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Abstract—Recently, deep learning has greatly promoted the de-
velopment of synthetic aperture radar (SAR) ship detection. But
the detectors are usually heavy and computation intensive, which
hinder the usage on the edge. In order to solve this problem, a
lot of lightweight networks and acceleration ideas are proposed.
In this survey, we review the papers that are about real-time SAR
ship detection. We first introduce the model compression and accel-
eration methods. They are pruning, quantization, knowledge dis-
tillation, low-rank factorization, lightweight networks, and model
deployment. They are the source of innovation in real-time SAR
ship detection. Then, we summarize the real-time object detection
methods. They are two-stage, single-stage, anchor free, trained
from scratch, model compression, and acceleration. Researchers in
SAR ship detection usually learn from these ideas. We then spend
a lot of content on the review of the 70 real-time SAR ship detection
papers. The years, datasets, journals, deep-learning frameworks,
and hardwares are introduced first. After that, 10 public datasets
and the evaluation metrics are shown. Then, we survey the 70
papers according to anchor free, trained from scratch, YOLO
series, constant false alarm rate+convolutional neural network,
lightweight backbone, pruning, quantization, knowledge distilla-
tion, and hardware deployment. The experimental results show
that the algorithms have been greatly developed in speed and
accuracy. In the end, we pointed out the problems of 70 papers and
the directions to be studied in the future. This article can enable
researchers to quickly understand the research status in this field.

Index Terms—Anchor free, computer vision, dataset, deep
learning, lightweight, real-time, synthetic aperture radar (SAR)
ship detection, single-stage detector, trained from scratch.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an all-day and all-
weather sensor that is widely used in military, agricultural,

geological, ecological, marine, and other fields. SAR ship detec-
tion is an important tool for marine monitoring in illegal fishing,
oil spill detection, and maritime traffic management [1], [2], [3].

The traditional detection methods are based on constant false
alarm rate (CFAR). It firstly models the clutter, and then obtains
the threshold value according to the false alarm rate. The pixels
above the threshold are regarded as ship pixels, and those below
the threshold are regarded as background. The performance of
this method largely depends on the statistical modeling of sea
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Fig. 1. Lightweight network designing, model compression and acceleration,
and hardware deployment are three ways to implement real-time object detec-
tion.

clutter and the parameter estimation of the selected model. In
general, when the scene is simple, the CFAR method can achieve
good result. However, for complex offshore scenarios, it will
have more false positives and poor performance [4].

After CFAR, discrimination is used to classify the ship and
nonship areas. The features that are used are length, width, HoG,
Surf, LBPs, and so on. The classifiers that are used are SVM,
MLP, and so on. But since deep learning revives in 2012 [5], the
above ideas show disadvantage in accuracy. The deep-learning
method works in an end-to-end manner. This means that it does
not need to optimize multiple steps individually. It optimizes the
whole detection system simultaneously. It can adapt to various
complex scenes and has strong robustness [6], [7], [8]. Due to its
great advantage, SAR researchers began to use these methods.

The beginning is the emergency of SSDD [9]. Based on it, re-
searchers can train and test their deep-learning-based detectors,
and also can compare their algorithms each other in the same
evaluation metrics. Since then, a large number of datasets and
algorithms have been proposed, further promoting the develop-
ment of this field. Li et al. [10] reviewed these achievements
comprehensively.

The above deep-learning-based detectors are all based on
convolutional neural networks (CNN)’s strong feature extraction
ability. In order to get good performance, most of the CNNs are
deep and wide, which have high computational complexity and
memory consumption. For example, AlexNet has 60 million pa-
rameters with five convolutional layers and three fully connected
layers [11]. It is difficult to deploy such large model on edge
devices with limited computing resources and memory. In order
to realize real-time SAR ship detection, lightweight network
designing, model compression and acceleration, and hardware
deployment are three ways researchers usually take, as shown
in Fig. 1 [12].

Due to the huge demand of real-time SAR ship detection, a lot
of researchers try to realize real-time SAR ship detection with
different accuracy and speed tradeoff. As far as we know, there
are 70 papers [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
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Fig. 2. Overall architecture of the article.

[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81],
[82] that are about this. Unfortunately, nobody reviews them
comprehensively. This is one of the motivations of this article.

The contributions of this article are as follows. Firstly, we
summarize the model compression methods, acceleration meth-
ods, and the real-time object detection methods. They are often
used in real-time SAR ship detection. Secondly, the datasets
and the evaluation metrics those are usually are systematically
summarized here. Thirdly, 70 papers those are related to real-
time SAR ship detection are divided into 7 categories and are
reviewed thoroughly. Finally, the future directions are given
for the following work. As far as we know, this is the first
comprehensive survey in this field.

The rest of this review is arranged as shown in Fig. 2. Section II
briefly analyzes some work related to this article. Section III
summaries the model compression and acceleration methods. It
mainly includes pruning, quantization, knowledge distillation,
low-rank factorization, lightweight networks, and model deploy-
ment. Section IV introduces the real-time detection methods.
It mainly includes two-stage, single-stage, anchor free, trained
from scratch, compression, and acceleration. Section V is the
main content of the article. We introduce the general situation of
the 70 papers. Then the datasets, evaluation metrics, anchor free,
trained from scratch, YOLO series, CFAR+CNN, lightweight

backbone, pruning, quantization and knowledge distillation, and
hardware deployment are analyzed, respectively. Section VI
discusses the problem and the future direction of this field.
Section VII is the conclusion of the article.

II. RELATED WORK

As far as we know, there is no comprehensive paper on real-
time SAR ship detection. This is mainly because this field is
relatively new, with few achievements, and is difficult to carry
out a review. At present, the review papers those are related to
this article are shown in Table I.

Mao et al. [83], Stefanowicz et al. [84], Zhang et al. [85],
and Li et al. [86] are summaries of SAR ship detection based
on deep learning. Mao et al. [83] compared the classical deep-
learning-based detectors on SSDD. It provided a benchmark for
researchers in this area. In essence, it is not a survey of papers.
Jerzy et al. [84] surveyed the papers about SAR ship detection
from 2015 to 2020. In this article, the CFAR, CNN, GLRT,
feature extraction, weighted information entropy, and variational
Bayesian inference methods are studied. The deep-learning-
based SAR ship detection is not studied thoroughly compared
with other papers. Zhang et al. [85] provided an official version
of SSDD. It introduced the drawbacks and success of SSDD. It
provided three versions of SSDD. It also provided the seven
using standards of the official SSDD. But it only reviewed
the papers that are related to SSDD, the papers using other
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TABLE I
PAPERS THOSE ARE RELATED TO OUR WORK

public datasets are not reviewed. Li et al. [86] finished the first
comprehensive survey of SAR ship detection. It analyzed the
past, present, and future of this area by the 177 published papers.
It can make researchers better understand these algorithms and
encourage more researchers to this field. But it only introduced
the real-time SAR ship detection roughly, which is not sufficient
as real-time SAR ship detection is becoming hot and hot recently.

Jiao et al. [87], Liu et al. [88], and Jiao et al. [89] are summaries
of the object detection papers in computer vision, which has
a comprehensive summary of the real-time object detection
algorithms. The real-time SAR ship detection can learn from
these. Cheng et al. [90], Goel et al. [91], Mishra et al. [92], and
Zhang et al. [93] are reviews on the compression and acceleration
of deep-learning-based computer vision. These achievements
point out the direction for realizing real-time SAR ship detection.

In short, this article is different from the above surveys.
It is the first comprehensive review of real-time SAR ship
detection.

III. MODEL COMPRESSION AND ACCELERATION METHODS

CNN-based deep-learning models have shown great advan-
tage in computer vision tasks especially object detection. But
CNN is heavy in computational cost and memory storage,
which hinders the usage on some real-time applications, for
example, processing on the edge (airplane and satellite). So a
lot of methods have been proposed to compress and accelerate
the CNN models. They can be divided into six categories: pa-
rameter pruning, quantization, knowledge distillation, low-rank
factorization, lightweight networks, and model deployment, as
shown in Fig. 3. The above methods can be used alone or in
combination.

In modern CNN, the fully connected layers gradually disap-
pear, and the convolution layer occupies most of its storage and

Fig. 3. Model compression and acceleration methods.

Fig. 4. Three-stage compression method proposed in [94]: pruning, quantiza-
tion, and encoding.

calculation. Therefore, the main objectives of the above model
compression and acceleration methods are the convolution layer.
It will take several steps to achieve the goal generally. For
example, Han et al. [94] promoted a method to compress CNNs
with three steps: pruning, quantization, and Huffman encoding.
By this, AlexNet could be compressed by 35 without drops in
accuracy, as shown in Fig. 4.

A. Pruning

Generally, the CNNs after training are overparameterized, and
they have millions or even billions of parameter. For example,
ResNet-50 needs 95 MB memory for storage and over 3.8 bil-
lion floating number multiplications when processing an image.
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Fig. 5. Results of weight pruning and neuron pruning.

Fig. 6. Process of parameter pruning.

There are significant redundant weights or neurons, which are
unimportant or unnecessary [95], [96], [97]. So in order to
compress the CNNs, we can prune the weighs and neurons those
are less important. After the pruning, we can get a small network,
and the CNNs still work as usual but save more parameters and
computational time, as shown in Fig. 5. The importance metric
of a weight can be L1 norm or L2 norm. The importance metric
of a neuron can be the number of times it was not zero after
training. After sorting the importance of all weights and neurons,
removing unimportant weights or neurons, we can get a smaller
network.

Generally, the classification or the detection result will de-
crease after the pruning. So we should retrain the CNN model to
promote the accuracy further. In order to get a good performance
on accuracy, we should not prune too much at once [98]. We
should gradually prune them as shown in Fig. 6.

Pruning will increase the sparsity of parameters, thereby
reducing storage and computing. According to different pruning
objectives, pruning can be divided into fine-grained pruning,
vector-level pruning, kernel-level pruning, group-level pruning,
and filter-level pruning [99].

Fine-grained pruning methods remove parameters with un-
structured [100]. The parameters of CNNs can be pruned thor-
oughly, and are very sparse. These methods have a better com-
pression ratio. But what should be noticed is that as the CNNs
are not structural, and they have a lot of fragmented operations
which are hard to accelerate on the hardware, e.g., GPU. In
other words, although we get fewer parameters, the calculation
speed will not be accelerated. So we should pay more attention
to the structured pruning. Vector-level methods prune vectors in
the convolutional kernels. Kernel-level pruning methods prune
convolutional kernels in the filters. They are seldom used, as
most pruning methods mainly focus on fine-grained pruning
or filter-level pruning. Group-level pruning methods prune the
parameters according to the sparse pattern on the filters. By
this, convolutions can be implemented by thinned dense matrices

multiplication. So the BLAS can be utilized to achieve a higher
speed-up. Filter-level pruning methods prune the filters or the
channels. It can make CNNs much lighter. After filter-level
pruning, the input channel of the next layer is also smaller.
Filter-level pruning methods are structured with less fragmented
operations and are easy to be processed by hardware (CPU or
GPU). So filter-level pruning methods are the most efficient for
compressing CNNs.

The processing of pruning is very trivial as CNNs should
be pruned and trained several times. The fine-grained prun-
ing should be used on custom hardware or special data struc-
tures for sparse matrices. But the filter-level pruning is not
needed and can be used on general processors. Pruning is
usually with quantization and encoding for further accelerating
CNNs.

B. Quantization

Network quantization compresses CNNs with less number
of bits to represent each weight. It can significantly reduce
the memory and computation with less loss on accuracy [101],
[102], [103], [104].

