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Linear Feature-Based Image/LiDAR Integration for a
Stockpile Monitoring and Reporting Technology

Seyyed Meghdad Hasheminasab , Tian Zhou , and Ayman Habib

Abstract—Stockpile monitoring has been recently conducted
with the help of modern remote sensing techniques—e.g., terres-
trial/aerial photogrammetry/LiDAR—that can efficiently produce
accurate 3-D models for the area of interest. However, monitoring
of indoor stockpiles still requires more investigation due to unfa-
vorable conditions in these environments such as a lack of global
navigation satellite system signals and/or homogenous texture.
This article develops a fully automated image/LiDAR integration
framework that is capable of generating accurate 3-D models
with color information for stockpiles under challenging environ-
mental conditions. The derived colorized 3-D point cloud can be
subsequently used for volume estimation and visual inspection of
stockpiles. The main contribution of the developed strategy is using
automatically derived conjugate image/LiDAR linear features for
simultaneous registration and camera/LiDAR system calibration.
Data for this article are acquired using a camera-assisted LiDAR
mapping platform—denoted as stockpile monitoring and report-
ing technology—which was recently designed as a time-efficient
and cost-effective bulk material tracking. Experimental results on
three datasets show that the developed framework outperforms a
classical planar feature-based registration technique in terms of
the alignment of acquired point cloud. Results also indicate that
the proposed approach can lead to a high relative accuracy be-
tween image lines and their corresponding back-projected LiDAR
features in the range of 4–7 pixels.

Index Terms—Image/LiDAR integration, linear features,
matching, point cloud colorization, point cloud registration,
stockpile monitoring, system calibration.

I. INTRODUCTION

S TOCKPILE monitoring is important for managing bulk
materials in the agriculture, construction, and mining in-

dustry. For transportation roadway maintenance in particular,
accurate monitoring of salt stockpiles is important to improve
safety and traffic flow during snowstorms. Thanks to recent
advances in sensor and platform technologies, photogrammetric
and LiDAR approaches are commonly adopted for stockpile
monitoring. Photogrammetric approaches use an excessive num-
ber of overlapping images to produce 3-D point clouds—with
color information—through structure from motion (SfM) [1], [2]
and multiview stereo [3], [4] techniques. The main limitation of
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these approaches is their inability to find sufficient number of
conjugate points when dealing with images exhibiting repetitive
patterns and/or significant viewpoint change.

Different from image-based mapping techniques, LiDAR-
based approaches can directly provide dense 3-D point cloud
but without any spectral/color information. LiDAR sensors are
either mounted on mobile mapping systems such as unmanned
aerial vehicles or static tripods, e.g., terrestrial laser scanners
(TLS). Mobile LiDAR systems depend heavily on an integrated
global navigation satellite system (GNSS)/inertial navigation
system for position and orientation estimation. Thus, their
application is limited to open-sky areas. On the other hand,
TLS systems can acquire high-resolution point clouds with
millimeter-level precision without the need for GNSS signals.
However, they have not been widely used for stockpile monitor-
ing due to their high-cost and sometimes time-consuming data
acquisition/postprocessing steps when dealing with large point
clouds/facilities.

In order to overcome the limitations of current stockpile
monitoring technologies, a camera-assisted LiDAR mapping
platform denoted as stockpile monitoring and reporting tech-
nology (SMART) was designed and introduced in our previous
work [5]. Different from system-driven technologies such as
TLS that use sophisticated and expensive encoders, the SMART
system focuses on a data-driven strategy by acquiring data in
a simple, cost-effective procedure. The ultimate goal of the
SMART system is to produce a well-aligned colorized point
cloud that can be used for a realistic 3-D visualization and
accurate volume estimation of stockpiles.

To derive well-aligned colorized point clouds, an im-
age/LiDAR integration process is required. More specifically,
aligning data from different sensors requires establishing the
internal characteristics of individual sensors—known as interior
orientation parameters (IOP), mounting parameters (lever-arm
components and boresight angles) relating the different sensors,
and registration parameters (if multiple point clouds defined
relative to different coordinate frames are available). While
LiDAR IOP—often provided by the manufacturer—are accurate
and stable, consumer-grade cameras require frequent calibration
due to the instability of their IOP [6]. Mounting parameters
define the positional and rotational offsets between different
sensors and are derived through a system calibration procedure.
The frequency of the required system calibration depends on
how rigidly the sensors are fixed with respect to each other. In
addition, the registration process aims at estimating the 3-D rigid
transformation parameters—i.e., three rotation angles and three
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translations (scale is considered as unity for a well-calibrated
LiDAR)—between two point clouds. Finally, system calibration
and registration parameters are used to derive the registered
colorized point cloud.

