-world applications, including
resource management, environmental monitoring [1], construc-
tion planning [2], [3], and military investigation [4]. Indeed, HR
remote sensing images can contain copious amounts of vital
information critical to such applications. However, owing to
the limitation of imaging technology, the spatial resolution of a
remote sensing image usually fails to meet the accuracy require-
ments [5], [6]. In addition, a variety of factors can decrease the
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quality of remote sensing imagery, such as transmission noise
and motion blur [7]. To reduce the impact from the imaging
process, the most direct method is to equip more precise remote
sensors; however, this increases the hardware cost. As a result,
there is demand for a practical and effective strategy that tack-
les the limitations of remote sensors across different practical
remote sensing applications.

Unlike multiframe images that achieve a better resolution
output by establishing a relationship between a targeted HR
image and numerous LR images of the same scene under vari-
ous circumstances. Single-image super-resolution (SISR) must
rely entirely on only one input image without any additional
available information; this typically results in an ill-posed issue
that contains multiple image reconstruction solutions due to a
loss of information. Despite these challenges, numerous SISR
approaches have been proposed to date. They can be divided
into three broad categories [8]: interpolation, reconstruction, and
learning-based algorithms.

Interpolation-based algorithms are the most fundamental ap-
proaches to image reconstruction. Classical interpolation ap-
proaches, such as nearest-neighbor and bicubic interpolation [9],
are widely used today. Nearest-neighbor interpolation chooses
the closest pixel value for each location being interpolated, and
while the method has a quick execution time, it struggles to pro-
vide high-quality outputs. Bicubic interpolation conducts cubic
interpolation on two axes, and while it produces smoother results
with fewer artifacts than other interpolation-based methods, it
is slow. Thus, the interpolation approaches have yielded good
results by directly using prior knowledge of natural images,
but real-world satellite images with intricate details cause diffi-
culties during the reconstruction process. Simple interpolation-
based methods can result in overly smoothed edges when an
image size increases.

The vast majority of satellite SR approaches use
reconstruction-based methods to rebuild matching HR images
by extracting the valuable information in the LR image,
and combining some prior knowledge, the reconstruction
process is constrained. However, these methods primarily
depend on the prior knowledge of the HR images, such as
gradient-profile [10], edge [11], and smoothness priors [12].
Therefore, the reconstruction-based methods are usually
constrained to hand-crafted features that need manual parameter
adjustments. Therefore, it is difficult to use them to handle
complicated and changing scenes.

Learning-based algorithms have been proposed as a way to
avoid the above problems by establishing end-to-end training
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between LR and HR image pairs [13], [14], [15]. Deep learning
has some remarkable progress in image SR, for which deep
convolution neural networks (CNNs) can extract powerful fea-
ture representation capabilities. Dong et al. [16] have proposed
a deep learning method for directly learning an end-to-end
mapping between LR and HR images. Furthermore, Kim et
al. [17] have presented SR methods that uses a deeply recursive
convolutional network to improve imaging performance without
using additional parameters. Nevertheless, using CNN-based SR
models for remote sensing images results in several challenges.
First, most CNN-based methods boost performance by setting
a very deep model; however, such deep models usually cause
high computation and memory costs, limiting their practical
applications. Second, the use of dilated convolution (DC) is not
used effectively in enlarging perceptive fields and multiscale
features. Third, most CNN-based SR models insufficiently and
inefficiently use the prior knowledge of images.

Thus, this article proposes using a gradient prior dilated con-
volutional network (GPDCN) for remote sensing image SR to
solve the above issues. The model comprises an end-to-end pix-
elwise network that combines low-level detail information, high-
level semantic information, gradient information, and global
contextual information. Furthermore, the framework consists
of two phases: feature extraction and feature restoration. The
feature extraction section is a deep convolutional network ar-
chitecture that captures more powerful edge characteristics than
other methods using gradient prior information. A double-path
dilated residual block (DPDRB) extracts multiscale feature maps
from LR and gradient images during the process. In addition, a
global self-attention (GSA) module appended to each of the
first five DPDRBs considers global context relevance. Then,
the frequency-based combination of feature maps with varying
frequencies is used to reconstruct the final high-frequency details
via the mixed high-order attention module (MHOA) in the
restoration section, acted as the feature restoration section. In
summary, this article makes the following contributions.

1) A novel network, GPDCN, is proposed to address the
structural distortions and enhance the precision of remote
sensing imagery SR.

2) A unique DPDRB module is present for extracting multi-
scale feature maps without increasing the parameters via
varied dilation rates. By this module, the entire pixel data
can be covered and displayed.

3) A gradient propagation network (GPN) is designed to
recover gradient maps from LR images to HR images,
while additional supporting information is also provided
for SR.