Generally, the weights in CNNs are saved as 32-bit floating-
point numbers. But for the accuracy of deep-learning task, the
number of bits has a weak impact on it. So we can use fewer bits
to represent the weights. This process is called the quantization.
It can reduce the computation and memory size. For example,
if we use 16 bits to store a parameter rather than 32 bits, the
model size of the network can be reduced half. The weights
can be quantized to 16-bit, 8-bit, 4-bit, or even with 1-bit [105].
The quantization can be also used on gradient and activation.
The gradients quantization can accelerate the training stage. The
weight and activation quantization methods can accelerate the
inference stage.

We can create the clusters of the weights, and all the weights
which fall into that cluster can share the same weight value.
When storing the network, the real values are not needed to be
saved. We only need to record the class ID of the weights and
use the means of the weights in the classes to represent the real
values of the weights [106]. It can compress the network, but
decrease the performance.

The parameters can be represented by a codebook and a
set of quantization codes [107]. It represents frequent clusters
by fewer bits, and represents rare clusters by more bits. For
example, Huffman encoding. It represents the common tokens
with less bits, and represents the rare tokens with more bits.
By this, the network can be compressed further. It can achieve
4–6 speed-up and 15–20 compression ratio with little accuracy
loss.

These methods can also be categorized into two main groups:
quantization after training and quantization when training. The
former is used to reduce the inference time and save energy.
And the latter is used to reduce the network size and make the
training process more computational efficient.

The quantization can use shift or XNOR rather than multiply-
accumulate operations in custom hardware [108]. And thus
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Fig. 7. Principle of knowledge distillation.

reduce the energy consumption. But the CNNs need to be trained
several times, which make the training process tedious.

C. Knowledge Distillation

Hinton put forward the concept of knowledge distillation for
the first time in distilling the knowledge in a neural network. And
he introduced the soft targets of teacher to induce the training of
students’ network. The knowledge distillation is classified into
three categories, they are logits transfer, teacher assistant, and
domain adaptation [109].

Generally speaking, the teacher model has strong ability and
performance, while the student model is compact. The knowl-
edge distillation methods transfer the generalization ability of
the teacher model to the compact student model to improve its
performance with less complexity. The basic idea of knowledge
distillation is to transfer the dark knowledge in the complex
teacher model to the simple student model. These methods match
or outperform the teacher’s performance, while requiring no-
tably fewer parameters and multiplications [110], [111], [112],
as shown in Fig. 7.

The parameter T represents temperature. Generally, T is 1.
When T is larger, a softer probability distribution will be ob-
tained. There are two loss functions. The first loss function re-
quires that the student model and the teacher model use the same
T when calculating the softmax layer. The second loss function
requires the student model T to be taken as 1, and the loss
function is the weighted average of the two objective functions.
Soft prediction carries more and more useful information than
hard prediction. The knowledge distillation can get a lightweight
CNN model with high accuracy [113].

The softmax function is formulated as follows:

qi =
exp(zi/T )∑
j exp(zj/T )

. (1)

D. Low-Rank Factorization

Low-rank factorization is a straightforward way for model
compression and acceleration. It is based on the fact that the
weight vector is mainly distributed in some low rank subspaces,
and a few bases can be used to reconstruct the weight matrix. The
low-rank decomposition factorizes multidimensional tensors (in
convolutional and fully connected layers) into smaller matrices
to eliminate redundant computation. For examples, we can de-
compose the K convolutions into two separable convolutions of
size 1×K and K×1. By this, we can remove redundancy and re-
duce weight parameters. Low-rank factorization can reduce the
computation costs in CNNs. It can be used in both convolutional
layers and fully connected layers. It has only a small accuracy
loss [114].

Convolution operations contribute most of the computations
in CNNs, so we can make the inference process faster by
decomposing the convolution layer. A convolutional kernel can
be represented as a 4-D tensor w×h×c×n tensor. They are
kernel width, kernel height, and the number of input and output
channels, respectively. Ideas based on tensor decomposition is
derived by the intuition that there is a significant amount of
redundancy in the 4-D tensor, which is a particularly promising
way to remove the redundancy. Based on how many components
the filters are decomposed into, the low-rank method can be
divided into three categories: two-component decomposition,
three-component decomposition, and four-component decom-
position [115].

The fully connected layers can be view as a 2-D matrix, and it
contains around 89% of the parameters in CNNs like AlexNet.
Low-rank factorization can also be applied to the fully connected
layer. It can make the model storage-friendly [116].

Singular value decomposition (SVD) is a common and popu-
lar factorization scheme for reducing the number of parameters.
Besides, canonical polyadic decomposition, batch normalization
decomposition, Tucker-2 decomposition, and the SVD are the
usually used matrix factorization techniques [117].

Low-rank factorization is taken layer by layer. After factor-
izing the parameters of one layer, subsequent layers are then
factorized based on some reconstruction error. It is difficult to
be used on deep CNNs, as with the increase of depth, the search
space of the decomposition hyper-parameters is huge.

E. Lightweight Networks

Since AlexNet won the first place in 2012 ILSVRC, deep
CNNs encounter another revival. A lot of CNNs have been pro-
posed with excellent performance, for example, VGGNet [118],
Inception [119], ResNet [120], ResNeXt [121], and DenseNet
[122]. These CNNs mainly consider accuracy but not speed. So
they are computation extensive and are very heavy in model size.
In order to deploy them on edge devices, a lot of ideas about
designing lightweight CNNs have been proposed as shown in
Fig. 8. The development of lightweight CNN also promotes the
progress of real-time object detection.

1) SqueezeNet Series: SqueezeNet [123] has 98% fewer pa-
rameters than AlexNet and achieves the same accuracy on the
ImageNet dataset. It uses three strategies to reduce the number
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Fig. 8. Lightweight networks.

of parameters. It proposes a new network architecture called
fire module. It replaces 3×3 convolution with 1×1 convolu-
tion, and reduces the channel of the input of 3×3 convolution.
Downsampling is carried out in the later stage of the network,
so that the convolution layer has a larger activation feature
map. SqueezeNext [124] uses a two-stage squeeze operation
to achieve a significant reduction in channels. With separable
3 × 3 convolution, it further reduces model size. By using
element by element addition similar to ResNet, a deeper network
can be trained without the problem of gradient disappearance.
SqueezeNext has fewer parameters and higher accuracy than
SqueezeNet.

2) MobileNet Series: MobileNetv1 [125] decomposes the
standard convolution into 2-D and 1-D convolutions, which
effectively reduces the amount of calculation and model pa-
rameters. MobileNetv1 uses separable convolution to compress
the feature map, which significantly reduces the amount of
parameters and significantly improves the speed.

Depthwise convolution converts N×H×W×C into C groups,
and then each group is calculated by 3×3 convolution, which is
equivalent to collecting the spatial characteristics of each chan-
nel. Pointwise convolution does k ordinary 1 ×1 convolutions
to N×H×W×C, which is equivalent to collecting the features of
each point.

MobileNetv2 [126] was proposed by Google in 2018. The
model reduces the amount of computation and memory usage
while maintaining accuracy. It has three characteristics: reverse
residual, linear bottleneck, and depthwise convolution. Mo-
bileNetv2 is spindle type, with large middle and small sides. This
is because MobileNetv2 uses 1×1 convolution first to increase
the number of channels, and then 3×3 depthwise convolution
can reduce the amount of calculation. Although there are many
intermediate channels, the depthwise convolution calculation is
small. MobileNetv2 also removes the last ReLU of the bottle-
neck layer. MobileNetv2 model is compact, with small amount
of computation and good classification performance. It shows
good performance in detection and segmentation tasks.

MobileNetv3 [127] is improved on MobileNetv2, it explores
how neural architecture search (NAS) and manual design work
together and complement each other. It first uses MnasNet [128]

to search the rough structure, then uses reinforcement learning
to select the optimal configuration from a set of discrete choices,
and then uses MnasNet to fine tune the architecture.

3) ShuffleNet: Although the pointwise convolution reduces
the number of parameters, there is a problem of low computa-
tional efficiency, because a large number of 1 × 1 convolution
will consume a lot of computing resources. ShuffleNet uses
pointwise group convolution to reduce the amount of com-
putation, but there is no connection between groups, which
will affect the performance of the network. Therefore, channel
rearrangement is used to strengthen the connection between
different groups.

Due to the addition of pointwise grouping convolution and
channel rearrangement, the calculation of ShuffleNet is more
efficient. Compared with ResNet and ResNeXt, the computa-
tional complexity of ShuffleNet is the smallest, for example,
considering the input size of c×h×w. Bottleneck channel is m,
ResNet unit needs h×w×(2×c×m+9×m×m)FLOPs, ResNeXt
unit requires h×w×(2×c×m+9m×m/g)FLOPs, but the Shuf-
fleNet unit only needs h×w×(2c×m/g +9×m)FLOPs, where g
represents the number of groups of convolution.

ShuffleNetv1 [129] uses pointwise group convolution and
channel shuffle to greatly reduce the amount of calculation and
ensure the accuracy. It has a lower error rate than MobileNet (the
top-1 error rate is 7.8%), and is 13 times faster than AlexNet on
the ARM chip of mobile devices.

ShuffleNetv2 [130] proposes that the following two factors
must be considered in the structural design of CNN: first, the
direct measurement standard (speed), rather than the indirect
measurement standard (flop); second, measurement needs to be
carried out on the target platform. The article gives four prac-
tical guiding principles: principle 1: the same number of input
and output channels can minimize memory access; principle 2:
excessive use of group convolution will increase memory access
cost (MAC); principle 3: network fragmentation will reduce
parallelism; and principle 4: element level operations cannot
be ignored. According to the guiding principles, the author
designed ShuffleNetv2, which achieved a good tradeoff in speed
and accuracy.

4) Others: PeleeNet [131] used two-way dense layers, stem
block, dynamic number of channels in a bottleneck, transition
layer compression, and conventional post activation to reduce
computation cost and increase speed. The stem block was used
to alleviate information loss. PeleeNet consists of a stem block,
four stages of modified dense and transition layers, and ulti-
mately the classification layer.

The CNN structure mentioned above is basically designed
manually by experience, and these networks are not necessar-
ily optimal. NAS [132] can find lightweight network models.
It can use search strategy to automatically find the optimal
CNN structure in the search space. Mnasnet is an automated
NAS approach. It formulates the search problem as multiobject
optimization aimed at both high accuracy and low latency.
MnasNet was almost twice as fast as MobileNetv2 while having
better accuracy.

The above lightweight CNNs relied on depthwise separable
convolution, which lacked efficient implementation on most
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Fig. 9. Common process of model deployment.

hardware. It should be noted that when these CNN are deployed
on hardware devices, some models seem lightweight, but the
hardware does not support some calculations, resulting in poor
real-time performance.

F. Model Deployment

Computational acceleration is also a method to realize real
time. It includes using FFT-based convolutions and fast con-
volution using the Winograd transformation. Winograd trans-
formation is another equivalent method for convolution, which
improves the calculation speed. Convolution in the time domain
is equivalent to pointwise multiply in the frequency domain.

The key to realize real-time object detection is to deploy
lightweight CNN models on the customized hardware. Model
deployment refers to deploying the training model generated by
deep learning to various cloud, edge, and edge devices to make
it run efficiently, so as to apply the algorithm model to various
tasks in reality. The common process of model deployment is
shown in Fig. 9. It includes four steps: deep-learning frame-
work, intermediate representation, inference engine, and embed
platform.

The deep-learning framework is used to define the network
structure and determine the parameters in the network through
training. Tensorflow [133], Pytorch, and Caffe [134] are the
usually used deep-learning framework.