Over the past few years, several studies have addressed the
problem of image/LiDAR integration by focusing on system
calibration. Camera/LiDAR calibration techniques estimate the
system parameters by minimizing the discrepancy between con-
jugate features that are extracted from both sensors at the same
or different locations. Depending on the type of utilized features,
calibration techniques can be categorized into target-based and
target-less approaches. In an early target-based calibration study,
Zhang and Pless [7] used a planar checkerboard for establishing
the mounting parameters between a camera and a 2-D LiDAR.
They parameterized the checkerboard plane by its unit normal
vector and its distance to the camera frame. Then, the cam-
era/LiDAR mounting parameters were derived by minimizing
LiDAR point to checkerboard plane distance in a nonlinear
optimization procedure. Several studies extended this work for
calibrating systems equipped with a camera and 3-D LiDAR sen-
sors [8], [9], [10], [11]. In addition to point-to-plane geometric
constraints, other feature correspondences such as line-to-plane
[12] and point-to-point [13], [14] have been also adopted through
designing custom-built targets, e.g., planar targets containing
symmetric holes. Although target-based strategies produce ac-
curate results, using these approaches might not be always
practical for applications where calibration parameters change
from one mission to another.

Early works dealing with in-situ calibration, using target-less
strategies, were based on manual identification of conjugate
natural point and linear features in indoor scenes [15], [16]. Sev-
eral efforts have been made toward developing fully automated
camera/LiDAR calibration frameworks. The majority of these
techniques—also referred to as motion-based approaches—use
visual-odometry [17], [18] or SfM [19], [20] to establish conju-
gate features between image and LiDAR data. More specifically,
these techniques rely on deriving image-based point clouds and
then matching those 3-D points to LiDAR-derived primitives
such as points or planes. The reliance of these approaches on
image point features is motivated by several fully automated de-
tector, descriptor, and matching techniques such SIFT [21] and
SURF [22]. However, the performance of such algorithms sig-
nificantly degrades when dealing with images with homogenous
texture, short baseline, and/or large changes in their viewpoints.
It is important to note that these characteristics are dominant
for data acquired by the SMART system [5]; thus, current
approaches are not applicable for the involved camera/LiDAR
integration in this study.

For in-situ image/LiDAR integration in indoor environments
with homogenous texture, linear features can be considered
as a potential primitive. Image line extraction has been well-
studied and several reliable and efficient line segment detectors
(LSDs) are available [23], [24]. On the other hand, existing
region growing [25] or parameter-domain [26] segmentation
approaches for extracting LiDAR lines could only perform well
when working with high-density point clouds, i.e., they would
fail when dealing with sparse point clouds such as those acquired

Fig. 1. Integrated SMART system used in this study (system setup for data
acquisition within an indoor facility is shown on the left).

by the SMART system. In addition, due to inherent difficulties
in using line primitives such as inaccurate location of endpoints,
fragmentation of a single line, and unavailability of a geometric
constraint similar to epipolar geometry for point matching [27],
establishing conjugate image/LiDAR lines is a challenging task.

This article presents an automated system calibra-
tion/registration framework to overcome the limitations of
existing approaches through developing strategies for linear
features extraction and matching in image and LiDAR data.
This framework extracts initial LiDAR lines by detecting
edge lines in each acquired point cloud. These linear features
are then expanded through region-growing strategies to derive
physical lines in the object space. Also, conjugate image/LiDAR
lines are identified through a two-step matching strategy that
considers the separability among linear features in the image
space to derive reliable conjugate lines. Image/LiDAR lines
are used in a least squares adjustment (LSA) procedure—i.e.,
a tool aimed at solving overdetermined systems of equations
through minimizing the squared sum of weighted observation
errors/residuals—to estimate calibration, registration, and
feature parameters.

The rest of this article is structured as follows. The SMART
system, data collection procedure, and study sites are introduced
in Section II. In Section III, the proposed data processing
framework is covered. Experimental results are presented in
Section IV. Finally, Section V concludes the article.

II. SMART SYSTEM AND DATASETS DESCRIPTION

This section starts with introducing the SMART system used
in this study for acquiring image and LiDAR data from indoor
stockpiles. Then, system operation and datasets description are
covered.