4) A GSA block is also developed to capture global con-
textual information and, simultaneously, to fully use self-
similarity among nonadjacent pixels and improve the com-
pleteness of boundaries.

The rest of this article is organized as follows. Section II
provides a synopsis of the relevant works. Section III will detail
the proposed approach. Section IV discusses the experimental
procedures and outcomes to validate the proposed method.
Finally, Section V concludes this article.

II. RELATED WORK

A. Edge Prior

The use of edge prior has been validated in previous work [11],
which attempted to construct the gradient transfer mapping
from LR to HR images using mathematical equations. Since
an image’s sharp edges correlate to well-defined gradients
along the border, Fattal [11] tried using edge statistics to in-
fer the prior reliance of various resolutions. Sun et al. [18]
used a gradient field transformation to constrain the gradi-
ent field of the HR image and the reconstructed image. Fur-
thermore, Tai et al. [19] extended edge-directed SR by us-
ing user-supplied example texture and restoring the fine de-
tails. Kondo and Fujiwara [20] combined reconstruction- and
example-based SR to maintain natural edge structures. Yan
et al. [21] enhanced the gradient profile sharpness, an edge
sharpness metric, with a triangle model and a Gaussian mixture
model.

Undoubtedly, it is unreliable to model the mapping relation-
ships with a few parameters, especially with complicated land
covers and intricate and fragmented image details. Therefore, the
reconstructed images usually exhibit spurious artifacts or jagged
edges. Since deep learning networks are good at end-to-end pixel
transformations, several deep learning strategies have leveraged
the advantage of prior’s powerful qualities in SR assignments.
Yang et al. [22] applied an off-the-shelf edge detector in a
recurrent residual network to reconstruct fine features guided by
edges. Ma et al. [23] introduced image gradient into the GAN-
based SR network to provide additional structure information,
improving the edge details’ reconstruction ability.

B. Dilated Convolution

DC was first proposed to solve resolution reduction and
information loss problems, which often appear in pixel-level
tasks, such as image semantic segmentation. Early segmenta-
tion methods primarily conducted the pooling operation after
the convolution layers to reduce the model’s computation and
increase the receptive field of the convolution layer. However,
as the output of image segmentation is the pixel level, the output
and input sizes should be the same. Thus, the deconvolution op-
eration is commonly conducted in the latter part of the network,
resulting in more missing information. Then, DC is introduced
into semantic segmentation to solve this problem [24]. Subse-
quently, a few SR technologies have paid attention to the DC,
as it is the same pixel-level task as semantic segmentation. Lin
et al. [25] proposed a seven-layer dilated convolutional neural
network with skip connections for reconstructing the HR image
from an LR image. Mirchandani and Chordiya [26] presented
a dilation patch super-resolution generative adversarial network
by applying dilated operation in the generator architecture to
obtain high-quality features. However, these methods have not
focused on the massive potential of the dilation convolution to
extract multiscale features. Different from these methods, this
article exploits the different dilation rates to obtain multiscale
features with a double-path extraction architecture.
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C. Self-Attention Mechanisms

As a means of reallocating available resources to the most
informative segments of inputs and modeling long-range de-
pendencies, the attention mechanism was first applied in [27]
to obtain global dependencies in the machine learning task. In
addition, attention modules have been frequently used in CNNs
for a variety of tasks, such as visual question answering [28]
and image and video classification tasks [29], [30]. Attention
modules are also becoming more widespread in the image SR
field. Zhang et al. [31] applied SENet in CNNs to enhance
SR performance. Dai et al. [32] constructed a second-order
attention network (SAN) by considering the second-order char-
acteristics of features. Fu et al. [33] presented dual attention
as a technique for adaptively integrating local features with
their global interdependence in both spatial and channel di-
mensions. Even though the attention mechanism has performed
admirably in computer vision, when it comes to extracting
explicit material from small and sparse elements, a lack of
awareness of the relationship and correlation of each loca-
tion is a big problem for image SR. Consequently, we have
designed a GSA module to build the long-range correlation
by integrating a query-specific global context for each query
position.