The intermediate representation can solve the problem of
neural network model transformation between different train-
ing and inference frameworks. It only describes the structure
and parameters of the network. ONNX (open neural network
exchange) is an intermediate representation [135]. It defines a
set of extensible calculation diagrams and a series of standard
data types and operators. Currently, most training, deployment
frameworks, and reasoning acceleration engines of hardware
manufacturers support ONNX format.

The inference engine written codes with high-performance
programming frameworks (such as CUDA and OpenCL), it can
efficiently execute operators in deep-learning networks. The
ONNX, RunTime, TensorRT, MNN, NCNN, and OpenVino are
the inference engine that we can use [136], [137].

The embedded platform is used to realize CNN’s real-time
processing under the condition of limited power consumption
and computing power. The NVIDIA Jetson TX2, Xilinx Ultra96

Fig. 10. Software and hardware codesign.

Fig. 11. Real-time object detection.

with UltraScale and ZU3, Huawei Atlas 200 with Hi3559, and
Baidu EdgeBoard with FPGA are the embedded platform we
can use [138], [139].

The best solution for realizing real-time processing is al-
gorithms and hardware codesign as shown in Fig. 10. The
algorithms for efficient inference include pruning, quantization,
low-rank factorization, winograd transformation, and so on. The
hardware should be efficient in inference. It should minimize
memory access. It needs to support some lightweight operations.
The hardware also needs to optimize some special operations,
for example, 1×1 convolution, 3×3 convolution, group convo-
lution, and depthwise convolution.

IV. REAL-TIME OBJECT DETECTION METHODS

The methods to realize real-time object detection can be
summarized as Fig. 11. They are two-stage, single-stage, anchor
free, trained from scratch, and the compression and acceleration.

According to the number of stage, the deep-learning-based
object detection algorithm can be divided into single-stage
detectors and two-stage detectors. During the development of
object detection, both of the single-stage detectors and two-
stage detectors are continued to pursue speed and accuracy.
For example, from R-CNN [140], SPP-Net [141], and Faster
R-CNN [142] to R-FCN [143] and Light-head R-CNN [144],
the detectors are becoming faster and more accurate. More
than this, the YOLOv1 [145], YOLOv2 [146], YOLOv3 [147],
YOLOv4 [148], YOLOv5 [149], and YOLOX [150] also reflect
this phenomenon. We will introduce it in detail below.

The anchor-free detectors have been widely studied and
a large number of achievements have emerged recently. The
anchor-free detectors show great potential in real-time SAR ship
detection. This is because ships in SAR images are very spare,
and most of the anchors are invalid in the anchor-based detectors.
Besides this, the trained from scratch technique also show great
advantages in realizing lightweight detectors. This is because
SAR images are different from optical image of ImageNet, the
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Fig. 12. Principle of two-stage detectors.

Fig. 13. Evolution of R-CNN, fast R-CNN, and faster R-CNN.

loaded pretrained parameters are not suitable, and are redundant
for SAR ship detection.

Besides the above ways, the compression and acceleration of
CNNs (pruning, quantization, and knowledge distillation) are
also used on the object detection method.

A. Two-Stage Real-Time Detectors

The principles of two-stage detection algorithms are shown
in Fig. 12. The two-stage detectors use a CNN to classify and
regress these anchor boxes twice to obtain the detection results.

Classical two-stage detectors are faster R-CNN, R-FCN, fea-
ture pyramid networks (FPN) [151], cascade R-CNN [152],
mask R-CNN [153], and so on [154]. Faster R-CNN is the foun-
dation work, and most of the two-stage detectors are improved
based on it.

The evolution process of R-CNN, fast R-CNN, and faster
R-CNN are shown in Fig. 13. We can see that CNN not only is
used for extracting features but also can be used for generating
candidate region.

R-CNN uses the selective search algorithm to generate the
candidate box of the object, and inputs it as a sample into
the CNN. The CNN generates the positive and negative sample
features, and forms the corresponding feature vector. Then, the
support vector machine classifies the feature vector. After the
regression, the category and location are output. R-CNN gets
mAP of 53.3%, which is 13.4% higher than the best traditional
detector. R-CNN shows the great advantage of deep learning.

SPP-Net proposed spatial pyramid pooling (SPP) to solve the
problem of feature extraction in R-CNN. SPP-Net can get fixed
length feature vectors through CNN no matter how length is the
input.

Fast R-CNN adopts the idea of multitask loss function. The
classification loss and regression loss are unified to train. It no
longer requires additional hard disk space to store the middle
layer features. And the gradient can be directly propagated
through the ROI pooling layer. Fast R-CNN processes one image

Fig. 14. Principle of single-stage detectors.

with 2–3 s, and the main time is spent on candidate region
extraction.

Faster R-CNN adopts the shared CNN to predict the region
proposal. It includes regional proposal network (RPN) and fast
R-CNN. RPN is used to generate candidate windows. It uses
the anchor box mechanism, which greatly reduces the amount
of computation by directly generating candidate windows on
the feature map. Faster R-CNN slightly improves the accuracy,
and greatly improves the speed [17 frames per second (FPS)].
It can be processed in an end-to-end way. GPU can be used to
accelerate the calculation throughout the whole process.

Fast R-CNN and faster R-CNN apply a per-region subnetwork
many times to classify and regress the targets, which is time
consuming. R-FCN uses a fully convolutional structure and
all the computation shared on the entire image. It is more
accurate and efficient. As deeper layers in the convolutional
network are translation-invariant, making them ineffective for
localization tasks. R-FCN proposed the position-sensitive score
maps to solve this problem. It uses position-sensitive score
maps to address the dilemma between translation-invariance in
image classification and translation-variance in object detection.
R-FCN achieves 83.6% mAP on the PASCAL VOC 2007 with
ResNet-101 as the backbone.

Faster R-CNN has two fully connected layers for RoI recog-
nition, and R-FCN has a large score maps. They both perform
an intensive computation after or before RoI warping. Though
the backbone is lightweight, the above two-stage detectors are
still slow. Light-head R-CNN solves this shortcoming of faster
R-CNN and R-FCN. The head of light-head R-CNN uses a thin
feature map and a cheap R-CNN subnet, which makes the head
of the detector as light as possible. It gets 30.7 mAP at 102 FPS
on COCO.

From R-CNN, SPP-Net, fast R-CNN, and faster R-CNN to
R-FCN and light-head R-CNN, we can find that the two-stage
detectors always pursue the improvement of accuracy and speed
by sharing features on the backbone or the head layers. But as
the two-stage detectors accurately locate and classify targets
through two stages, which increase the amount of computation.
So it is inherently not suitable for real-time object detection.
Researches usually seek solutions in single-stage detector when
designing real-time object detection.

B. Single-Stage Real-Time Detectors

The principles of single-stage detection algorithms are shown
in Fig. 14. It uses a full convolution network to classify and
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TABLE II
YOLO SERIES OBJECT DETECTOR

regress the boxes once to get the detection results. The single-
stage detectors only need to look at the picture once, and can
predict what the object is and where the object is. It is similar
to human eyes. So they are faster than two-stage detectors.
Classical single-stage detectors are YOLO, SSD [155], Reti-
naNet [156], and CornerNet [157]. YOLO is most popular
single-stage detection algorithms, and most of the subsequent
single-stage works are based on them.

Among the single-stage detectors, YOLO series are popular
in real-time applications due to excellent speed and accuracy
tradeoff. The structures of YOLO series object detector are
shown in Table II.

YOLOv1 regards object detection as a regression problem,
and it outputs the spatially separated bounding box and related
class probability simultaneously. YOLOv1 divides the input
picture into S × S grids, each grid cell predicts B boxes and the
confidence scores corresponding to these boxes. For PASCAL
VOC, S = 7, B = 2, C = 20. The final prediction output is a
7×7× 30(5×2+20)tensor.

YOLOv2 uses the multiscale training method. It predicts
the offset rather than the parameter itself. It uses an anchor
mechanism to obtain anchor box parameters by clustering the
object size in the dataset. And every cell predicts five anchor
boxes. The backbone network is DarkNet-19. The detection
head has changed from 7 × 7 to 13 × 13. Batch normalization,
pass-through, high resolution, and multiscale training are used
to promote the performance further.

YOLOv3 uses DarkNet-53 as the backbone. DarkNet-53
reduces the output feature map to 1/32 of the input, which is
stronger than DarkNet-19 and more efficient than ResNet-101
and ResNet-152. The predictions are done on three different
branches: 13× 13, 26× 26, and 52× 52. The anchor mechanism
of YOLOv3 is the same as that of YOLOv2. YOLOv3 can
process an image of 320 × 320 in 22 ms.

YOLOv4 consists of CSPDarknet-53 backbone, SPP + path
aggregation network (PAN) based neck, and head of YOLOv3.
It uses two anchors for one ground truth, while YOLOv3 uses
only one anchor for one ground truth. It also uses several tech-
niques to achieve state-of-the-art results. It uses bag-of-freebies
to improve the performance without increasing the inference

time. For example, cutMix and mosaic data augmentation,
dropBlock regularization, class label smoothing, CIoU-loss,
self-adversarial training, and so on. It uses bag-of-specials to
improve the performance, and only a small amount of calculation
is increased. For example, mish activation, cross-stage partial
(CSP) connections, SPP, SAM (spatial attention module), PAN,
DIoU–nonmaximum suppression (NMS), and so on. YOLOv4
gets 43.5 mAP with 65 FPS on MS COCO.

YOLOv5 adopts adaptive anchors and uses the network to
learn anchor parameters. Its backbone is based on DarkNet53
with focus and CSP. In the neck part, the structure of an FPN and
PAN are adopted. Its prediction head is the same as YOLOv3
and YOLOv4. YOLOv5 is a state-of-the-art object detection
algorithm with fast inference speed and exact accuracy.

YOLOX introduces advanced anchor-free method to im-
prove the performance of detector, significantly outperforming
YOLOv5 in terms of precision. YOLOX uses a decoupled head
to generate two-way feature maps by two separate 1 × 1 convo-
lutional layers. The decoupled head improves the performance
of the detector. The SimOTA is used to dynamic assign label.
YOLOX achieve 50.0% AP on MS COCO with 68.9 FPS on
Tesla V100, which surpasses YOLOv5-L by 1.8% AP. And the
numbers of parameters of them are roughly the same.

For the YOLO series algorithm, other researchers have pro-
posed some improvements, and the speed has increased signif-
icantly, for example, PP-YOLO [158], PP-YOLOv2 [159], and
PP-PicoDet [160].

YOLO series show great potential for real-time object detec-
tion. And a lot of researchers apply them into SAR ship detection
and get good results. We will review them in Section V.

C. Anchor-Free Detectors

Deep-learning-based object detection algorithms can be di-
vided into anchor-based and anchor-free-based. The anchor-
based algorithm uses the anchor box as a reference to search
the region that may contain the object. These scale and aspect
ratio of the anchor box are designed according to the statis-
tical of the dataset. The anchor-based detectors make great
contribution to the development of deep-learning-based object
detection, for example, faster R-CNN, YOLOv2, YOLOv3,
and SSD. However, it is discrete sampling and needs to be
designed manually by experience, so there will be the following
disadvantages [161]:

1) The anchor box needs to be “carefully” designed accord-
ing to different datasets. This will introduce many hyper-
parameters that need to be optimized, such as the number,
size, and aspect ratio of the anchor box. If the parameters
change, the detection performance will fluctuate.

2) In order to obtain a good recall rate, it will generate a
large number of anchor boxes. For example, SSD has 8732
anchor boxes, and few can match the ground truth, most
of them are invalid, so there is a large redundancy.

3) There are fewer positive samples and most of them are
simple negative samples. This imbalance between positive
and negative samples will reduce the performance of the
model.
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4) When the dataset changes, it is necessary to change the
anchor box according to the size and shape of the targets
in dataset.

