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Abstract—In recent decades, the wide use of deep-learning-based
methods has consistently improved the performance of remote sens-
ing images and is widely used for hyperspectral change detection
(HCD) tasks. However, most of the existing HCD method is based
on the convolutional neural network (CNN), which shows limita-
tions in long-range dependencies and also cannot mine sequence
features well. The change detection (CD) performance still has
margins for improvement. In this study, inspired by the excellent
performance of transformers in computer vision, which has shown
a significant ability to model global dependencies to attenuate the
loss of long-range information, we built a hybrid spatial–spectral
convolutional vision transformer (SSViT) for HCD. Our proposed
method combines the merits of CNN and transformer to fulfill
effective and efficient HCD. This study focused on highly reliable
pseudo sample data generation by a selection scenario. To generate
a pseudo sample, we have used different methods: 1) predicting
change and no-change areas by using Euclidean distance; 2) thresh-
olding by the Chan–Vese segmentation method for determining
change and no-change pixels for intensity maps; 3) sorting of
change and no-change pixels; and 4) selection of the minimum value
of initial no-change pixels as pseudo change sample data, in addition
to choosing the maximum intensity value for change candidate
pixels as change sample data. The highly reliable change pixels
were selected, and then, pseudo training data were used to train the
SSViT model. At last, the change map is generated by training the
SSViT network based on pseudo training data. The performance
of the SSViT model is evaluated for real-world hyperspectral (HS)
datasets with different change land cover types. Furthermore, a
new series of HS images is introduced for CD purposes. The results
of CD show that the HS images have a high potential for detecting
subtle changes. The experimental results demonstrate that the
proposed SSViT could outperform the advanced HCD methods.

Index Terms—Deep learning (DL), change detection (CD),
hyperspectral image (HSI), vision transformer (ViT).
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I. INTRODUCTION

THE advancement of optical sensor technology over the past
few decades has provided a great amount of information

in terms of achieving required spatial, spectral, and temporal
resolutions. The rich spectrum information included in hyper-
spectral images (HSIs), in particular, develops new application
domains and raises new technological problems in remote sens-
ing (RS) [1], [2], [3]. In particular, HSI is a 3-D data cube with
2-D spatial and one-dimensional spectral information.

Compared to multispectral images, HSI has high-resolution
spectral and spatial information with hundreds of bands, op-
timizing the quality of HRS images [4]. Since HSIs include
a plethora of spectral information, they have been extensively
used in various domains, including image classification [5], [6],
anomaly detection [7], [8], change detection (CD) [9], [10], and
so on.

In RS, hyperspectral change detection (HCD) is the process
of recognizing discrepancies between images captured over
the same location at different times [11], [12]. Up to now,
many traditional methods have been proposed for HCD: 1)
algebra-based methods; 2) transformation-based methods; and
3) classification-based methods. The most prevalent approach
to change vector analysis (CVA) is generally an unsupervised
method that uses spectral vector subtraction [13]. In addition,
various modified CVA approaches have been proposed, such
as sequential spectral CVA, which overcomes the problems
associated with the original CVA. A hybrid vector [14] was
created using a change vector and spectral angle, and an adaptive
fusion approach was used to create a CD map. Another devel-
opment made to CVA was called robust CVA, which provides
information on the intensity and kind of change, and robust-
ness to changes in viewing geometry or registration noise [15].
However, CVA-based approaches have certain drawbacks; as the
number of bands increases, it becomes more challenging to de-
tect the change kinds and determine an adequate threshold [16].
Some methods based on image transformation, such as principal
component analysis (PCA), exploit the variance in the principal
components of the combined multitemporal HSIs [17]. PCA is
mainly dependent on image statistics and is particularly vulnera-
ble to unbalanced data. An unsupervised method of multivariate
alteration detection (MAD) [18] for analyzing multitemporal
image CD is based on canonical correlation analysis. The MAD
approach can efficiently eliminate correlation, but the noise has
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a substantial influence on the results, and the threshold must
be manually set. The improved iteratively reweighted MAD
(IR-MAD) [19] creates a no-change background to identify
changes. In particular, slow feature analysis (SFA) may also
extract features from time series [20], [21]. SFA can be utilized
for CD by suppressing invariant pixels and emphasizing those
that are changing [22]. These approaches depend greatly on
empirically generated algorithms to extract discriminative fea-
tures, which are typically difficult to obtain meaningful results
on HS images. Transformation-based approaches are helpful in
terms of reducing dimensionality and noise, as well as em-
phasizing the change or no-change features associated with
certain changes. Although the changes affect a large part of the
imagery, it will take a large amount of time to create the new
components. Furthermore, some methods are based on image
classification, including post and direct classification. The first
method classifies two images independently and then considers
pixels or regions belonging to various classes as changes. For
direct classification, multitemporal images are stacked together,
using the same classifier to identify changed categories [23].

Even though the conventional methods demonstrated that
the proposed methods are effective, several obstacles still need
to be overcome. One of these obstacles is the fact that during
the process of image acquisition, HSIs are easily influenced by
noise brought on by the atmosphere. Over this, the low-level
representations of HSIs are insufficiently discriminative for
CD, making it crucial to reliably identify change regions for
classical approaches.