D. SISR Algorithms of Sensing Images

SISR algorithms have gained popularity for remote sensing
images in recent years [34]. Besides applying cutting-edge
imaging technology, the SR technique is a low-cost and ef-
fective way of enhancing image quality. With the popularity
of neural networks, numerous attempts have been made to
design various architectures to obtain high-quality HR remote
sensing images through learning a mapping function between
LR and HR matches. Lei et al. [35] presented a local–global
combination network (LGCNet) for image SR that was in-
spired by the success of CNN in natural image SR. To learn
the connections between the characteristics from each recur-
sion, Chang and Luo [36] devised a bidirectional convolutional
long short-term memory layer. Jiang et al. [37] developed an
edge-enhanced GAN model EEGAN for promoting satellite
image SR reconstruction using an adversarial learning technique
that can restore the sharp edge effectively. Dong et al. [38]
proposed RRSGAN, which aligns the Ref features to the LR
features, and the texture information in the Ref features can be
transferred to the reconstructed HR images. To fuse multiscale
high-/low-dimensional features, TransENet [39] introduced the
transformer structure into the conventional SR framework and
achieved superior performance in the remote sensing field.
Zhang et al. [40] proposed a mixed high-order attention network
(MHAN) to reconstruct the details by extracting high-order
statistics. For hyperspectral imagery, Hang et al. [41] combined
a decomposition subnetwork and a self-supervised subnetwork
to construct an end-to-end SR network. Zhou et al. [42] proposed
a pyramid fully convolutional network consisting of an en-
coder subnetwork and a pyramid fusion subnetwork to enhance
the spatial resolution of low-spatial-resolution hyperspectral
image.

III. METHODOLOGY

This section provides an overview of the framework. Unlike
previous methods using sophisticated structures to form the deep
architecture, the proposed model (see Fig. 1) is divided into two
parts: a multiscale feature extraction network (the left part of
Fig. 1) and a feature reconstruction network (the right part of
Fig. 1). The feature extraction network is, in turn, divided into
two parts: a structure-maintaining network (SN) and a GPN.
The SN includes nine DPDRBs and five GSA modules. The
GPN comprises three DPDRBs to obtain multiscale hierarchical
features using different dilation rates. The feature reconstruction
network is the MHOA, consisting of several different R-order
(R = 1, 2, 3, 4) attention modules that reconstruct complicated
details. The feature fusion and propagation from the extraction
to the reconstruction are achieved through the frequency-based
feature combination method.

A. Multiscale Feature Extraction Network

The multiscale feature extraction network includes an SN and
a GPN and uses the three-band images as input. The SN begins
with a convolution layer with a kernel size of 3× 3 on the input
image. Then, nine repeated DPDRBs follow in the later part of
the network. After each of the first five layers, the feature maps
are fed into the GSA block, gathering and distributing long-range
image features. The DPDRB is inspired by multiscale residual
block [43] and DC [24]. We incorporate the feature maps from
the first, fifth, and ninth DPDRB to the GPN.

1) Double-Path Dilated Residual Block: Like image seman-
tic segmentation, a pixel-level task, SR aims to predict an
image’s unknown pixels. Conducting multiple pooling opera-
tions would lose some vital feature information, resulting in
unsatisfied reconstruction results. In addition, the standard 3× 3
kernel focuses on a small region, ignoring nonadjacent pixels’
relevance. Based on these considerations, we incorporate DC
into the DPDRB (see Fig. 2), and the DC can be considered
“convolution with a dilated filter,” which is comparable to adding
zero elements between two neighboring elements of the convo-
lutional kernel. The dilation rate d means adding d− 1 zero
elements between the nearby elements of the kernel, and the
receptive field by different dilation rates is presented in Fig. 3.
By using variable dilation rates, the different receptive fields
of each element can be achieved with the same convolutional
kernel. In the DPDRB (see Fig. 2), we adopt a continually
increasing dilation rate (d= 1, d= 2, and d= 3) to accommodate
exponentially expanding receptive fields.

The DPDRB can be illustrated as (1) and Fig. 2, which
includes two parts: multiscale feature extraction and weighted
residual connection. Given a feature Fn−1 as the input of the
DPDRB,S1 andP1 are the features through the first convolution
layer, S2 and P2 are the features through the second convolution
layer, and the final output feature Fn can be obtained as

S1 = σ
(
w1

3×3 × Fn−1 + b1
)

P1 = σ
(
w1

d3×3_2
× Fn−1 + b1

)
S2 = σ

(
w2

3×3 × [S1, P1] + b2
)
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Fig. 1. Framework of the proposed GPDCN.

Fig. 2. Framework of the DPDRB.

Fig. 3. Different receptive field for a 3× 3 kernel by setting different dilation
rate. (a) Dilation rate = 1 and receptive field = 3× 3. (b) Dilation rate = 2 and
receptive field = 5× 5. (c) Dilation rate = 3 and receptive field = 7× 7.

P2 = σ
(
w2

d3×3_2
× [P1, S1] + b2

)
F = w3

d1×1
× (w3

d3×3_3
× [S2, P2] + b3

)
Fn = λ1F + λ2Fn−1 (1)

where w and b denote the weights and bias, respectively, and the
superscripts ofw and the subscripts of b represent the layer index.
The subscript 3× 3 represents the size of the convolutional
kernel. If the DC operation is used in the convolutional kernel,
the subscript dk×k−r represents the k × k convolutional kernel
with a dilation rate of r. [S1, P1], [P1, S1], and [S2, P2] represent
the concatenation operations, and λ1 and λ2 are the learnable
parameters for weighting the input and output of the nonlinear
mapping mode, respectively.