The anchor-free detector opens up another idea by eliminating
the predefined anchor box. It can directly predict several key
points of the target from the feature map. These algorithms are
exploring how to efficiently use points to represent a bounding
box. CornerNet uses the upper left and lower right points of the
box to represent the box. FCOS [162] and FoveaBox [163] do
the detection process by pixel prediction.

The anchor-free detectors can avoid various problems, and has
great application potential in SAR ship detection. For example,
due to the small size and sparse distribution of ships, most of
the candidate anchor boxes are invalid negative samples. The
anchor-free detectors can neglect the invalid anchors and reduce
the amount of the predicted boxes, and thus improve the accuracy
and speed simultaneously.

For the special scene of SAR ship detection, due to the small
size and sparse distribution of ships, most of the candidate anchor
boxes are invalid negative samples. The anchor-free detector
avoids various problems in anchor box generation. So it has
great application potential here.

D. Trained From Scratch Detectors

Since Ross proposed R-CNN, object detection algorithms
need to load the weight pretrained on classification dataset
(ImageNet) and fine-tune parameters to adapt to the new de-
tection task. This transfer learning can make the detection
algorithm initialize better and make up for the problem of
insufficient samples. But there will be the following problems
[164]:

1) The loss function and category distribution between clas-
sification and detection are different, so the transferred
parameters are not suitable for detection, which will make
the detection algorithm less than optimal.

2) The detection includes two subtasks: classification and
localization, which are optimized at the same time.
However, these two tasks are contradictory in nature.
For classification, translation invariance is required, but
for detection, translation invariance is required. It is
unreasonable to use the pretrained model for object
detection.

3) Most networks will produce high receptive fields through
multiple downsampling in the latter layers, which is good
for classification. However, this will sacrifice the spatial
resolution of the feature map, and it is difficult to accu-
rately locate object.

4) Most detection algorithms directly borrow the model
structure and parameters after pretraining and cannot mod-
ify the structure. It hinders researchers from designing
CNN flexibly according to their needs.

5) At present, the network is generally designed for three
channel natural images. For single-channel SAR im-
ages, there are too many channels and parameters are
redundancy.

In order to solve the problems of transfer learning, algorithms
trained from scratch are proposed, for example, DSOD, DetNet
[166], ScratchDet [167], and so on [168].

DSOD and GRP-DSOD [165] realize training from scratch
through well-designed backbone network and frontend network.
The parameters of the detection algorithm are greatly reduced,
and the accuracy is equivalent to the most advanced detection
algorithm at that time. It summarizes four principles for design-
ing backbone networks: single-stage, dense prediction structure,
stem unit, and deep supervision.

DetNet designs a backbone network for detection tasks. Con-
sidering the contradiction between detection and classification
tasks, the backbone network retains a larger scale in the last few
layers, which can retain more location information.

ScratchDet proposed that increasing the learning rate while
using BN in each layer can make the detection algorithm more
robust and converge faster. At the same time, based on ResNet-
18, the article proposes a backbone network root Root-ResNet
for detection algorithm, which uses three stacked 3 × 3 convo-
lution instead of 7 × 7 convolution, and removes the max-pool
layer at the front to reduce the information loss.

He et al. [168] uses group normalization and asynchronous
BN to increase the batch size, and the direction of gradient
descent is more accurate. So it can accelerate convergence and
improve the accuracy of convergence.

The model trained from scratch not only has high accuracy,
but also greatly reduces the size and amount of calculation of
the model. Due to the above advantages, it is also used in SAR
ship detection.

E. Compression and Acceleration Methods

To detect objects on platforms with limited computing power
and memory resources, researchers also used CNN’s compres-
sion and acceleration methods for object detection. For exam-
ple, pruning, quantization, knowledge distillation, and low-rank
factorization are usually in the inference engine, such as Ten-
sorRT, ONNX RunTime, NCNN, and OpenVINO. Generally,
the knowledge distillation, pruning, and quantization are used
from front to back with multiple times. Among them, the knowl-
edge distillation is usually used in real-time object detection
[169], [170], [171], [172], [173].

V. REAL-TIME SAR SHIP DETECTION

As far as we know, there are 70 public papers those are about
real-time SAR ship detection. We divide them into the following
seven categories as shown in Fig. 15. They are anchor free,
trained from scratch, YOLO series, CFAR+CNN, lightweight
backbone network, model compression and acceleration, and
hardware deployment. The datasets and evaluation metrics used
in this area are also reviewed in this part.

A. Seventy Public Papers About Real-Time SAR Ship Detection

Table III shows the number of papers in each year. From the
table, we can see that 2019 is the beginning year of real-time
SAR ship detection. It is behind of the usage of deep learning in
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Fig. 15. Real-time SAR ship detection.

TABLE III
NUMBER OF PAPERS IN EACH YEAR

TABLE IV
TIMES THAT DATASETS USED

TABLE V
DEEP LEARNING FRAMEWORKS THAT ARE USED

this area in 2017. We can also find that the numbers show a trend
of increasing. This shows that more and more people begin to
pay their attention on real-time SAR ship detection.

Table IV shows the times that datasets are used. We can find
that SSDD is used 46 times among the 70 papers. The reason why
SSDD is welcomed are that SSDD is the first public datasets (it is
more than 1 year earlier than the second dataset) and are friendly
to use. But as the emergency of other big datasets, SSDD shows
some drawbacks gradually. And the new datasets are better than
SSDD in some extent. SAR-Ship-Dataset and HRSID are also
usually used in this area. AIR-SARShip-1.0/2.0 and LS-SSDD-
V1.0 are less used; this is partly because they are large SAR
images and are hard to use.

From Table IV, we can see that researchers have too much
choice when conducting experiments. This is not good for the
development of algorithms. What is more, the small datasets are
prone to overfit when training. So in the future, it is necessary
to merge the several public datasets into a large one.

Among the 70 papers, 18 papers are from conferences and 52
papers are from journals. The IEEE TRANSACTIONS ON GEO-
SCIENCE AND REMOTE SENSING (Letters) and MDPI Remote
Sensing are the two mostly appeared journals.

The deep-learning frameworks that are used are shown in
Table V. We can find that Pytorch is the most welcomed frame-
work. This is because it is easy to use in research.

Among the 70 papers, 6 papers trained on GPU and tested on
the edge, e.g., NVIDIA Jetson TX2, FPGA, and so on, the other

Fig. 16. Ten public datasets in SAR ship detection.

Fig. 17. Samples of SSDD, SSDD+, and official-SSDD.

papers trained and tested on GPU. In the following part, we will
survey them in detail.

B. Datasets

1) Overview of Public Datasets: Up to now, there are 10
public datasets in SAR ship detection. They are shown in Fig. 16.
They are SSDD (SSDD+), SAR-Ship-Dataset [174], AIR-
SARShip1.0 [175], HRSID [176], LS-SSDD-v1.0 [177], AIR-
SARShip2.0 [178], Official-SSDD, SRSDD-v1.0 [179], and
RSDD-SAR [180]. SSDD is the first dataset that is used in SAR
ship detection. It brings SAR ship detection into deep-learning
era. Since then, many researchers have used deep-learning meth-
ods to detect ships in SAR images. As the deep-learning methods
are data hungry, they need lots of images to train the huge
models. SSDD faced the problem of insufficient data volume. So
other datasets are proposed successively. The samples of them
are shown in Figs. 12–23.

Table VI shows the other information of 10 public datasets.
From the table, we can see that most datasets are annotated with
vertical bounding box. SSDD+, SRSDD-v1.0, and RSDD-SAR
are annotated with oriented bounding box. HRSID and Official-
SSDD are annotated with polygon bounding box.
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TABLE VI
OTHER INFORMATION OF 10 PUBLIC DATASETS

Fig. 18. Samples of SAR-Ship-Dataset.

In the following part, we will introduce the details of the
datasets and evaluate the advantages and drawbacks of them.

2) SSDD, SSDD+, and Official-SSDD: SSDD is proposed
at the conference of 2017BIGSARDATA in December 1, 2017.
It has 1160 images and 2456 ships. The data resources are
RadarSat-2, TerraSAR, and Sentinel-1 with resolutions from 1 to
15 m. The length or the width is about 600 pixels. The samples
of SSDD are diverse, which are helpful for training a robust
detector. The length, width, and aspect ratio of the ship bounding
box in SSDD are counted, which is helpful for designing anchor
boxes for the detectors. SSDD+ is the improved version of
SSDD with oriented bounding box. SSDD and SSDD+ share
the same images.

Due to the insufficient understanding of deep-learning object
detection algorithm, there are some problems in SSDD, for

Fig. 19. Samples of AIR-SARShip 1.0.

example, the coarse annotations and ambiguous standards of use.
It hinders fair comparisons and effective academic exchanges in
this field. In order to solve this problem, Zhang et al. [85] pro-
posed Official-SSDD. It has bounding box, rotatable bounding
box, and polygon segmentation. The five using standards are also
formulated, they are the training-test division determination, the
inshore—offshore protocol, the ship-size reasonable definition,
the determination of the densely distributed small ship samples,
and the determination of the densely parallel berthing at ports
ship samples. Official-SSDD is beneficial for fair method com-
parison and effective academic exchanges in the future.

3) SAR-Ship-Dataset: SAR-Ship-Dataset is public at March
29, 2019. Its data sources are 102 Chinese Gaofen-3 images and
108 Sentinel-1 images. It has 43 819 chips of 256 × 256 pixels
and 59 535 ships with different scales. The resolutions are from 3
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Fig. 20. Samples of HRSID.

Fig. 21. Samples of LS-SSDD-v1.0.

to 25 m. The ship sizes are relatively small and the backgrounds
for ships are complex.

4) AIR-SARShip: AIR-SARShip 1.0 was proposed at De-
cember 1, 2019. It has high-resolution and large-scale images.
It contains 31 images from Gaofen-3, including harbors, is-
lands, reefs, and the sea surface. The training set has 21 images,
and the testing set has 10 images. The image resolutions include
1 and 3 m. The image size is about 3000 × 3000 pixels.
AIR-SARShip-2.0 is proposed at August 25, 2021. It has 300
images from Gaofen-3. The image size is about 1000 × 1000
pixels.

5) HRSID: HRSID is proposed at June 29, 2020. HRSID
includes 99 Sentinel-1B images, 36 TerraSAR-X images, and
1 TanDEM-X image. It has resolutions of 0.5, 1, and 3 m. It is
annotated with polygon. HRSID can be used in object detection
and instance segmentation tasks. HRSID has 136 large SAR
images with resolution from 1 to 5 m, and they are cropped

Fig. 22. Samples of SRSDD-v1.0.

Fig. 23. Samples of RSDD–SAR.

to 800 × 800 pixels small images with overlapped ratio of
25%. HRSID has 5604 cropped SAR images and 16 951 ships.
A total of 65% of the SAR images are training set, and the
other 35% are test set. It follows the principle of MS COCO in
annotation and scale division. They are 54.5%, 43.5%, and 2%
small, medium, and large ships, respectively. The bounding box
area of small, medium, and large ships accounts for 0%–0.16%,
0.16%–1.5%, and 1.5% of SAR images, respectively. So HRSID
has the characteristics of small objects but large scenes; ships
are sparsely distributed in SAR images. HRSID has the features
of small and sparse ships with large scenes.

6) LS-SSDD-v1.0: LS-SSDD-v1.0 is proposed at September
15, 2020. The data source is Sentinel-1 with resolutions of 5 and
20 m. LS-SSDD-v1.0 can be used in ship detection in large-
scene spaceborne SAR images, which can meet the practical
application. It has 15 large-scale SAR images, whose ground
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Fig. 24. Confusion matrix.

truths are correctly labeled by expert, the automatic identifica-
tion system, and Google Earth. Each image is divided into 600
subimages with 800 × 800 pixels. The dataset contains 6015
ships. LS-SSDD-v1.0 has the following characteristics: contain
large scenes, focus on the small ships, rich pure background, etc.
It also provides a large number of performance benchmarks of
detection algorithms on datasets.