The image quality directly affects the CD accuracy of HSI.
Furthermore, HSI-CD approaches must deal with high dimen-
sionality, computational load, and limited datasets. It is difficult
to detect changes in high-dimensional feature spaces with hun-
dreds of narrow continuous bands, so high dimensionality can
increase the implicit and make it more difficult to distinguish
changes [24]. To tackle these challenges, band-selection and
feature-extraction approaches have been proposed; neverthe-
less, crucial spectral information may be lost when using these
methods. Another major issue is the dataset limitation, as HSIs
lack label information due to the difficulty of obtaining change
information on real-world objects.

Fortunately, the advancement of deep learning (DL) offers a
viable method of addressing these challenges. DL has steadily
replaced various classical algorithms, acquiring an overwhelm-
ing superiority in CD. DL has been recognized to be a viable
approach for dealing with high dimensionality. Similarly, DL
can process complex HSIs data by efficiently extracting semantic
features of images by reducing the dimensions of the data.
The implementation of the convolutional neural network (CNN)
facilitates the use of spectral data of pixel points and their
adjacent pixels in the CD process and significantly overcomes
the restriction of only using spectral information equivalent to
a single-pixel point. In this regard, researchers extensively de-
ployed the DL-based HSI-CD methods and obtained significant
results. Yuan et al. [25] focused on the semisupervised CD
technique and presented a distance metric learning technique
for CD in a “noisy” state. Consequently, the presented technique
outperforms in both “ideal” and “noisy” states for hyperspectral

datasets. In addition, Liu et al. [26] proposed a CD approach
based on spectral unmixing. Ertürk et al. [27] used dictionary
pruning for sparse unmixing-based CD for HSI. The proposed
method alleviates the unmixing process’s ill-conditioning while
also reducing computation time and improving CD performance.
Wu et al. [28] introduced a joint sparse representation method
for hyperspectral anomalous CD. These methods that are based
on unmixing-based [26], [27] sparse representation [28] have
obtained significant detection accuracy in HSI-CD. Despite the
fact that these hyperspectral CD algorithms are widely used,
issues remain, such as a lack of theoretical foundation and
appropriate evaluation standards, a lack of detection method
versatility, a lack of multisource data integration analysis, and
low utilization of spatial information during detection.

In addition, the deep noise modeling method was also pro-
posed by Li et al. [29] for CD in hyperspectral imagery datasets.
To train discriminative features from the high-dimensional
dataset, a fully convolutional network (FCN) was used; for
fusing feature maps, a two-stream feature technique was de-
ployed, and a noise modeling framework was utilized to deal
with noise conditions. Besides, Wang et al. [24] used 2-D
CNN-based techniques for HSI-CD in an end-to-end manner,
where a new mixed affinity matrix is created and pixel change
types are derived using CNN output. Particularly, Song et al. [30]
presented a novel HSI-CD framework Re3FCN that employs an
FCN with 3-D convolutional layers and a convolutional long
short-term memory. In the first phase, PCA is used to select
the training sample, and the second step is the use of recurrent
CNN for training and testing. Their proposed method achieved a
superior result to CD but relied significantly on training datasets.
Seydi et al. [12] investigated a DL-based framework that relies
on the image differencing method and the 3-D CNN to detect
change areas and make a decision on detected areas, respectively.
Moustafa et al. [31] presented a semantic-segmentation-based
model and used ROS in preprocessing, DL, and bagging en-
semble to manage unbalanced datasets. Their proposed method
used four different types of Unet models to separate change and
no-change zones.

Huang et al. [32] used a tensor-based DL method for HCD.
However, the proposed method has drawbacks, such as mixed
pixel problems and time complexity issues. Qu et al. [33] pro-
posed the DL framework with a multilevel encoder–decoder
attention network for HCD. The hierarchical features are fully
utilized in the ML-EDAN framework for CD in HSIs. Fur-
thermore, ML-EDAN was trained as an end-to-end framework
and explored the reconstruction and pixelwise classification
error. Qu et al. [34] developed the novel dual-branch change
amplification framework based on the graph convolutional net-
work for HSI-CD. The proposed network completely extracts
and efficiently amplifies the change features of multitemporal
HSI-CD.

In the literature, most of the HCD algorithms are based on
CNN models. The CNN models are known as robust feature rep-
resentation frameworks in RS. These models provided promis-
ing results in the many applications of RS. Although the CNN
can capture local features (inductive bias) well, its inherent net-
work structure does not allow it to mine and represent sequence
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attributes of spectral features. Deep semantic features cannot be
acquired by a shallow convolution layer in the CNN frameworks.
Instead, they capture deep semantic information with an increase
in the depth of the model by adding convolution layers and
feature map reduction size by pooling layers. Due to this fact,
the CNN models suffer computational complexity. Transformers
have proven useful for solving several vision problems in recent
years due to their ability to capture long-range relationships
and sequence-based image modeling. Although the transformer
captures spectral signatures well, it is not powerful enough for
capturing local semantic features or making use of spatial infor-
mation. In contrast, the transformer’s self-attention (SA) mecha-
nism is effective at modeling global interactions between token
embeddings, but local mechanisms for information exchange
within local regions are lacking. To tackle the abovementioned
limitation of the CNN model and transformer, we introduced a
novel hybrid framework for HCD. We propose a spectral–spatial
convolutional vision transformer (SSViT) model for HCD as
a way of taking advantage of the transformer’s ability and
convolution layers to acquire local spatial semantic information
and model the relationship between adjacent sequences.