In the multiscale feature extraction part, a double-path DC
network is adopted to extract local multiscale features by con-
ducting different dilation rates. Based on this flexible DC, not
only does the residual structure allow for bypassing abundant

Fig. 4. Illustration of the GSA module.

low-frequency information via several extraction layers, but
also λ1 and λ2 act as learnable parameters during training
to reallocate available resources toward the most informative
components of the two parts, which encourage networks to focus
on learning high-frequency information. Then, the embedding
information can be shared in the block and, thus, transmit and
fuse the image features of different scales.

2) GSA Module: The present convolutional network concen-
trates on the local region, suffering the limitation of capturing the
global relationship among the whole spatial area. Considering
the self-similarity in the long-range area in remote sensing
images, the attention mechanism is widely used in recognition
and detection tasks to aggregate the self-similar patches. Inspired
by [30], [44], and [45], the GSA block is proposed for aggre-
gating long-range feature information. The GSA block can be
illustrated as Fig. 4, and the input feature maps can be defined
as X ∈ RB×C×W×H , where B and C denote the batch size and
channel number, respectively, and W and H represent the width
and height of the input feature, respectively.

The input vectors are first fed into three 1× 1 convolutions,
and selective rewriting operations are performed to obtain three
embedding feature maps K, Q, and V in different feature
space, where K ∈ RB×(W×H)×(C/2), V ∈ RB×(W×H)×(C/2),
and Q ∈ RB×(C/2)×(W×H). To decrease the computation cost,
we set the output channel as C/2 for dimension reduction.
The attention weight matrix A ∈ RB×(W×H)×(W×H) can be
obtained by calculating the self-similarity ofK andQ as follows:

A = softmax(K)⊗ Q (2)
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where ⊗ denotes matrix multiplications. Then, we rescale the
value vector by conducting matrix multiplications on A and V ,
which can be illustrated as follows:

O = A⊗ softmax(V )

= [softmax(K)⊗ Q]⊗ softmax(V ). (3)

Then, the convolution and elementwise addition operations yield
the final output Z

Z = C1×1(O) +X (4)

where C is the 1× 1 convolution operation to adjust the channel
number to the same as X .

In addition, (5) shows the GSA’s matrix operations on a 3-
D input array, ignoring the batch size B. In the first step, for
the matrix K, Ki represents the values of all channels at the
ith pixel position in space K, and Qj denotes the values of all
channels at the jth pixel location in space Q. ⊗ is the matrix
multiplication operation. The element Aij in attention matrix A
can be viewed as the influence of the jth element of the input
feature map on the ith element, thus realizing the dependence
between any two elements of the global context. In the second
step, we conduct the matrix multiplications on attention map A
and value matrix V , where Vn represents the nth channel values
for all positions. After conducting a softmax operation on matrix
V , the matrix V S can be achieved. The multiplication processes
can be described as aggregating the nonlocal self-similarity to
achieve modeling of global long-range dependencies

Aij = softmax (Ki ⊗Qj) = softmax

⎛
⎝C/2∑

p=1

KipQpj

⎞
⎠

A = softmax (K ⊗Q)

Zmn=Am ⊗ [softmax(V )]n=Am ⊗ V Sn=

W×H∑
q=1

AmqV Sqn

Z = A⊗ softmax(V )

= [softmax (K ⊗Q)]⊗ softmax(V ). (5)

GSA blocks enhance the description of pixel features by mod-
eling long-range relationships. Optimized for the first attention
mechanism Nonlocal block [30], the GSA performs two softmax
operations to smooth the image and neutralizes the effect of the
sharp gradient map.

3) Gradient Propagation Network: The gradient of the im-
age denotes the change rate of the image pixels’ gray value along
the x-axis and y-axis. The contours of HR images are sharper
than those of LR images, as shown in Fig. 5. In other words, a
more excellent gradient value indicates a clearer margin. As an
image can be viewed as a 2-D discrete function, the difference
of the neighboring pixels can be approximately calculated as the
gradient

Gx(x, y) = I(x+ 1, y)− I(x− 1, y)

Gy(x, y) = I(x, y + 1)− I(x, y − 1)

∇G(x) = (Gx(x, y), Gy(x, y))

Fig. 5. Gradient difference of the LR image and HR image. (a) LR image.
(b) HR image. (c) Gradient of the LR image. (d) Gradient of the HR image.

Grad(G) = ‖∇G‖2 =
√

Gx(x, y)2 +Gy(x, y)2 (6)

where I(x, y) represents the pixel value at the (x, y) position;
Gx(·) and Gy(·) represent the gradient value along the x and
y axes, respectively, and a convolutional kernel can achieve it;
Ix(·) stands for the pixel value of the according coordinates; and
Grad(·) is the gradient map at coordinate (x, y).