7) SRSDD-v1.0: SRSDD-v1.0 is proposed at December 15,
2021. The data source is Gaofen-3 with 1-m resolution. SRSDD-
v1.0 is annotated with oriented bounding box. It contains six
categories of ships: ore-oil ships (166), bulk cargo ships (2053),
fishing boats (288), law enforcement ships (25), dredger ships
(263), and container ships (89). The image size is set to 1024
× 1024. The annotation format is the same as DOTA. The
coordinates of the four corners of the box, the category, whether
it is difficult to identify is given on annotation files. It contains
666 images. A total of 420 images with 2275 ships include land
cover. A total of 246 images with 609 ships only contain sea in
the background. It has six categories.

8) RSDD-SAR: RSDD-SAR is proposed at July 7, 2021. The
data sources are Gaofen-3 and TerraSAR with resolutions of 2–
20 m. RSDD-SAR has 84 GF-3 scenes, 41 TerraSAR-X scenes
scenes uncropped large images, including 7000 slices and 10
263 ships. It is annotated by automatic annotation and manual
correction with oriented bounding box. The angle of ships in
the dataset is evenly distributed between 0° and 180°, and the
aspect ratio is concentrated between 2 and 6. The training set
has 5000 samples and the testing set has 2000 samples. It has
a large number of small ships. It contains vast sea areas, ports,
docks, waterways, and other scenes with different resolutions,
which are suitable for practical applications.

C. Evaluation Metrics

The confusion matrix is shown in Fig. 24. From this, we can
see the concept of TP, FP, FN, and TN. For example, TP means
that the ground truth is positive and the prediction is also positive,
FP means that the ground truth is positive but the prediction is
also negative.

Based on the confusion matrix, the false positives rate and the
true positives rate are calculated as follows:

FP rate =
FP
N

(2)

TP rate =
TP
P

. (3)

The accuracy is generally used to evaluate the global accuracy
of a model. It cannot contain too much information and cannot
comprehensively evaluate the performance of a model. It is
calculated as follows:

accuracy =
TP+ TN

P +N
. (4)

Precision represents the proportion of ships that were cor-
rectly detected in all positive detected result. It is calculated as
follows:

precision =
TP

TP + FP
. (5)

Recall represents the proportion of ships that were correctly
detected in the ground truth. It is calculated as follows:

recall =
TP

TP + FN
. (6)

Precision and recall are contradictory, that is to say, the
higher the recall, the lower the precision is. In order to give
consideration to precision and recall at the same time, F1 score is
proposed, which is the harmonic average of precision and recall,
with the maximum of 1 and the minimum of 0. It is calculated
as follows:

F1− score =
2× precision× recall

precision + recall
. (7)

PRC (precision recall curve) is also usually used in object
detection. The x-axis and y-axis of PRC are recall and precision,
respectively. Average precision (AP) is calculated by using the
integral area of the PRC. AP was the average of the precision
obtained by IoU at intervals of 0.05 from 0.5 to 0.95. The AP is
calculated as follows:

AP =

∫ 1

0

P (R) dR. (8)

Among them, R represents the recall rate and P represents the
precision. AP50 is the AP calculated when IoU was 0.5. mAP
is the average of multiple categories of AP.

The evaluation metrics of object detection that are usually
used are precision, recall, and AP.

The model size and the FLOPs are usually used for evaluating
the performance of the running speed of the detector. For a
convolution layer, suppose its size is h × w × c × n, where
c is the number of input channels, n is the number of output
channels, and the size of the output characteristic diagram is h
× w.

The parameter quantity of the convolution layer is

#params = n× (h× w × c+ 1) . (9)

The FLOPs of the convolution layer is

#FLOPs = H×W × n× (h× w × c+ 1) . (10)

But FLOP is an indirect indicator. The direct metric is the
speed or latency, or known as FPS that we really care about.
The correlation between delay and FLOPs and parameter quan-
tities is weak. For example, ShuffleNetv2 has a high number
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of parameters but a low latency. The discrepancy between the
indirect and direct metric can be attributed to two main reasons.
First, MAC constitutes a large portion of runtime in certain op-
erations like group convolution. This cost should not be simply
ignored during network architecture designing. Second, some
operators are not optimized for the hardware, for example, depth-
wise convolution, pointwise convolution, 1× 1 convolution, and
so on. They have small model size and few parameters but do
not run fast. Therefore, using the indirect metric for computation
complexity is insufficient and could lead to suboptimal design.
So when designing real-time object detection algorithm, we
should not consider indirect indicators, but also consider direct
indicators.

D. Anchor-Free-Based SAR Ship Detectors

Section IV-C describes the motivation and advantages of
anchor-free detectors. It also indicates that the ancho-free de-
tectors are especially suitable for SAR ship detection. This is
because the ships in SAR images are very sparse, most anchor
boxes are redundant and will lead to the computation burden.
What is more, the sizes of ships in SAR images are small, anchor
boxes are hard to match them with the ground-truth, which leads
to poor performance on small ships in large scenes. Last but not
the least, the anchor-free detectors have great potential to realize
real-time SAR ship detection with high accuracy. So a lot of
researchers use anchor-free ideas to detect ship in SAR images.
We will survey them in the following part. There are 18 papers
that are anchor-free-based SAR ship detector. They are shown
in Table VII.

Table VII shows the dates, authors, titles, journals/
conferences, datasets, and performances of the 18 papers. We
can find that the earliest paper is published at April 3, 2020,
which is far later from the first dataset was open to the public at
December, 1 2017. This is because the anchor-free detectors are
proposed and get popular at 2019. After the anchor-free detectors
appear in large numbers, the researchers of SAR ship detection
draw lessons from them gradually. So the date is later than 2019.

We can also find that there are 16 journals and 2 conferences
among the 18 papers. The two most frequent journals are Re-
mote Sensing and IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING. This phenomenon shows that the anchor-free
detectors are advanced and highly innovative.

Table VII also shows that SSDD and HRSID are the two most
frequently used datasets. The AP50 on SSDD vary from 90.75%
to 97.8%, and the AP50 on HRSID vary from 88.39% to 97.8%.
The numbers of parameters vary from 32.1M to 0.83M. The test
times vary from 64 to 7.01 ms. The model sizes vary from 228
to 10.3 MB. The FLOPS vary from 30.64G to 18.38G.

We further classify the above 18 papers into four classes,
as shown in Fig. 25 below. They are CenterNet-based SAR
ship detectors, FCOS-based SAR ship detectors, YOLOX-based
SAR ship detectors, and others. Next, we summarize them,
respectively.

1) CenterNet Based: CenterNet estimates the center point
of the bounding box and regresses the width and height of the
object. It is an anchor free, end-to-end differentiable, simpler,

Fig. 25. Anchor free SAR ship detectors.

faster, and accurate detector compare with the anchor-based
detectors. It achieves 37.4% AP at 52 FPS on the MS COCO
dataset. CenterNet predicts the center point and only local peaks
are extracted in the keypoint heatmap. The NMS is abandoned,
which can accelerate the speed. It has a higher output resolution
(output stride of 4), which are helpful for small targets. Due to
the advantages of CenterNet, there are four papers that are based
on CenterNet and improve it according to the properties of ships
in SAR images.

Cui et al. [22] introduced the spatial shuffle-group enhance
(SSE) attention module to improve the performance of Center-
Net. SSE divides the feature map into G groups along the chan-
nel. The channels then are shuffled to improve the interaction
of different groups. By this, the stronger semantic features are
extracted, which can suppress the noise to reduce false positives.
The experiments on SAR-Ship dataset demonstrate the effective
of the proposed method. It achieved 94.7% AP50 with 18 ms
testing time on 1080Ti GPU. Guo et al. [35] improved CenterNet
with three modules, and the new detector called CenterNet++.
The feature refinement module is used to extract multiscale
information, which is helpful for detecting small ships. The
feature pyramids fusion module is used for producing features
with more semantic information. The head enhancement module
is used for balancing the ratio of foreground and background.
CenterNet++ achieved AP50 of 73.9%, 95.1%, and 95.4% on
AIR-SARShip, SSDD, and SAR-Ship, respectively, with 33 ms
testing time on TITAN RTX GPU. Wang et al. [38] introduced
the spatial groupwise enhance (SGE) attention module to Cen-
terNet to detect the dense docked SAR ships. SGE uses the
similarity of global and local features to generate attention mask.
It has strong semantic information. It reduces the calculations
and improves the spatial features of each group. It achieved
AP50 of 93.9% on SAR-Ship with GTX 1080Ti GPU. Jiang
et al. [51] proposed R-Centernet+ which dedicated to solve the
problem of sparse and small properties of ships in SAR images
with rotatable bounding box. The convolutional block attention
module is used to improve attention of the small ships. The
foreground enhance module is used to reject the disturbing of the
background. It achieved AP50 of 95.11% and 84.89% on SSDD
and AIR-SARShip with 30.64GFLOPS, 16.31M parameters,
77.92 model size, and 33 FPS on NVIDIA 2070 Super GPU.

2) FCOS Based: FCOS is a fully convolutional single-stage
anchor-free detector. It predicts objects in a per-pixel way. The
anchor-free idea avoids the computation about anchor boxes
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TABLE VII
EIGHTEEN ANCHOR FREE BASED SAR SHIP DETECTION PAPERS

and hyper-parameters fine-tuning. It also reduces the compu-
tation. FCOS introduces pixel-by-pixel regression prediction,
multiscale features, and centerness to improve the performance.
It achieved 41.0% AP and 60.7% with ResNet-101-FPN back-
bone on MS COCO.

Fu et al. [23] proposed feature balancing and refinement
network (FBR-Net) to solve the sparsity and anchor settings
problem of anchor base detector. FBR-Net improved FCOS in
the following aspects. It uses attention-guided balanced pyramid
to fuse features along different levels, which are helpful for
detecting small ships in SAR images. The feature refinement

module is used to prevent the interference near the ship, which
can improve the accuracy of localization. FBR-Net achieved
94.1% and 84.6% AP50 on SSDD and AIR-SARShip-1.0, re-
spectively, with 32.5M parameters and 40.1 testing time on
RTX 2080Ti GPU. Mao et al. [29] proposed ResSARNet with
0.69M parameters as the backbone. And it improved FCOS in
four aspects. They are centerness on bounding box regression
branch, center sampling, generalized intersection over union,
and adaptive training sample selection. It achieved 61.5% AP
with 1.17M parameters on SSDD and GTX 1080 GPU. Sun
et al. [48] improved FCOS with category-position (CP) module
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to make it more suitable for detecting small and complex ships.
CP can produce guidance vector from classification branch to
improve the localization performance. The classification and
regression are redesigned to prevent the interference of fuzzy
areas. It achieved 96.01% AP50 with 32.1M parameters, 228
MB model size, 64 ms testing time on HRSID, and GTX 1080Ti
GPU. Zhu et al. [66] used FCOS to improve the ability of
detecting sparsity, small, and interference ships. A new sample
definition is proposed to replace the IoU according to the char-
acteristics of ships. It is effective for improving the accuracy.
The same resolution feature convolution module, multiresolu-
tion feature fusion module (FF-Module), and feature pyramid
module are proposed to improve the feature representation for
small ships. The complete intersection over union loss is used
to improve the localization accuracy. It achieved 97.8% and
75.5% AP50 on SSDD and LS-SSDD-v1.0, respectively, with
32 FPS on RTX 2080Ti GPU. Zhu et al. [74] used FCOS and
ATSS to improve the ability of detecting small ships and ships
under complex scattering interferences. The improved residual
module and deformable convolution are used in backbone to
improve the performance of feature extracting. The combined
classification score and localization quality is used to address
the inconsistent problem. It achieved 89.8% AP50 on HRSID
with 60.8FPS on RTX 2080Ti GPU. Xiao et al. [82] proposed
power transformations and feature alignment guided network to
extract multiscale features. The power-based convolution block
is used for suppressing speckle noise. The feature alignment
block is used for avoid the dislocation problems. Experiments
on SSDD and HRSID show that it can achieve 96.35% AP50,
89.74% AP50 with 136 MB model size, and 31 FPS on NVIDIA
RTX 2080Ti GPUs.