To summarize, the most significant contributions are as fol-
lows.

1) We propose a hybrid SSViT-based method for HCD. Our
proposed method has high efficiency and can provide
reliable sample data and improve the CD result. According
to our literature review, this is the first work to attempt
to implement a hybrid convolutional vision transformer
(ViT) for HCD.

2) For the first time, we used Chan–Vese segmentation for
the HCD and a new Agriculture PRISMA dataset for the
CD task.

3) We redesign the convolutional block attention module
(CBAM) for HCD based on the 3-D structure of convolu-
tion and pooling layers.

4) Furthermore, several ablation studies have shown that the
proposed framework is effective and capable of detecting
subtle changes.

5) Our proposed model is compared with advanced DL-based
methods such as GetNet, TDRD, PTCD, and ViT. The ex-
perimental results show that the suggested SSViT method
outperforms the advanced CNN algorithm.

The rest of this article is organized as follows. Section II
explains the methodology of our proposed SSViT model.
Section III describes the datasets. Section IV includes extensive
ablation studies as well as experimental comparisons of the
SSViT model with several CNN models. Finally, Section V
concludes this article.

II. METHODOLOGY

The implementation detail of the HCD method is shown in
Fig. 1. As can be observed, the HCD consists of three primary
steps: 1) data preparation and preprocessing; 2) pseudo sample
generation; and 3) SSViT model training and tuning model
parameters.

A. Data Preparation and Preprocessing

Hyperspectral imagery needs to be preprocessed before CD
can be considered. The main preprocessing included no-data
removal, smile correction, radiometric correction, and atmo-
spheric correction. The mentioned preprocessing is a spectral
correction related to the image’s pixel value. The second cat-
egory is a geometric correction, which refers to the spatial
location of pixels in the bitemporal dataset.

B. Pseudo Sample Generation

In the proposed model, generating reliable samples is con-
sidered one of the essential aspects of HCD. To this end, many
researchers have worked only on pseudo sample data generation
without refining. Fig. 2 shows a schematic of the histogram, a
predictor for CD that there is an uncertain part in the result of
thresholding. This uncertainty originated from mixing change
and no-change pixels due to some conditions (i.e., noise effect,
atmospheric conditions, and complexity of objects). Since the
segmentation algorithm cannot discriminate the change pixels
from the background, refining sample data is vital. To this end,
this research introduces a simple and effective solution with
a low computational cost. Thus, this study focused on highly
reliable pseudo sample data generation by a selection scenario.
The increasing reliability of sample data can improve the results
of the HCD. The pseudo sample generation consists of four parts:
1) prediction of change and no-change areas by the Euclidean
distance (EU); 2) binary segmentation by the Chan–Vese method
for determining change and no-change pixels for intensity map
(EU); 3) sorting of change and no-change pixels based on their
magnitude in EU prediction results; and 4) selection of the
minimum value of initial no-change pixels as pseudo change
sample data, addition to choosing maximum intensity value for
change candidate pixels as change sample data. The number of
pixels is a direct dependence on the dataset and efficiency of the
predictor, which can be determined based on knowledge.

1) EU Algorithm: There are numerous algorithms available
for predicting change and no-change areas [35]. The EU is one of
the most common metrics for predicting change and no-change
regions in bitemporal datasets. Unlike other CD predictors, such
as PCA, MAD, and IR-MAD, in which high-order statistical
structures are used, the EU is simple to implement and has a
low degree of complexity compared to other CD predictors.
In addition, the EU algorithm can better discriminate between
change (foreground) and no-change areas (background) in com-
parison with other algorithms such as the spectral angle mapper.
Furthermore, this predictor uses the L2 norm, which can be used
to discriminate change areas from the background (no-change
area) as well. The intensity value of changes for two pixels of
bitemporal HSI can be defined as follows:

EUC =
(
Xc

i,j − Y c
i,j

)2
(1)

Intensity =

N∑

c=1

(
Xc

i,j − Y c
i,j

)2
(2)
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Fig. 1. General framework of HCD.

Fig. 2. Schematic of the change threshold.

where Xc
i,j and Y c

i,j are the first and second time of bitemporal
HSI in row i and column j in the band c, respectively. Further-
more, N shows the number of spectral bands in the bitemporal
HSI.

2) Chan–Vese Segmentation: The edge-based segmentation
methods are used widely for many applications in image pro-
cessing that use image gradient information. However, these
methods have low complexity, but objects with weak and blurred
boundaries cannot be detected using these methods. The Chan–
Vese method [36] is a typical and popular region-based method
based on Mumford–Shah segmentation that is a flexible and
powerful model for active contours in the segmenting of types

of images [37]. This model is based on an energy minimization
problem and ignores edges completely (image gradient); instead,
it fits a two-phase piecewise-constant model optimally to the
input data [38]. Because the method assumes that image intensity
values are constant within each foreground and background
region, it can effectively segment images with homogeneous
intensity values across areas [39].