As shown in Fig. 5, the gray value changes sharply on edge, so
the gradient map can illustrate the sharpness feature of the image.
In addition, this valuable feature can be utilized to facilitate
the sharpness of the SR images. Considering this, the GPN is
proposed to propagate the gradient in the network. The GPN
takes the gradient map Grad(G) obtained from the gradient
calculation as the input and starts with an initial convolution
layer with a kernel size of 3× 3. In the latter of the GPN, there
are three repeated gradient blocks (GBs), each of which is the
same as the DPDRB, concatenating the intermediate-level SR
feature and gradient feature as the input

finput = [Fsr, Fgradient] (7)

where Fsr and Fgradient represent the intermediate-level SR fea-
ture and gradient features, respectively. Since a well-designed
SR branch can convey abundant edge structural information,
the proposed strategy performs outstandingly for recovering
gradient maps. Simultaneously, the feature maps are also vital
and are employed prior to enhancing the GPN’s performance.
With three propagating GBs, the integrated feature maps are
extracted and fed into the last convolution layer with a 3× 3
kernel. The final output of the GPN is conducted as part of the
input for the reconstruction network.
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B. Feature Reconstruction Network

1) Mixed High-Order Attention Module: Attention adjusts
the weight of the convolution parameters to highlight the essen-
tial parts and reduce the influence of useless information. The
traditional channel-based [31] and spatial-based [46] attention
commonly used in the CNN concentrates on the first-order
attention, which only obtains the coarse feature statistics because
they only focus on a specific region, failing to accurately predict
the impact of different regions operating in concert on the final
result. To model the complicated and high-order feature statistics
for complex details in remote sensing images and model the
attention of different parts of the image or feature map acting in
concert mechanism, we introduce the HOA module [40], [47]
into the reconstruction network, in which R is defined as the
order of the HOA; more specifically, when R > 1, the R-order
attention concentrates on R regions and models the interaction
of R attentions, which can have a synergistic effect on the final
output.

For an HOA module with R order, we use R 1× 1 convolu-
tions to obtainR embedding feature maps {ZR

s }s=1,...,R at level
R. At level R− 1, we also use R− 1 convolutions to obtain
R− 1 embedding feature maps {ZR−1

s }s=1,...,R−1. Until level
1,R(R+ 1)/2 feature maps are achieved. In the feature map sets
{Zr

s}s=1,...,r, where r = 1, 2, . . ., R, we combine the R-order
feature statistic by means of the elementwise product, which can
be formulated as Zr = Zr

1 � Zr
2 � · · · � Zr

r =
∏r

i=1 Z
r
i .

In addition, we apply the nonlinearity variation to improve
the representation capacity of this high-order feature map, and
the variation is formulated by

A(X) = sigmoid

(
R∑

r=1

ReLU (Zr)

)
(8)

where the ReLU function denotes the nonlinear activation func-
tion, and the sigmoid function is applied to restrict the element
of the A(X) in [0,1]. Finally, similar to the general attention
mechanism, A(X) is used to reweight the input X , that is,
Y = A(X)�X .

More specifically, as shown in Fig. 6, when R = 1, we get a
descriptor Z, and A(X) = sigmoid(Z), then Y = A(X)�X ,
as shown Fig. 6(a); when R = 2, we first use two 1× 1 convo-
lutions to get two embedding features, {Z2

1 , Z
2
2}, at level 2. We

combine them to achieve the second-order component, that is,
Z2=Z2

1 � Z2
2 . Then, at level 1, one convolution is used to obtain

an embedding feature, Z1. Subsequently, the weighted matrix
is calculated as A(X) = sigmoid(ReLU(Z1) + ReLU(Z2)),
and finally, the output Y can be obtained by the operation
Y = A(X)�X , as shown in Fig. 6(b).

2) Frequency-Based Feature Combination: In the present
SR methods, many residual blocks are usually accumulated to
model a very deep network, and the feature map from the last
residual block is then commonly used to reconstruct the HR
images. Though these “deep” networks have achieved some
satisfying performance, there is a limitation in considering the
feature distribution of hierarchical features, failing to utilize the
feature map of different frequencies. Qiu et al. [48] pointed
out that the feature maps from different frequency bands often

Fig. 6. Illustration of HOA structure with (a) R = 1 and (b) R = 2.

vary greatly. For shallow layers, the parameters concentrate
on low-frequency information, such as the basic textures. For
deeper layers, the parameters emphasize high-frequency com-
ponents of the whole image, including the region filled with
edges, complicated corners, and other characteristics. As a re-
sult, low-frequency feature maps from shallow layers should be
routed to a higher order HOA module, which is more elaborate
and has a greater capacity for detail restoration. In addition,
high-frequency components are necessary for reconstruction,
and the information collected at higher frequencies from deep
layers should be augmented further using a higher order HOA
module. Thus, it is not the best way to concatenate all the feature
maps obtained directly from different layers. Therefore, the
feature maps from shallow layers and deep layers are combined
based on various frequencies in our reconstruction network, and
the process can be formulated as