3) YOLOX Based: YOLOX is an anchor-free detector with
decoupled head and the leading label assignment strategy
SimOTA. It achieves good results on accuracy and speed. For
example, YOLOX-L has the same number of parameters with
YOLOv5-L, but it achieves 50.0% AP on COCO with 68.9 FPS
on Tesla V100, surpassing YOLOv5-L by 1.8% AP.

Feng et al. [73] proposed a lightweight position-enhanced
anchor-free SAR ship detection algorithm called LPEDet based
on YOLOX. The lightweight backbone called NLCNet with
separable convolution is used for balancing the speed and ac-
curacy. The position-enhanced attention strategy is used for
suppressing clutter by adding position information to the channel
attention. It achieved 97.4% and 89.7% AP50 on SSDD and
HRSID, respectively, with 18.38G FLOPs, 5.68M parameters,
and 7.01 ms testing time on RTX 2060 GPU. Peng et al. [80]
proposed an anchor-free detector for detecting small spare and
dense arranged ships. It used ICEIoU to improve the regression.
The adaptive-NMS and atrous convolution are used to improve
the performance further. It achieved 91.76% AP50 and 11 ms
testing time on HRSID and RTX3060ti GPU. Yu et al. [81]
proposed a lightweight ship detector based on YOLOX. It only
uses one-level of the FPN to get a higher efficiency. The receptive
field and the semantic information of the one-level feature are
expanded to relieve the decrease of accuracy. By four branches
with different dilation rates, it can capture various ships in com-
plex backgrounds. The center-based uniform matching is used

to tackle the imbalance problem in training stage. It achieved
95.5% and 88.39% AP50 on SSDD and HRSID, respectively,
with 10.3 MB model size and 7.1 ms testing time on Quadro
P6000 GPU.

4) Others: Mao et al. [19] proposed an anchor-free detec-
tor to improve the efficiency and avoid the massive hyper-
parameters. Its backbone is based on the simplified U-Net. It
only contains 0.47 million learnable weights. It achieved 94%
AP50 on SSDD with 0.93M parameters. In order to avoid
tuning of anchor-related parameters, reduce the computation,
and improve the results of small ships. Gao et al. [25] proposed
an anchor-free detector with dense attention feature aggrega-
tion. The inverted residual blocks with depthwise separable
convolution, dense attention feature aggregation, spatial and
channel squeeze, and excitation block are proposed to improve
the feature extracting ability of the detector. It achieved 86.99%
AP50 on AirSARShip-1.0 with 0.83M parameters and 33 ms
testing time on Tesla K20c GPU. An et al. [37] proposed an
anchor-free rotatable detector with flexible structure for ships in
SAR images. It achieved 90.75% AP50 on SSDD. Hu et al. [67]
proposed an anchor-free balance attention network to improve
the accuracy and generalization ability for multiscale ship detec-
tion. The local attention module is used based on the deformable
convolution to obtain local information of ships. The nonlocal
attention module is used to extract the nonlocal features of the
SAR image. It achieved 95% AP50 on HRSID with 14 FPS.
He et al. [72] proposed an anchor-free detector to detect small
ships. The adaptive feature encoding module uses deep semantic
features into shallow layers and realizes the adaptive learning of
the spatial fusion weights. The Gaussian guided detection head
is used to assigning different weights to the detected bounding
boxes at different locations in the training process. It achieved
96.5% and 92% AP50 on SSDD and HRSID, respectively, with
0.356 s testing time on CPU.

E. Trained From Scratch Based SAR Ship Detector

In order to solve the problems of transfer learning, detectors
trained from scratch are proposed, for example, DSOD, DetNet,
ScratchDet, and so on. The model trained from scratch not only
has high accuracy, but also greatly reduces the size and amount
of calculation of the model. Due to these advantages, it is also
used in SAR ship detection. There are 11 papers those are trained
from scratch. They are shown in Table VIII.

Table VIII shows the dates, authors, titles, journals/
conferences, datasets, and performances of the 11 papers. We
can find that the earliest paper is published at February 4, 2019.
And the first trained from scratch detector in computer (DSOD)
is proposed at 2018. We can also find that all the 11 papers are
journals. This phenomenon shows that the trained from scratch
detectors are advanced and highly innovative.

Table VIII also shows that SSDD are the most frequently used
dataset. The AP50 on SSDD vary from 80.12% to 97.2%. The
numbers of parameters vary from 18.4M to 0.7M. The test times
vary from 41.5 to 4.51 ms. The model sizes vary from 72.1 to
0.69 MB. The FLOPS vary from 30.64G to 18.38G.
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TABLE VIII
ELEVEN TRAINED FROM SCRATCH SAR SHIP DETECTION PAPERS

Fig. 26. Detectors trained from scratch in SAR images.

We further classify the above 11 papers into 4 classes, as
shown in Fig. 26 below. They are DSOD-based SAR ship
detectors, CenterNet-based SAR ship detectors, DetNet-based
SAR ship detectors, and others.

DSOD is the first detector that is trained from scratch. It
summarized several principles for training detectors from
scratch. They are deep supervision, anchor free, stem block,
and dense prediction structure. It achieved better results than
other detectors with smaller models. Inspired by these ideas,
Deng et al. [13] and Han et al. [26] and [31] proposed several
methods to improve the performance of the trained from

Fig. 27. YOLO-based SAR ship detectors.

detectors on SAR ship detection. Deng et al. [13] proposed
the condensed backbone that made the earlier layers receive
additional supervision from the objective function, which make
easy to train. It can be freely designed and trained from scratch
without a large amount of SAR images. The feature reusing
strategy, cross-entropy loss, and the position-sensitive score
maps are used to improve the performance further. It achieved
73% AP on OpenSARShip with 18.4M parameters. Han et al.
[26] proposed an asymmetric and square convolution block to
SSD. It can be trained from scratch with less parameters and
computations without serious damage to detection accuracy. It
achieved 81.17% AP on SSDD with 18.9M parameters, 19.73G
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FLOPs, and 72.1 MB model size. Han et al. [31] proposed
asymmetric and square convolution feature aggregation block,
asymmetric and square convolution feature fusion block to
DSOD. It achieved 79.79% AP on SSDD+SAR-Ship-Dataset
with 8.22M parameters, 7.94G FLOPs.

DetNet is a backbone network specially designed for ob-
ject detection. It includes the extra stages against traditional
backbone network for image classification, while it maintains
high spatial resolution in deeper layers. Due to the advantage
of DetNet, Zhao et al. [43] used it and stacked convolution to
solve the problem of small object detection. It achieved 92.1%
precision, 87.5% recall, and 89.8% F1 score on SSDD with 9.7
FPS.

Zhang et al. [16] designed a lightweight feature optimizing
network, which can be trained from scratch and can reduce the
testing time without accuracy cost. It used a simpler structure
LSSD, a bidirectional FF-Module, and attention mechanism to
realize the above purpose. The experiments on SSDD shows that
it has 80.12% AP and 9.28 ms testing time on GTX 1080Ti with
300 × 300 input.

Zhang et al. [21], [24], and [40] and Sun et al. [47] de-
signed ShipDeNet-20, ShipDeNet-18, HyperLi-Net, and DSDet,
respectively, to detect ships in SAR images by training from
scratch. We will review them in Section V-H. Besides, the above
papers, Guo et al. [35] and Peng et al. [80] adopted CenterNet
and YOLOX as the basic detector to train SAR ship detectors
from scratch.

Through the above analysis, we know that the core of training
from scratch is to design a good backbone network. Because
training from scratch requires the backbone network to have
strong feature expression ability and strong supervision infor-
mation. In SAR ship detection, there are also a lot of papers that
train detectors from scratch by designing backbone elaborately.
In the next, we will review them.

F. YOLO Series Based SAR Ship Detector

The two-stage detectors are seldom used in real-time SAR
ship detection as the heavy computation. Most of the real-time
SAR ship detectors are single-stage. Among them, YOLO se-
ries algorithms are naturally designed for real-time detection.
Therefore, for real-time SAR ship detection, many researchers
use YOLO-based algorithms, which are mainly summarized
here. There are 37 papers those are YOLO based SAR ship
detector. They are shown in Table IX. Table IX shows the dates,
authors, titles, journals/conferences, datasets, and performances
of the 36 papers. We can find that most of the papers are among
2020–2021. And SSDD are the most frequently used dataset.
The AP50 on SSDD vary from 88.04% to 99.1%%. The numbers
of parameters vary from 42.6M to 0.857M. The test times
vary from 228 to 3.9 ms. The model sizes vary from 31.34 to
2.38 MB.

We further classify the above 37 papers into five classes,
as shown in Fig. 27. We can find that YOLOv1 and YOLOv2
are used less, and YOLOv3 is used more. This is because they
were proposed in 2015, 2016, and 2018 respectively, and deep

learning was introduced into SAR ship detection in December
2017. After December 2017, researchers will of course adopt
more advanced YOLOv3 instead of YOLOv1 and YOLOv2.
Second, because YOLOv3 is the most innovative and has a better
result, YOLOv4 and YOLOv5 have not made major changes to
the network structure. In the following content, we will survey
the corresponding papers.

The innovations of YOLOv3 can be summarized as the
DarkNet-53+CSP backbone, the FPN neck, and the multibranch
prediction. Researchers in this area also improve it in the above
components.

Zhang et al. [15] proposed grid CNN based on YOLO and
depthwise separable convolution. It has a backbone CNN and
a detection CNN. It improved the detection speed. It achieved
90.16% AP50 and 10.94 ms testing time on NVIDIA GTX1080
GPU and SSDD. Zhang et al. [17] proposed depthwise separable
convolution neural network for high-speed SAR ship detection.
It has a depthwise convolution and a pointwise convolution. The
multiscale mechanism, concatenation, and anchor box mecha-
nism are also used. It improved the detection speed. It achieved
94.13% AP50 and 9.03 ms testing time on NVIDIA GTX2080
GPU and SSDD. In order to realize real-time SAR ship detection,
Zhang et al. [20] improved YOLOv3 in the following aspects:
reduce the size of network, delete the repeated layers, and add
two feature concatenation paths. It achieved 90.08% AP50 on
SSDD.