3) Sorting of Candidate Pixels: The candidate change and
no-change pixels are sorted based on intensity value. This pro-
cess consists of two primary steps: 1) applying a mask of the
change and no-change on the intensity map and 2) extracting
intensity values for change and no-change areas and arranging
them based on intensity values.

4) Selection of Candidate Pixels: Due to some factors, such
as atmospheric conditions and the existence of noise among
bitemporal HSIs, there is a high mixing of change and no-change
pixels. Thus, the classification of change and no-change pixels
is difficult. The use of candidate change and no-change pixels
without refining them leads to an effect on change results in
supervised learning methods. To this end, we refine change
and no-change pixels in a selection manner to increase their
reliability. It is clear that the change pixels have a high value in
the intensity map, while the no-change pixels contain the lowest
intensity value in the initial change map. Thus, the highly reliable
change pixels were selected for the next analysis.
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Fig. 3. Main structure of SSViT for HCD.

C. SSViT Algorithm

The main structure of the proposed SSViT for HCD is illus-
trated in Fig. 3. As seen, SSViT has been built in two main
parts: 1) shallow deep feature generation by hybrid 3-D/2-D
convolution layers and attention mechanisms and 2) ViT for deep
semantic feature generation and classification by classifier head.

First, the patch dataset is represented by a 3-D multiscale
convolution block. Then, a 3-D CBAM attention module is uti-
lized for informative feature generation. The extracted features
reshape and change into the 2-D structure to be an explorer by
2-D convolution layers. Next, the 2-D multiscale convolution
block (#1) is utilized to represent deep features also, and the
2-D CBAM mechanism is employed for more consideration.
In the last step, the deep features are fed into the second 2-D
multiscale convolution block (#2). The output of each 2-D
convolution layer in this block is concatenated into a spatial
dimensional. The output of the concatenation layer is transferred
to the ViT algorithm for extracting deep semantic features. Then,
the classifier head is utilized to make a decision.

D. Multiscale Convolution Block

CNN-based frameworks rely heavily on convolution layers to
generate deep meaningful features. The size of kernel convo-
lution has a key role in the extraction of deep features in that
multiscale convolution block, which utilizes the convolution
layers with various kernel sizes. The main advantage of the
multiscale convolution block is that it enhances the robustness
of the SSViT against variations in the size change objects.

This research combines the 3-D and 2-D convolution layers.
Hyperspectral imagery has high content spectral information
that utilizes 3-D convolution to help capture spectral information
among spectral bands. After convolution layers, the CBAM
attention mechanism block is utilized to generate more infor-
mative features. The main structure of the 3-D/2-D multiscale
convolution block is shown in Fig. 4.

E. CBAM Attention Module

The main task of the attention mechanism is to emphasize
deep meaningful features. The CBAM module is a popular and
effective attention module that can learn “what” and “where” to
attend to the channel and spatial dimensions of feature maps,
respectively. The CBAM module has two branches that are
included: 1) spatial attention module and 2) channel attention
module. The main structure of the CBAM module is shown
Fig. 5. The channel attention module tries to extract the chan-
nels that include the informative spectral information. To this
end, two global average/max-pooling layers are employed [see
Fig. 5(a)]. Then, the two multilayer perceptron (MLP) layers
with a reduction rate are used to minimize the computational
cost and model parameters. Finally, the obtained features are
fed to the Sigmoid activation function to generate the channel
attention map.

The spatial attention module emphasizes parts containing key
information. In this regard, the average/max-pooling layers are
applied. Afterward, a convolution layer with Sigmoid activa-
tion functions generates the spatial attention map, as shown in
Fig. 5(b). The 3-D CBAM module follows the abovementioned
process, but it uses the 3-D pooling and convolution layers.
Furthermore, the 2-D CBAM module has the same process while
using the 2-D structure of pooling and convolution layers.

F. ViT Algorithm

Transformers have proven useful for solving several vision
problems in recent years due to their ability to capture long-
range relationships and sequence-based image modeling. ViT
is the most popular and standard transformer-based method
that can provide promising results in many applications of RS.
This method uses the transformer model instead of convolution
layers. This algorithm consists of three main components: 1) a
patch embedding layer; 2) a transformer encoder; and 3) a head
classifier.

In the first step, the generated deep features by the first part are
divided into nonoverlapping patches based on the defined patch
size. These patches are fed into the transformer encoder part and
viewed by the transformer as individual tokens. The positional
encoding is incorporated, which forces the model to use the order
of the sequence and position information. To generate positional
vectors, sine and cosine functions of different frequencies are
incorporated. The generated patches are mapped into a feature
vector of the model dimension d using a learned embedding
matrix.