FR
r = HOAr([F

E
N−r+1, F

E
M−(N+r−1), F

R
r−1]). (9)

Assume that the reconstruction network contains N HOA
modules andM = 2N + 1.FE andFR denote the feature maps
from the extraction network and the reconstruction network,
respectively, [·] is the concatenation conduction, HOAr denotes
the HOA module of order r, and FR

r and FR
r−1, respectively,

represent the output feature from the r-order HOA module and
the (r − 1)-order HOA module in the reconstruction part.

C. Loss Function

The proposed method, GPDCN, aims to minimize the dif-
ference between the reconstructed and ground-truth images.
Considering that the majority of image evaluation indicators are
significantly connected to pixel-by-pixel differences, pixel loss
is still highly desirable. Based on the pixel loss between the HR
image IHR and the SR image ISR, we add an additional gradient
loss to consider the gradient information. The loss function
in our experiment consists of two parts: image pixel loss and
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gradient loss

Limage = L1 (ISR, IHR) =
1

hwc

∑
i,j,k

∣∣∣Ii,j,kSR − Ii,j,kHR

∣∣∣
Lgradient = L1 (ISR_grad, IHR_grad)

=
1

hwc

∑
i,j,k

∣∣∣Ii,j,kSR_grad − Ii,j,kHR_grad

∣∣∣
Ltotal = Limage + λLgradient (10)

where h, w, and c represent the height, width, and channel num-
ber of the picture, respectively, and λ is the weighted parameter
on the gradient loss. In this article, we set λ = 0.001.

IV. EXPERIMENTS AND ANALYSES

A. Datasets and Implementation Details

1) Datasets: The proposed approach is evaluated using a
new SR dataset named 3K VEHICLE_SR, which is obtained
from the 3K VEHICLE dataset, a standard vehicle identification
dataset [49] consisting of 20 pictures with a spatial resolution
of 0.13 m of 5616 × 3744 pixels. The 3K VEHICLE dataset
includes vehicles in a variety of real-world environments, in-
cluding ports, hills, lakes, metropolitan zones, and rivers. The
20 photographs are cropped into 1170 subimages of 512 × 512
pixels and are used in the experiment as 3K VEHICLE_SR (the
sizes of the LR images are 128×128 for ×4 scale, 171×171
for ×3 scale, and 256×256 for ×2 scale). Eighty percent of the
subimages are used for training, 10% for validation, and the re-
maining 10% for testing. In addition, the Massachusetts_Roads
dataset is used to assess the generalizability and robustness of
the technique. We also use the WHU-RS19 dataset to test the
performances on different scenes. In the experiments, all the LR
images are degraded from HR images by bicubic interpolation,
and the corresponding HR ones are reviewed as ground truth.

2) Implementation Details: In the experiments, we focus on
scale factors of ×2, ×3, and ×4 and evaluate SR results using
the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) on the Y channel of the converted YCbCr space. The
model inputs and outputs three-channel RGB pictures. Since
L1 loss accelerates convergence and stabilizes the convergence
process, the L1 loss is adopted as the training loss function.
ADAM [50] is used to optimize the training process with β1 =
0.9 and β2 = 0.999 to update the model parameters. The initial
learning rate is set at 10−4 and then drops by a factor of 10 every
100 epochs. All the experiments are conducted with PyTorch on
NVIDIA TITAN RTX GPU.

B. Evaluation Metrics

The PSNR and SSIM, which are frequently used as assess-
ment metrics for SR tasks, are employed in this experiment to
quantify the suggested method. Given an HR image H and an
SR image S, N denotes the image’s total pixel number. The

TABLE I
ABLATION STUDY WITH DIFFERENT COMPONENTS’ COMBINATIONS ON THE

3K VEHICLE_SR DATASET

PSNR and SSIM can be obtained as follows:

PSNR(H,S) = 10 · log10
(

MAXI2

1
N

∑N
t=1(H(t)− S(t))2

)
(11)

where t represents the tth location, H(t) and S(t) are the cor-
responding pixel value of the HR and SR images, respectively,
and MAXI equals 255 for the 8-bit image

SSIM(H,S) =
(2uHuS + c1) (2σHS + c2)

(u2
H + u2

S + c1) (σ2
H + σ2

S + c2)
(12)

where u is the mean pixel value, σ represents the pixel variance
value, and σHS represents the covariance between the HR image
and the SR image.