Li et al. [27] improved YOLOv3 by adopting dense connec-
tion and spatial separation FPNs. It reduces parameters and
optimizes the network. Zhou et al. [28] proposed Lira-YOLO
based on LiraNet. The backbone LibraNet includes the dense
connections, residual connections and group convolution, and
stem blocks. The prediction uses a two-layer YOLO prediction
layer and adds a residual module for better feature delivery. It
achieved 2.980 Bflops, 4.3 MB model size, and 85.46% AP50
on SSDD. Wang et al. [34] proposed SSS-YOLO for detect-
ing multisale ships. The backbone is redesigned for enriching
the spatial and semantics information. The path argumentation
fusion network is used to fuse the up and down information.
They enhance the detection for small ships. It achieved 67.24%
AP and 25.84 ms test time on SAR-Ship-Dataset. Chen et al.
[42] used predefined anchor boxes, Darknet-53 with residual
units, top-down pyramid structure, soft NMS, mix-up, mosaic,
multiscale training, and hybrid optimization to balance the ac-
curacy and speed of SAR ship detector. It achieved 95.52%
AP50 with 72 FPS on SSDD and Tesla V100 GPU on SSDD.
Hong et al. [46] improved the YOLOv3 in the following aspects.
The anchor boxes are redesigned by linear scaling based on
the k-means++ algorithm. The Gaussian parameter uncertainty
estimators are used for locating. Every scale has four anchor
boxes rather three as the difference of ship sizes. It achieved
95.52% AP50 and 21.3 ms test time on SAR-Ship-Dataset.
Zhang et al. [53] proposed LSSNet for detecting ships in SAR
images. The depthwise separable convolution is used in the early
layers, and the stacked dense blocks is used in the deep layers.
It achieved high-speed (10.1 test time on GeForce GTX 1660
GPU) and high-accuracy (98.6% AP50 on SSDD). Zhang et al.
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THIRTY-SEVEN YOLO-BASED SAR SHIP DETECTION PAPERS
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TABLE IX
CONTINUE

[54] proposed high-speed and high-accurate detector for bal-
ancing the accuracy and speed. The fewer convolutional layers,
CSP, and rectangle filling is responsible for high speed. The SPP,
bottom-up path augmentation, and mosaic data augmentation is
responsible for high accuracy. It achieved 95.52% AP, 3.6 ms
testing time, 278 FPS on SSDD, and achieved 92% AP50, 3.9 ms
testing time, and 256 FPS on HRSID. Yu et al. [59] proposed a
fast and lightweight detection network FASC-Net. It includes
ASIR-Block, Focus-Block, SPP-Block, and CAPE-Block. It
achieved 97.4% AP50 with 42.5 FPS on SSDD, 96.1% AP50
with 60.4 FPS on SAR-Ship-Dataset, and 88.3% AP50 with 24.5
FPS on HRSID. The experiments are conducted on NVIDIA

GTX2070 GPU. Zhu et al. [33] and Yash et al. [36] adopted
YOLOv3 without other improvements.

The innovations of YOLOv4 can be summarized as the
FPN+PAN+SPP neck and the DIoU Loss. It also uses
bag-of-freebies and bag-of-specials to improve the performance
further. Researchers in this area also improve it in the above
components.

Jiang et al. [44] proposed YOLO-V4-light for real-time SAR
ship detection. It greatly reduced the number of convolutional
layers in CSPDarkNet53. It only has two prediction branches.
YOLO-V4-light decreases from 60 million parameters into 6
million, resulting in a significant reduction in model size and
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prediction speed. It achieved 88.08% AP50 22.5MB model
size on SSDD. Xu et al. [45] used YOLOv4 as the detector
that attached after CFAR obtain more accurate final results.
YOLOv4 was not improved at this paper. Lin et al. [50] proposed
an improved YOLOv4. The cosine annealing, label smooth-
ing, and mosaic are used. The anchor boxes are selected by
K-means clustering on SSDD. It achieved 95.2% AP50 with
13.94 FPS on SSDD on GTX1050TI GPU. It is improved by
2.87% compared with the YOLOv4. Zhou et al. [55] proposed a
lightweight YOLOv4 for SAR ship detection. The backbone is
the MobileNetv2. The depthwise separable convolution is used
for reducing parameters. It achieved 95.5% AP50 on SSDD and
the number of parameters is reduced by 40% compare with the
original YOLOv4. Gao et al. [56] proposed a high-precision,
high-efficiency detector based on YOLOv4. The backbone is
SAR-Net, which is similar to CSPDarkNet53 besides the input
channel. The neck can balance the relevance of multiscale
semantic information for detecting targets of different sizes.
The three branches head are redesigned with classification and
regression tasks. It achieved 87.49% AP50 on HRSID and
76.2% AP50 on LS-SSDD-V1.0 with 42.6M parameters. Ma
et al. [57] compressed the YOLOv4 through sparsity training,
pruning, and knowledge distillation. YOLOv4 was not improved
at this article. Miao et al. [65] bring attention mechanism into
YOLOv4. The threshold attention module is introduced to sup-
press the adverse effect of complex backgrounds and noises.
The channel attention module is embedded into FPN to better
enhance the discrimination ability. The decoupled head with two
parallel branches improves the performance of classification and
regression. It achieved 94.16% AP50 on SSDD with 42 FPS.
Liu et al. [68] proposed a lightweight detector based on the
YOLOv4-Lite. The backbone is MobileNetv2. The receptive
field block is used to improve the feature extraction ability.
It achieved 95.03% AP50 with 47.16 FPS and 49.34M model
size on SSDD. Yu et al. [76] proposed an efficient lightweight
network for SAR ship detection. The ECIOU is proposed to
improve the localization accuracy and convergence speed. The
SCUPA module is proposed to enhance the multiplexing of
picture feature information. The GCHE module is proposed to
strengthen the network’s ability to extract feature information.
It achieved 93.56% AP50 with 68.52 FPS and 31.34M model
size on SSDD.

The innovations of YOLOv5 can be summarized as
the DarkNet53+Focus+CSP backbone, the FPN+PAN+
SPP+CSP neck, and the CIoU Loss.

Tang et al. [41] proposed N-YOLO to detect ships under
noises. The YOLOv5 is used after the SAR target potential area
extraction module. The YOLOv5 is not improved here. Zhu et al.
[60] proposed DB-YOLO to detect small ships and improve the
speed. The backbone of DB-YOLO is a single-stage network
and has cross-stage partial block, which are helpful for real-time
detection. The neck of DB-YOLO used the duplicate bilateral
FPN to fuse the semantic and spatial information. The head of
YOLO put the bounding boxes and confidence scores as the
inputs. It achieved 97.8% AP50 and 64.9% AP on SSDD, and
94.4% AP50 and 72.0% AP on HRSID with 10.8M parameters,
25.6G FLOPs, and 48.1 FPS on RTX 2060 GPU. Zhou et al. [63]

proposed multiscale ship detection network based on YOLOv5s
for detecting small ships in SAR images. The cross-stage partial
network is used for fusing feature maps adaptively. The FPN
with fusion coefficients module is used for choosing the best
features to fuse for small ship detection. It achieved 95.6% AP50
and 61.1% AP on SSDD, and 95.1 AP50 and 60.1% AP on
SAR-Ship on 2080Ti GPU. Xu et al. [64] and [69] proposed
Lite-YOLOv5 and L-YOLO based on YOLOv5 for lightweight
on-board SAR ship detection. They have small model size, less
FLOPs, and are running on-board without sacrificing accuracy.
Xiao et al. [71] proposed YOLO-v5-Light based on YOLO-v5
for detecting ships on the embedded platform. The backbone
used separable convolution to reduce the amount of computation,
and uses 1 × 1 convolution to fuse channels. The lightweight
attention mechanism is also used here. The parameters, model
complexity, and weight file size are reduced to 41.4%, 30.3%,
and 43.0% of the original network. It achieved 88.7% AP50
on SSDD. Xie et al. [75] proposed YOLO coordinate attention
SAR ship for real-time on-board SAR ship detection. It shows
advantage in efficiency and performance. It achieved 65.6% AP
and 97.0% AP50 on SSDD.

The innovations of YOLOX can be summarized as the de-
coupled head, the anchor free, and the SimOTA label assign
strategy.

Feng et al. [73] proposed lightweight position-enhanced de-
tector. NLCNet is the lightweight feature enhancement back-
bone with deeply separable convolution. It balanced the speed
and accuracy. The position-enhanced attention strategy is used
for suppressing background clutter. It achieved 97.4% AP50
on SSDD, 89.7% AP50 on HRSID with 18.38G FLOPs, 5.68M
parameters, and 7.01 ms testing time on GeForceRTX2060 GPU.
Peng et al. [80] improved YOLOX with corner efficient intersec-
tion over union, adaptive-NMS, atrous convolution, and coordi-
nate attention mechanism for detecting sparse and small ships.
It achieved 91.76% AP50 with 11 ms testing time on HRSID
RTX3060ti GPU. Yu et al. [81] proposed a detector based on
YOLOX-s for detecting ships on the board. The one-level feature
is used for higher efficiency. The residual asymmetric dilated
convolution is used for enlarging the semantic information. The
center-based uniform matching is used as the balanced label
assignment strategy. It achieved 95.5% AP50 67.47% AP on
SSDD, and 88.39% AP50 63.66% AP on HRSID with 10.3 MB
model size 7.1 ms testing time On Quadro P6000 GPU.

Besides the above papers, Chang et al. [14], Liu et al. [58], and
Miao et al. [77] adopted YOLOv2, PP-YOLO, and RetinaNet to
real-time SAR ship detection.

G. CFAR+CNN Based SAR Ship Detector

In fact, the ocean area occupies the most of the SAR images,
and most areas have no ships. We should discard them before
inputting these pure backgrounds into deep-leaning-based de-
tectors. This can significantly reduce the amount of computa-
tion. Fortunately, the CFAR detector can distinguish the pure
backgrounds and ship areas with lower computation. Thus, it
is necessary to integrate the traditional CFAR methods with
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TABLE X
FOUR CFAR+CNN BASED SAR SHIP DETECTION PAPERS

Fig. 28. Process of CFAR- and CNN-based SAR ship detector.

deep-learning-based detector when conducting on-board SAR
ship detection. The process of CFAR+CNN is shown in Fig. 28.

Through the above process, the CFAR can quickly exclude
chips without ships and prevent CNN with large amount of
computation from wasting computing resources. For targeted
slices, CNN with high accuracy but slow speed can accurately
identify and position them. There are four papers those are based
on CFAR+CNN as shown in Table X.

Li et al. [62] proposed CFAR+CNN model for balancing the
speed and accuracy of SAR ship detector. The CFAR is used
for detecting candidate ship chips, and the CNN is used for
removing false alarms generated in the CFAR step. In fact, the
combination is the traditional idea. And the deep-learning-based
object detectors are not used here. So the accuracy is lower. In
order to improve the accuracy and speed of SAR ship detection,
Souad Chabbi et al. [78] proposed a CFAR-CNN detector.
The generalized gamma distribution is used for modeling the
seal clutter. The CNN local detector is applied to improve the
accuracy. But it is also traditional combination. Xu et al. [64]
proposed Lite-YOLOv5 for detecting ships on-board. It includes
a histogram-based pure backgrounds classification module, a
shape distance clustering module, a channel and SAM, and a
hybrid SPP module to improve detection performance. It is also
transplanted into the embedded platform NVIDIA Jetson TX2.
Xu et al. [45] combined CFAR and lightweight deep-learning
method for detecting ships on-board. CFAR is used for finding
potential ships, and YOLOv4 is used for obtain more accurate
final results. It achieved 93.46% AP50 on SAR-Ship dataset with
22.4MB model size.

H. Lightweight Backbone Networks for SAR Ship Detection

Backbone network is used to extract features, which is an
important part of detection algorithm. It occupies a very large
amount of computation. Therefore, in order to realize real-time

detection, many researchers are studying how to design a small
and powerful backbone network, such as MobileNets, Shuf-
fleNets, and so on. Many similar results have been achieved
in real-time SAR ship detection, as shown in Table XI. We will
introduce them one by one below.