For the classification task, the embedded vector must be
concatenated with a learnable classification token layer. As the
last step, a trainable embedding tensor (Epositional) is added to
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Fig. 4. Multiscale convolution blocks. (a) 3-D multiscale convolution block. (b) 2-D multiscale convolution block (#1). (c) 2-D multiscale convolution block (#2).

the concatenated projection sequence. The output of the patch
embedding layer with the token z0 is given as

zo = [xclass;x1E;x2E; . . . ;xnE] + Epositional (3)

where xi is a linearly projected feature map. The output of the
patch embedding layer is used as the input of L transformer
encoder layers for feature extraction. The transformer encoder
layer extracts more abstract features from the embedded patches.
The transformer layer has two main components that include
a multihead self-attention layer (MSA) and an MLP. Further-
more, there are subcomponents in the transformer block that
include: 1) the normalization layer used to stabilize hidden state
dynamics and 2) the residual connections employed to prevent
the vanishing gradient problem. A central component of the
encoder transformer part in Fig. 6 is the MSA block, which
includes many SA layers running in parallel. The purpose of the
SA layer is to capture the interaction among all the embedding
entities by encoding each entity. Consequently, each entity is
the weighted sum of all entities in the sequence, where the
weights are based on the attention scores. The MSA mechanism
in every layer includes SA blocks to enable the encapsulation
of multiple complex relationships between different elements
in the sequence. The result of SA blocks in the MSA layer

concatenates into a single matrix. The output of the lth MSA
layer can be calculated as

z′l = MSA (LN(zl−1)) + zl−1, l = 1, . . . , L (4)

where LN() is the normalization layer and zl is the encoded
image representation. Next, each encoder block is followed by
a fully connected feedforward dense block that is estimated as

zl = MLP (LN (z′l)) + z′l, l = 1, . . . , L. (5)

In the final layer of the encoder, we take the first element in the
sequence and pass it to a classifier to predict the class label. As
seen, Fig. 7 illustrates the main structure of the classifier head

= MLP
(
z0l
)

(6)

where the MLP component has two fully connected layers with
the sigmoid activation function.

G. Training Process

The training process is applied in an iterative manner by
estimating the error of the network by the loss function. For
the training model, the generated pseudo sample dataset is
divided into three parts are included: 1) training dataset (65%);
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Fig. 5. General overview of the CBAM attention module. (a) CBAM module, (b) Channel attention module. (c) Spatial attention module.

2) validation dataset (15%); and 3) testing dataset (20%). The
model is trained by a training dataset, while the error of the net-
work is evaluated on the validation dataset by the loss function.
Finally, the model is assessed on the testing dataset by quantity
measurement indices such as overall accuracy (OA). Due to
backpropagation, the model parameters are tuned by employing
an optimizer that the adaptive moment estimation optimizer has
employed. The cost function was also cross entropy

Hp(q) =
−1

N

N∑

i=1

yilog (p(yi)) + (1− yi) .log (1− p(yi))

(7)
where y is a label, p(y) is the predicted probability observation,
and N is the number of classes.

III. DATASETS

The hyperspectral CD evaluation was carried out utilizing
the following different hyperspectral datasets obtained by the
Hyperion sensor.

1) River dataset: The dataset images were captured on May 3,
2013 and December 31, 2013 in Jiangsu Province, China.
The size of the pixel is 436 × 241. The dataset images are
shown in Fig. 8(a) and (b).

2) Hermiston dataset: This dataset was captured on May 1,
2004 and May 8, 2007 near Hermiston City in Umatilla
County, OR, USA. The size of the pixel is 306 × 241. The
Hermiston dataset images are shown Fig. 9(a) and (b).

3) Farmland dataset: This dataset acquired farmland around
Yuncheng, Jiangsu Province, China. The data were col-
lected on May 3, 2006 and April 23, 2007. The images
have a spatial resolution of 30 m and a spectral resolution
of 10 nm. Fig. 10(a) and (b) represents the dataset images.

4) Agriculture PRISMA dataset: PRISMA is an EO system
with unique electrooptical equipment that combines a
hyperspectral sensor with a medium-resolution panchro-
matic camera and is completely supported by the Italian
Space Agency. The PRISMA sensor captured continu-
ous hyperspectral datasets with a 29-day repeated orbital
period. In this study, we choose the dataset size of 312
× 349 pixels, spectral band 169, and spatial size 30 m.
Fig. 11(a) and (b) represents the agriculture PRISMA
dataset images.

IV. RESULTS

This section compares the results of implementing our pro-
posed method on four datasets with the ground truth (GT)
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Fig. 6. Main transformer encoder.

Fig. 7. MLP head classifier for binary CD.

dataset, both visually and numerically. The accuracy assessment
is applied by visual analysis and employing quality measurement
indices. To this end, for the purpose of determining the overall
validity of the results, we used evaluation metrics such as OA,
recall, precision, balanced accuracy (BA), F1-score, Jaccard
index/intersection over union (IoU), Kappa coefficient (KC),

Fig. 8. River dataset. (a) River dataset image T1. (b) River dataset image T2.

Fig. 9. Hermiston dataset. (a) Hermiston dataset image T1. (b) Hermiston
dataset T2.

and Matthews correlation coefficient (MCC). Furthermore, four
different state-of-the-art HSI-CD methods were used to compare
the effectiveness of the proposed approach: 1) GetNet [24]; 2)
TDRD [40]; 3) PTCD [41]; and 4) ViT [42] (standard ViT-based
method) that is applied in an unsupervised manner and without
any sample dataset. It is worth noting that TDRD and PTCD
require threshold selection that uses the K-means algorithm for
thresholding. Also, the SSViT model has hyperparameters that
need to be set: initial patch size (9 × 9), subdivided size (6 × 6),
resampled patch size (24 × 24), weight initializer He-normal
manner, learning rate (10−3), number of transformer layers
(four), batch size (250), number of transformer layers (four),
number of heads (six), dropout rates (0.5 and 0.2), and number
of neurons in first and second dense layers (2048 and 1024,
respectively). The CBAM mechanism parameters were set as
follows: the reduction ratio in 3-D/2-D channel attention module
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Fig. 10. Farmland dataset. (a) Farmland dataset image T1. (b) Farmland
dataset image T2.