C. Ablation Study

Since our GPDCN contains a trick DC and three major
components—GSA module, GPN, and MHOA network—to
demonstrate the validity of different parts, five tests are designed
and conducted. The first column represents baseline, and the
second to fifth columns represent the results of removing a
module by the model, in order to verify the effectiveness of the
modules. The results in Table I demonstrate that the GSA module
contributes more improvement than the GPN and MHOA do.
The GSA module, GPN, and MHOA can increase the network’s
performance for the results of ×4 SR by 0.0982, 0.0844, and
0.0893 dB, respectively. Obviously, when all the components
are integrated, further promotion is achieved, demonstrating the
importance of each design in obtaining the highest SR results in
the proposed network.

D. Comparisons With State-of-the-Art Methods

To demonstrate the feasibility of our method, we compare
it with other representative interpolation-, CNN-, and ResNet-
based SR approaches: ESPCN [51], Bicubic [9], VDSR [52],
DRN [53], IGNN [54], RCAN [31], SAN [32], and RDN [55].
We analyze various comparison approaches using open-source
code, and all the methods are trained and tested in the same
environment to guarantee the results are credible.

1) Quantitative Evaluations: Table II details the PSNR and
SSIM values. Table II shows that the GPDCN outperforms
the current competitive approaches on two metrics (PSNR and
SSIM) for almost all factors except for the ×2, and the reason
may be that the GSA’s advantages of catching self-similar prop-
erties are not particularly obvious for the images with relatively
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TABLE II
QUANTITATIVE COMPARISON ON MASSACHUSETTS_ROADS AND 3K

VEHICLE_SR USING DIFFERENT METHODS

clear contours. When the amplification factor is set to 4, our
GPDCN model achieves the highest PSNR across both the
testing datasets. In the 3K VEHICLE_SR dataset, the proposed
GPDCN outperforms Bicubic, VDSR, SAN, and RDN by ap-
proximately 0.947, 0.407, 0.028, and 0.033 dB, respectively.
For the Massachusetts_Roads dataset, our model outperformed
the SAN by 0.122 dB, a classical attention-based network that
investigates the second-order statistics of feature maps, and
the results validate the effectiveness of high-order character-
istics. In addition, compared with the state-of-the-art approach,
IGNN [54], a cross-scale nonlocal SR network, the proposed al-
gorithm outperforms it by 0.148 dB. The Massachusetts_Roads
dataset is densely packed with repetitive patterns, such as edges
and small corners. As a result, the GPDCN achieves superior
performance and demonstrates the efficacy of the proposed
method at restoring edges and small details, which indicates

TABLE III
COMPARISON OF THE RUNNING TIME, PARAMETERS, FLOPS, GPU COST, AND

PSNR ON TWO DATASETS WITH THE SCALE FACTOR OF 4

that gradient priors and global context-aware information are
powerful tools for a more accurate restoration.

2) Qualitative Evaluations: We also examine the visual ef-
fects of various procedures, as depicted in Fig. 7. We highlight
the regions of interest that clearly illustrate the distinctions
among the different methods. The results reveal that the fun-
damental bicubic interpolation technique cannot increase the
amount of information. Deep-learning-based methods, such as
VDSR, are capable of inferring some texture information but
produce blurry image contours as a result of their global opti-
mization method and wasteful feature usage. The results gener-
ated by the proposed approach are very competitive and much
more realistic for images containing repeating high-frequency
characteristics, such as corners, lines, and squares. For instance,
in the figure of a car [see Fig. 7(e)], only the proposed method can
reestablish an accurate and evident pattern with fewer artifacts,
whereas others suffer from different degrees of blurring. Fig. 8
illustrates the gradient maps. As we can see, other methods’
gradient maps have low values or include structure degradation,
whereas ours are bold and realistic. The qualitative comparison
demonstrates that our proposed GPDCN method is capable of
extracting additional structure information from the gradient
space to generate clear and realistic SR images by maintaining
geometric structures.

3) Model Size Analysis: Since the model size is an essential
consideration in practical applications, particularly on limited
computer devices, we provide the model size and performance
for currently competitive SR approaches in Table III. Accord-
ing to Table III, compared with DRN [53] and SAN [32],
although the proposed method processes more parameters, the
PSNR value is still much enhanced. Furthermore, compared
with IGNN [54] and RDN [55], our algorithm produces more
competitive results with fewer parameters. At the same time,
the FLOPs and GPU costs of our method are comparable. As
illustrated in Table III, our approach balances effectiveness and
efficiency.