Zhang et al. [21] designed a lightweight SAR ship detector
ShipDeNet-20 with only 0.82 MB model size. The FF-Module,
feature enhance module, and scale share feature pyramid module
(SSFP-Module) are used to compensate for the accuracy loss.
The backbone has 15 layers, FF-Module has 2 layers, and SSFP-
Module has 3 layers. All the convolution layers are depthwise
convolution, which makes it more lightweight. It is also trained
from scratch. It achieved 97.07% AP50, 233 FPS, and 0.82 MB
model size on SSDD. Zhang et al. [24] proposed HyperLi-Net for
high-accurate and high-speed SAR ship detection. HyperLi-Net
used five modules to ensure the accuracy: multireceptive-field,
dilated convolution, channel and spatial attention, feature fusion,
and feature pyramid. HyperLi-Net used five modules to ensure
the speed: region-free, small kernel, narrow channel, separable
convolution, and batch normalization fusion. It is also trained
from scratch. It achieved 96.08% AP50, 222 FPS, 0.69 model
size, and 4.51 testing time on SSDD with RTX2080Ti GPU.
Zhang et al. [40] proposed Shipdenet-18 with only 1 Mb model
size for lightweight SAR ship detection. It has fewer layers
and fewer kernels. The deep and shallow FF-Module and the
feature pyramid module are used for fusing different features.
It is also trained from scratch. It has 228 246 parameters, 456
042 FLOPs, and 1 MB model size. It achieved 93.78% AP50
on SSDD. Zhang et al. [17] proposed a high-speed SAR ship
detector based on depthwise separable convolution. The con-
ventional convolution is substituted by depthwise convolution
and pointwise convolution. The multiscale, concatenation, and
anchor box mechanism are used for the real-time detection. It
achieved 94.13% AP50 with 9.03 ms testing time and 111 FPS
on SSDD and NVIDIA RTX2080Ti GPU. Feng et al. [73] pro-
posed LPEDet for real-time SAR ship detection. The backbone
discarded the squeeze-and-excitation module and designed a
lightweight convolution block. It shows advantages on accuracy
and speed than other methods on SSDD and HRSID.

Most of the above papers are based on the depthwise convolu-
tion, which is not optimized on the hardware, e.g., GPU, FPGA,
and DSP. So although the detection algorithm is lightweight, it
does not mean that it can be processed in real time on hardware.



LI et al.: SURVEY ON DEEP-LEARNING-BASED REAL-TIME SAR SHIP DETECTION 3241

TABLE XI
FIVE LIGHTWEIGHT BACKBONE NETWORK BASED SAR SHIP DETECTION PAPERS

TABLE XII
SIX PRUNING, QUANTIZATION, AND KNOWLEDGE DISTILLATION BASED SAR SHIP DETECTION PAPERS

Besides the above innovations, researchers should seek other
ideas to realize real-time SAR ship detection.

We can also find that training from scratch and lightweight
detection network designing are strongly correlated. Training
from scratch needs to design the backbone network, and the
designed lightweight network generally needs be trained from
scratch to avoid the disadvantages brought by pretraining on
ImageNet.

I. Pruning, Quantization, and Knowledge Distillation on SAR
Ship Detection

The deployment of deep CNNs in real-time SAR ship detec-
tion is largely hindered by huge storage and computational cost.
Model compression and acceleration are necessary approaches
to realize real-time target detection. The real-time detection

of ship targets in SAR images also requires pruning quanti-
zation and knowledge distillation on large models to achieve
lightweight and high accuracy detection models. There are six
papers that are about this direction, which are shown in Table XII

Chen et al. [18] slimed SAR ship detector by pruning
and knowledge distillation. The pruning makes the backbone
channel-level sparsity. The network weights and scaling factors
are jointly trained with L1 regularization in channelwise scheme.
The FIR-KD is proposed to make up for the accuracy decline of
pruning. It redefines the extracted knowledge as the relationship
between different levels of feature maps, and then transfers it
from a large network to a smaller network. It achieved 94.6%
AP50 1.94G FLOPs 258.6 FPS 3.9 ms testing time 0.6M pa-
rameters and 2.8 MB model size on SSDD. Mao et al. [30] also
slimed SAR ship detector by pruning and knowledge distillation.
The detector is pruned on filter level to get lightweight models.
The Kullback–Leibler divergence based knowledge distillation
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TABLE XIII
SIX PAPERS ABOUT HARDWARE DEPLOYMENT OF SAR SHIP DETECTION PAPERS

is proposed to train small student network and large teacher
network (YOLOv3@EfficientNet-B7) to make up for the ac-
curacy decline. It achieved 92.6% AP50, 56.5% AP, 61.5M
parameters, and 17.27 ms testing time on SSDD with GTX
1080Ti GPU. Ma et al. [57] compressed YOLOv4 for design-
ing an edge-device-oriented lightweight detector. The sparsity
training on channels and layers is used by L1 regularization.
The channel pruning and layer pruning are used to prune the less
important parts, which reduce the width and depth. Then knowl-
edge distillation is used to improve the accuracy, and the model
is quantized to FP16 to further accelerate the model. At last, it
is deployed on NVIDIA Jetson TX2. It achieved 93% AP50,
15.12 FPS, 5.183G FLOPs, 3.5MB model size, and 0.857M
parameters on SSDD with 416 × 416 input size on SSDD. Chen
et al. [61] proposed a lightweight detector by feature-map-based
knowledge distillation. When training the lightweight student
network, the similarity between pixels is treated as transferred
knowledge in heatmap distillation. It achieved 80.71% AP50
with only 9.07M model parameters on HRSID. Yang et al. [79]
proposed an efficient and lightweight detector with soft quantifi-
cation for real-time SAR ship detection. The split bidirectional
FPN is used to compensate for the lack of accuracy. The soft
quantization simulates the quantization process of training and
learns variable parameters to adjust the pixel value results of
each channel, so as to adjust the distribution of the feature map
to make it as similar as possible to the original feature map. It
achieved 97.0% AP50 on SAR ship detection dataset with less
than 15× parameters and less than 6× the FLOPs. Xu et al. [64]
designed a lightweight cross-stage partial module to reduce the
amount of calculation and pruned it for a more compact detector.
The detector is sparse regularization trained first. Then it is
pruned to get sparse channels. Finally, the model is fine-tuned
to restore the accuracy by iterating the pruning procedures.

J. Hardware Deployment of SAR Ship Detector

Hardware deployment is the last step of SAR ship detection.
GPU is the common hardware for desktop real-time target detec-

tion. NVIDIA TX2 and FPGA are the commonly used hardware
for end-to-end real-time object detection. There are six papers
that are about hardware deployment of SAR ship detection as
shown in Table XIII. We will survey them in the following parts.

Xu et al. [45] proposed an on-board ship detection method
based on the CFAR and lightweight deep learning. It can be used
by the SAR satellite on-board computing platform. The Jeston
TX1 is used as the hardware to realize on-board ship detection.
The intelligent application module is used on HISEA-1 satellite.
The on-board ship detection method extracts the ship chips and
position information, and transmitted to the ground. The model
parameters in the satellite’s intelligent processing unit can be
updated. It shows good results on HISEA-1 SAR images. Jerzy
et al. [52] described the modern FPGA SoCs, SAR systems, and
on-board detection system. It proposed an SAR ship detection
system on SoC-based radar payloads. The paper is concluded
with a few observations on how implementing such a system
could affect existing radar platforms. Xu et al. [64] proposed
Lite-YOLOv5 based on YOLOv5 and other lightweight ideas.
It conducted on-board ship detection with 4.44G FLOPs and
73.15% AP50 on S-SSDD-v1.0. It is transplanted to NVIDIA
Jetson TX2. Xu et al. [69] proposed lightweight SAR ship
detector named L-YOLO. It is also transplanted to NVIDIA
Jetson TX2 to validate the practicability. It achieved 73% AP50
with 8.1G FLOPs on LS-SSDD-v1.0. Ma et al. [57] proposed
Light-YOLOv4 for edge-device-oriented SAR ship detection.
The sparsity training, channel and layer pruning, knowledge
distillation, and quantization are used to compress the detec-
tor further. It is also deployed on NVIDIA Jetson TX2.The
experiments on SSDD show that the detection speed is increased
to 4.2×. Yang et al. [70] proposed an algorithm and hardware
codesigning method for real-time SAR ship detection. The pro-
posed OSCAR-RT is the first end-to-end algorithm and hardware
codesigning method for real-time on-satellite CNN-based SAR
ship detection. It proposed a fully pipelined inter layer flow ac-
celeration architecture, in which all layers of CNN model can use
FPGA resources on chip for concurrent processing. It proposes
a hardware-guided, progressive, and structured pruning method,
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which is guided by hardware metrics. The coarse-grained and
fine-grained filter pruning and mixed precision quantization
are also used. A highly optimized CNN component library is
designed. The trimmed CNN model is mapped to these hardware
library components in a fully pipelined inter layer flow manner.
The proposed method achieves an AP50 of 94% on SSDD, with
speed of 652 FPS on Xilinx VC709 FPGA while consuming
only 5.8 W power.

VI. DISCUSSION

Here, we reviewed the papers about real-time SAR ship detec-
tion. The model compression and acceleration methods, the real-
time object detection methods are introduced first. The years,
datasets, journals, deep-learning frameworks, public datasets,
and the evaluation metrics of the 70 papers are introduced sec-
ond. These 70 papers are reviewed from the following aspects:
anchor free, trained from scratch, YOLO series, CFAR+CNN,
lightweight backbone, model compressing, and hardware de-
ployment. The speed and accuracy show the rapid development
of these algorithms in recent years in this field. Based on the
above review, we find that the real-time SAR ship detector
should have the following attributes: single-stage, trained from
scratch, anchor free, lightweight backbone, and head networks,
using model compression and acceleration, optimized and trans-
planted on the edge hardware. Researchers should follow most
of the above attributes when realizing real-time SAR ship de-
tection. What is more, due to the fact that ships in SAR images
are extremely sparse, and most areas are without targets, the
CFAR+CNN show great potential for handle this situation.
What is more, the lightweight networks with much depthwise
and pointwise convolution will not have a fast speed. As these
operations are not optimized on the hardware, e.g., GPU, FPGA,
and DSP. So they should be used less. And researchers should
both consider the direct (speed) and indirect (FLOPs) indicators.
Compared with computer vision, real-time SAR ship detection
is less popular, with fewer researchers and less achievements.
Most of the achievements are sporadic references from computer
vision, with the problem of incomplete innovation. In the future,
we should pay more attention and produce more results on this
area.

VII. CONCLUSION

This article gives a comprehensive overview of real-time
SAR ship detection. First, we introduce the model compression
and acceleration methods. They are the sources of innovation
in real-time SAR ship detection. The principle and research
status of pruning, quantization, knowledge distillation, low-rank
factorization, lightweight networks, and model deployment are
introduced in detail. Second, we introduce the real-time object
detection methods. The also provide inspirations for real-time
SAR ship detection. The two-stage real-time detectors, single-
stage real-time detectors, anchor-free detectors, trained from
scratch detectors, compression, and acceleration in object de-
tection are introduced, respectively. Third, 70 public papers
about deep-learning-based real-time SAR ship detection are
reviewed comprehensively. Ten public datasets and the usually

used evaluation metrics are introduced in the beginning. Then
70 papers are categorized into 7 types and are reviewed in detail.
They are anchor free based, trained from scratch based, YOLO
series based, CFAR+CNN based, lightweight backbone net-
works based, model compression based, and hardware deploy-
ment. The principle, innovation, and performance are reviewed,
respectively. Finally, the problems existing in this field and the
future direction are described. In the future, we should pay more
attention to the lightweight CNN designing, model compression
and acceleration, and hardware deployment in this field.

As far as we know, this is the first review on real-time SAR
ship detection. It can provide a reference for researchers in this
area or who are interested in it. It can make researchers quickly
understand the research status.
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