Fig. 11. Agriculture PRISMA dataset. (a) Agriculture PRISMA dataset image
T1. (b) Agriculture PRISMA dataset image T2.

is 8 and the kernel sizes for 3-D/2-D spatial attention modules are
(3 × 3) and (7 × 7), respectively. The Chan–Vese segmentation
algorithm includes several parameters: square size = 5, edge
length parameter (µ) = 2, λ = 0.9, and a maximum number of
iterations = 25. These parameters are knowledge-based and set
based on trial and error. Moreover, 8000 and 3500 samples were
generated for the no-change and change classes, respectively, in
the pseudo sample generation.

A. Experimental Results

To evaluate the proposed method thoroughly, we considered
the components of the confusion matrix shown in Fig. 12.
Several different metrics were carried out as follows.

1) Overall accuracy: OA can determine immediately
whether a model is being trained correctly and how it

Fig. 12. Components of confusion matrix.

may perform generally. In the CD applications, due to the
imbalance of training data, the use of OA is less effective,
so it is necessary to use various criteria for evaluation.

2) Precision: The precision measures the proportion of pos-
itively predicted labels that are actually correct.

3) Recall: When the cost of false negatives is high, recall
can indicate the efficiency of the model. In other words,
the higher the value of recall, the higher the model’s
performance in predicting the changed pixels (sacrificing
the fact that some of the pixels with the change label may
not have changed).

4) F1-score: The F1-score combines precision and recall
for positive classes, while accuracy considers correctly
identified positives and negatives.

5) Kappa coefficient: The KC is another metric that measures
the reliability of two results (in our methods, GT and model
prediction).

6) Matthews correlation coefficient: The MCC is a metric
that generates a high score if the prediction performed
well in all four confusion matrix areas. The MCC also
incorporates the dataset imbalance and its invariants for
class swapping.

7) Balanced accuracy: The problem of the imbalance dataset
in the CD application is essential. Therefore, the BA,
which is the mean of sensitivity and specificity, is also
considered to evaluate the proposed method.

8) Jaccard score (JS)/IoU: The JS obtained from the overlay
of the GT and models result, i.e., the ratio of IoU. One of
the capabilities of this metric is to show the visual quality
of the change map.

In addition to the above quantitative metrics, change maps
in the proposed method and comparative methods have been
produced. The results are presented separately for each dataset
in the following sections.

1) Results on the River Dataset: We first conduct the exper-
iments on a River dataset. The corresponding results of all the
quantitative metrics are shown in Fig. 13 and Table I for our
proposed SSViT HCD method and four comparison methods.
With an overall view at Fig. 13, it can be seen that our proposed
SSViT model is superior to other comparative methods in most
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Fig. 13. Quantitative results from the implementation of different methods on the River dataset.

TABLE I
QUANTITATIVE COMPARISONS OF FIVE DIFFERENT METHODS FOR THE

DIFFERENT DATASETS

metrics. The OA of SSViT and ViT is 96%, which is higher
than that of all the other methods, showing the higher efficiency
of transformation-based methods over classical methods. The
highest difference in performance for the proposed method is
obtained in KC and F1-score metric, which is about 0.05 more
than the ViT, which indicates the reliability of the proposed
method. Also, if we divide the compared methods into two parts
(classic and transformation-based methods), the difference in the
KC reaches 0.12, which is considered a significant difference.

Regarding the BA metric, the proposed method and the TDRD
have a significant difference from the other two methods, which
shows the high accuracy of the changed pixels identified by these
two methods. From the point of view of the combined metrics
(those metrics consider the true positive and false negative
simultaneously), the performance of the five methods follows a
similar pattern. Thus, the proposed method, ViT, TDRD, GetNet,
and PTCD can be ranked according to performance.

In terms of visual analysis, our proposed method CM quality
is highly remarkable, as shown in Fig. 14. From the figures,
one can see the impact of various approaches on classification
results. When the results are compared to the GT, our proposed
SSViT model produces a more accurate CM, confirming that,
in addition to quantitative metrics, the visual quality of the
change map is superior to other methods. This is due to the
inclusion of the pseudo sample generation step in the transformer
mechanism.

2) Results on the Hermiston Dataset: Fig. 15 and Table I
present the results of the implementation of the proposed method
and four comparative methods on the Hermiston dataset. Except
for the GetNet method, the efficiency of all other methods is
above 0.8 in all metrics, and the value of all metrics is higher
than that in the River dataset, which shows that the complexity
of Hermiston data is less than that of the River data. The OA
of the proposed method is 97.54%. The results obtained from
the ViT and TDRD methods are similar to those of the proposed
method in most metrics. The highest difference between the
methods is obtained in the recall metric, where the proposed
method is 0.014 more efficient than the ViT. As shown in the
change maps in Fig. 16, it is clear that the quantitative results
and the quality of the change map of the GetNet method in these
data are significantly low (the amount of false negative is very
impressive), which is due to the spectral mixing of this data,
which reduces the accuracy of the end members extracted in the
initial stage of the GetNet method.