4) Comparison With Remote Sensing SR Methods:
GPDCN’s advantages in various aspects, including model size
and memory cost, have been proved in previous experiments.
However, all the comparison approaches used in the preceding
investigations are proposed for natural image SR. To further
validate the GPDCN’s performance, we compare it with several
domain-specific SR methods. In this part, five approaches to
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Fig. 7. Reconstruction visual results on 3K VEHICLE_SR and Massachusetts_Roads on a scale of ×4 for different SR methods. (a)–(d) are from the 3K
VEHICLE_SR dataset.
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Fig. 7. (Continued.) Reconstruction visual results on 3K VEHICLE_SR and Massachusetts_Roads on a scale of ×4 for different SR methods. (e) is from the 3K
VEHICLE_SR dataset. (f)–(h) are from the Massachusetts_Roads dataset.
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Fig. 8. Visual results of gradient maps with state-of-the-art SR methods. The proposed GPDCN method can better maintain gradients and structures.

TABLE IV
COMPARISON RESULTS OF PSNR, SSIM, NIQE, PI, AND LPIPS ON THE 3K

VEHICLE_SR DATASET WITH A SCALE FACTOR OF 4

remote sensing images SR are discussed in detail: EEGAN [37],
LGCNet [35], RDBPN [56], TransEnet [39], and MHAN [40].
Except for PSNR and SSIM, Natural Image Quality Evaluator
(NIQE) [57], Perceptual Index (PI) [58], and learned perceptual
image patch similarity (LPIPS) [59] are introduced into the
evaluation as PIs. Note that the lower the NIQE, PI, and LPIPS,
the higher the quality of the images. The conclusions are shown
in Table IV, and it is clear that our approach performs the best
on the 3K VEHICLE_SR dataset with a scale factor of ×4. In
addition, we present a visual comparison in Fig. 9. By zooming
the regions of interest, it is evident that the EEGAN and
LGCNet cannot produce rich details. RDBPN and TransENet
can generate sharp edges but with some blurred contents. As
for the MHAN, it can slightly improve the reconstruction
performance by using the high-order attention mechanism
while still having some noises and artifacts. And our GPDCN
reconstructs the most realistic image features with the slightest
ambiguity, resulting in more visually attractive results. It
unequivocally establishes that the proposed GPDCN is a viable
solution to the remote sensing imagery SR problem.

E. Comparison on Image Scene Classification Dataset

We compare our GPDCN with several SISR methods on
WHU-RS19, a scene classification dataset for remote sensing
image. Table V lists the detailed performances of different
methods for scale ×4 on all 19 classes. From the results, it
can be observed that our model obtains the best PSNR results

Fig. 9. (a) and (b) Visual results of different remote sensing SR-based methods.

in ten scene categories and the best SSIM results in 17 scene
categories. Compared with other algorithms, our method is more
effective in some scenes, which include abundant edges and
contours, such as “Airport,” “Bridge,” “Commercial,” “Park,”
etc. Meanwhile, the proposed method achieve best PSNR and
SSIM for the overall evaluation. It also shows that the PSNR
results are very different among different scenes, in which the
PSNR for “Beach” images is 40.198 dB, but the PSNR for “Res-
idential” images is only 22.418 dB. The reason for this is that the
image includes a wide range of remote sensing scenes, i.e., the
image of “Residential” owns more high-frequency information
than the “Beach.” The very smoothing scenes, where minimal
high-frequency information should be super-resolved, tend to
have higher PSNR results.

F. Visualization of Image Gradient

To demonstrate the efficacy of the GPN, the gradient maps
as outputs are shown in Fig. 10. Given sharp-edged HR photos,
the generated corresponding gradient maps often contain fine-
grained and unambiguous contours for the items in the images
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TABLE V
COMPARISON RESULTS OF PSNR AND SSIM ON THE WHU-RS19 DATASET WITH A SCALE FACTOR OF 4

Fig. 10. Visualization of gradient maps (“00001093_co.png” from 3K VEHI-
CLE_SR). (a) HR Image. (b) LR image gradient. (c) HR image gradient. (d)
Output of the gradient network.

[see Fig. 10(c)]. As Fig. 10 shows, after the bicubic operation,
the gradient maps generated from the LR equivalents frequently
exhibit coarse-grained shapes [see Fig. 10(b)]. Our GPN inputs
LR gradient maps and outputs SR gradient maps to supply the
SR branch with precise structural information [see Fig. 10(d)].

The result shows that our GPN successfully recovers sharp and
structure-pleasing gradient maps.

V. CONCLUSION

This article presented a GPDCN for SR in remote sensing
images. To be more precise, the DPDRB was proposed to enlarge
the receptive field and extract multiscale feature maps. The
GSA structure enabled the GPDCN to acquire long-distance
interactions and structural information to integrate nonlocal
operations into the network. Meanwhile, we constructed a GPN
using double-path DC blocks to recover HR gradient maps from
the LR ones and provide explicit structural guidance to the SR
branch via gradient information. In addition, an MHOA module
was adopted to reconstruct the image using hierarchical charac-
teristics with various frequency bands. Extensive experimental
results demonstrated that the proposed GPDCN can surpass
existing SR algorithms and balance performance and efficacy.
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