3) Results on the Farmland Dataset: Fig. 17 visualizes the
quantitative assessment of the results on the Farmland dataset.
All the five methods have performance above 0.87 in all the
metrics, as depicted in Table I. The proposed method obtained
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Fig. 14. Change maps obtained by the different methods on the River dataset. (a) Ground truth. (b) Change map obtained by the GetNet method.
(c) Change map obtained by the PTCD method. (d) Change map obtained by the TDRD method. (e) Change map obtained by the ViT method. (f) Change
map obtained by the proposed method.

the most significant F1-score, KC, and JSs as 0.93, 0.90, and
0.87, as well as GetNet, respectively. Considering the small
changes in performance, the transformed-based methods gain
the second-best performance in the Farmland dataset after the
GetNet method. The visual quality of the change map shown
in Fig. 18 indicates that the performance of all methods is very
similar.

4) Results on the Agriculture PRISMA Dataset: The imple-
mentation results on the Agriculture PRISMA dataset show a
significant difference between the methods, as shown in Table I
and Fig. 19. This dataset can well validate our proposed method
to its advantages in eliminating the problem of a lack of quality
and quantity of training samples. According to the results of
this dataset, some conclusions are similar to those obtained by
the Hermiston dataset. The proposed SSViT method achieves

the highest quantitative assessment performance with the OA of
0.95, the KC of 0.78, the MCC of 0.78, and the F1-score of 0.86.

Fig. 20 presents the visual output of all the methods. By
comparing the results of this dataset and, to some extent other
datasets, it can be seen that the weakness and strengths of the
methods are at the edge of the areas that have changed. Our
proposed method has performed better than other methods in
the isolated regions that have changed, unlike the other methods,
which mainly have a high false negative, which has reduced their
accuracy. This difference shows that the training data that are the
input of the proposed model are of high quality.

5) Ablation Analysis: In artificial intelligence methods, the
ablation analysis is a crucial step in getting insight into the
overall performance by removing parts of the system [43]. In
four scenarios, the study examines the influence of the attention
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Fig. 15. Quantitative results from the implementation of different methods on the Hermiston dataset.

Fig. 16. Change maps obtained by the different methods on the Hermiston dataset. (a) Ground truth. (b) Change map obtained by the GetNet method. (c) Change
map obtained by the PTCD method. (d) Change map obtained by the TDRD method. (e) Change map obtained by the ViT method. (f) Change map obtained by
the proposed method.



SHAFIQUE et al.: SSViT-HCD: A SPATIAL–SPECTRAL CONVOLUTIONAL VISION TRANSFORMER FOR HYPERSPECTRAL CHANGE DETECTION 6499

Fig. 17. Quantitative results from the implementation of different methods on the Farmland dataset.

TABLE II
ABLATION ANALYSIS: QUANTITATIVE COMPARISONS AMONG OTHER VARIANTS

OF THE PROPOSED SSVIT ALGORITHM FOR THE HERMISTON DATASET

TABLE III
COMPARISON OF COMPUTATIONAL COST OF DL-BASED METHODS

module, transformer module, and convolution parts on the
proposed methods’ performance. The first scenario (S#1) is to
remove the 2-D attention module, the second scenario (S#2) is
to remove the 3-D attention module, the third scenario (S#3)
is to remove the transformer part, and the fourth scenario (S#4)
is to remove all multiscale convolution layers and attention
modules. The numerical experimental results of ablation analy-
sis for the Hermiston dataset are presented in Table II. As seen,
all parts’ effectiveness is different from each other. Removing
the transformer module clearly has the highest negative impact
on the model’s performance in HCD. Furthermore, the 2-D
CBAM has the lowest influence on the model’s efficacy.
However, removing all multiscale convolution layers and
attention modules (S#4) provides better performance by recall
and BA indices, but it misses its performance by other metrics.

6) Computational Cost: We evaluated the computational
cost of HCD methods. However, the PTCD and TDRD are
not DL-based frameworks; we compared the three DL-based
models, such as GetNet, ViT, and SSViT. Table III shows the
number of parameters of models and that SSViT has lower
number of parameters than that of the other two DL-based
models. It is worth noting that the lower parameters can improve
the time processing and computational cost.

V. DISCUSSION

We present a novel and efficient method to perform HCD
known as the SSViT, which combines the benefits of the CNN
and the transformer model. Our experiment was conducted on
four HSI datasets, and we compared the experimental results
obtained using SSVit with the experimental results obtained
using the other four hyperspectral-based CD models. According
to Table I, in terms of most metrics, the proposed SSViT model
has a significant advantage over other comparative methods from
the overall performance perspective. One important aspect is
worth mentioning: the performance of SSViT is high, which
indicates that SSViT has apparent advantages over classical
methods in HCD.

Our proposed method generates a more accurate and complete
change map that is close to the GT. In addition to quantitative
metrics, the visual quality of the change map is much better than
that of other methods, as shown in Figs. 14 and 16. Briefly, all
the visual interpretations of the CMs in the Fig. 20 qualitatively
reflect the effectiveness of the proposed SSViT model.

Furthermore, there is tradeoff between change and no-change
pixels in HCD. Some models only consider the change pix-
els, while ignoring its performance in the no-change pixels.
Inversely, some models only focused on no-change, while others
missed their performance in the change pixels or had a challenge
with a large number of mixed pixels, such as [32]. All the models
should be able to identify change and no-change pixels that have
the lowest error and can effectively improve the CD ability. For
example, from Table I, in the River dataset, the GetNet algorithm
has provided high precision while missing performance in recall
under 36%. In addition, in the Farmland dataset, the TDRD has
provided high accuracy by recall but missed performance in pre-
cision under 88%. F1-score originates from recall and precision,
and the proposed SSViT model has provided high value in more
datasets, which means that the proposed model focuses more on
change and no-change pixels because it provides high value by
F1-score.

In addition, to demonstrate the significance of the ViT model
and the CNN model in capturing local and global features in
Fig. 21, we present the visualization of feature maps of the
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Fig. 18. Change maps obtained by the different methods on the Farmland dataset. (a) Ground truth. (b) Change map obtained by the GetNet method. (c) Change
map obtained by the PTCD method. (d) Change map obtained by the TDRD method. (e) Change map obtained by the ViT method. (f) Change map obtained by
the proposed method.
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Fig. 19. Quantitative results from the implementation of different methods on the Agriculture PRISMA dataset.

Fig. 20. Change maps obtained by the different methods on the Agriculture PRISMA dataset. (a) Ground truth. (b) Change map obtained by the GetNet method.
(c) Change map obtained by the PTCD method. (d) Change map obtained by the TDRD method. (e) Change map obtained by the ViT method. (f) Change map
obtained by the proposed method.
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Fig. 21. Feature map comparison between CNN and ViT models.

CNN and the ViT model. The convolution layer extracts the
local feature, while the ViT model can extract the global feature.
Fig. 21 shows the effectiveness of the ViT model in capturing
the long-range modeling relationships in the input patches.
Furthermore, the result of the visualization of both the models
shows that the CNN model is focused on local features because
it captures local information on the feature map, and there is less
dependence among long-range dependencies in the feature maps
(yellow areas in the feature map), as shown in Fig. 21. The trans-
former models are specialized for long-term relationships, as
there are many yellow points in the different areas of the feature
maps. Our proposed method, SSViT, combines the benefits of the
convolution layer and the transformer model and can separately
extract local and global features, which improves the result of
HCD.

DL models require a massive amount of samples, which can
challenge bitemporal datasets [44], [45]. Also, the quality and
size of the sample dataset are still some of the problems that
supervised methods have to deal with. Moreover, the proposed
method did not require the collection of user training data or the
setting of parameters. Several HCD approaches have recently
been presented to generate sample data using an unsupervised
framework to enhance the sample data’s reliability [10], [24].
These approaches primarily create sample data using classic
predictors (e.g., PCA and EU predictors). However, they find
satisfactory results, but errors in sample generation can affect
the final CD. Therefore, reliable sample generation is still chal-
lenging. Due to unreliable sample data, supervised classifiers are
trained with false data, resulting in low accuracy. A significant
achievement of the proposed method was refining sample data
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TABLE IV
COMPARISON OF ACCURACIES OF THE SSVIT WITH OTHER HCD METHODS

using a hierarchical thresholding method to make sample data
more reliable. Furthermore, Table III shows the number of pa-
rameters of two comparison methods and our proposed method.
We found that SSViT has fewer parameters (2.2 M) than other
DL-based models. The number of parameters is high in other
methods; it means that they take a lot of time for processing and
have a high computational cost.

To further demonstrate the superiority of the model, we
collected the accuracy of the datasets presented in their original
work and listed them in Table IV. The proposed model
in [46] acquires the OA of 93.46% on the River dataset. The
Farmland dataset was used in [47], which had an accuracy of
92.32%, and in [34], which achieved an accuracy of 93.74%.
Furthermore, an OA of 96% was obtained with the Hermiston
dataset [48], and the model in [46] achieved an OA of 94.46%.
Our proposed method, SSViT, obtained the highest accuracies
for similar datasets, such as River, Farmland, and Hermiston,
as shown in Table IV. Also, it is important to note that we
did not compare the accuracy of the PRISMA dataset with
the previous DL-based CD method because we first used the
PRISMA dataset for HCD.

VI. CONCLUSION

In this article, we proposed a new hybrid SSViT framework
for HCD. Our proposed model combines the merit of CNN and
transformer. In general, the proposed technique provides several
advantages over other CD methods: 1) it provides an end-to-end
framework; 2) it generates a reliable sample dataset that directs
the CD for automatic framework; 3) it is robust and high efficient
in different complex land cover areas; and 4) it is adaptive with
a different hyperspectral dataset captured by different sensors.
Moreover, this article provided a novel means for hyperspectral-
based CD. Therefore, this study proved that SSViT provides
significant results in the HCD task. Furthermore, new series of
HSIs was introduced for CD purposes. In the future, we will
keep researching transformer use in RS images for CD tasks.
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