A. Smart System Description

The SMART system, shown in Fig. 1, consists of two Velo-
dyne VLP-16 Puck LiDAR units and one GoPro Hero 9 RGB
camera, which are mounted on an extendable tripod pole with a
maximum height of 6 m. The VLP-16 Puck scanner consists of
16 radially oriented laser rangefinders that are aligned vertically
from −15◦ to +15◦ and designed for 360◦ internal rotation.
Two LiDAR sensors with cross orientation are used to increase
the area covered by the SMART system from a given data
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Fig. 2. Illustration of the involved coordinate systems in the SMART system.

acquisition instance. More details regarding the SMART system
design and specifications can be found in [5]. More details
regarding the SMART system design and specifications can be
found in [5].

The SMART system was initially calibrated, where camera
IOP together with mounting parameters relating the different
sensors were estimated, as described in [5]. Camera IOP in-
cluding principal distance (c), principal point coordinates (xp,
yp), and radial and decentering lens distortions (K1, K2, P1,
P2) were derived through an indoor calibration procedure us-
ing a test field with several checkerboard targets with known
distances. In order to derive the relative position/orientation
of the onboard sensors with respect to a common reference
frame, a pole coordinate system was first defined, as depicted in
Fig. 2. The pole coordinate system together with the mounting
parameters of the first LiDAR unit relative to such coordinate
system is arbitrarily defined to produce roughly leveled point
clouds. The mounting parameters between the remaining sensors
and the pole coordinate system were derived by minimizing the
discrepancy between conjugate image points and LiDAR planes
that were manually extracted from the imagery and LiDAR data,
respectively.

B. Smart System Operation

At each instance of data collection, hereafter referred to as
a scan, the SMART system captures a pair of LiDAR point
clouds along with one RGB image. Fig. 3 shows a sample point
cloud and an image captured in a scan. As can be seen in this
figure, only a portion of the stockpile is covered by the point
cloud. In order to assure as complete coverage as possible of
the stockpile facility, multiple scans are required. To do so, the
pole is manually or mechanically rotated six times (resulting
in seven scans) around its vertical axis in approximately 30◦

increments, as illustrated in Fig. 4. Depending on the facility

Fig. 3. Sample point cloud (colored by LiDAR unit) and image captured by
the SMART system at a given scan.

Fig. 4. Data collection procedure for the SMART system (seven scans are
acquired at each station).

TABLE I
DATA COLLECTION SITES, FACILITY SIZE, AND NUMBER OF STATIONS/SCANS

size and shape complexity of the stockpile in question, data
collection might be conducted at one or more locations (also
referred to as stations). The final 3-D point cloud from the
stockpile facility is derived by registering all acquired scans to
a common reference frame. It is important to note that such a
simple and cost-effective design and data acquisition procedure
in the SMART system leads to sparse LiDAR scans, significant
variation in the point density, and insufficient overlap between
successive scans. These characteristics of the SMART point
clouds are considered in the data processing steps.

C. Datasets Description

In this study, three indoor salt storage facilities—managed by
the Indiana Department of Transportation—with stockpiles of
varying sizes and shapes are used to evaluate the performance
of the proposed image/LiDAR integration framework. The loca-
tions of the study sites along with a sample aerial view of each
facility are illustrated in Fig. 5. The three datasets, denoted as
“Rensselaer,” “Lebanon,” and “US-231” units, are, respectively,
located in Rensselaer, Lebanon, and West Lafayette, Indiana,
USA. Facility size, number of stations, and number of scans per
station for the three datasets are reported in Table I.
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Fig. 5. Locations of the three salt storage facilities used in this study along with
a sample aerial view of each facility (aerial photograph adopted from Google
Earth Image).

III. METHODOLOGY

In this section, the proposed image/LiDAR integration ap-
proach for generating colorized point clouds for monitoring
indoor stockpiles is presented. The well-aligned colorized point
cloud is derived through three main processing blocks, which
are illustrated in Fig. 6. The first block in this figure aims at
registering acquired point clouds from all scans/stations relative
to a common reference frame using planar features as primi-
tives. At this stage, due to the fact that a limited number of
planar features exist in each scan, the registered point cloud
is susceptible to some misalignments. The second block in
Fig. 6 corresponds to the proposed integration approach for the
simultaneous refinement of system calibration and registration
parameters through establishing conjugate image/LiDAR linear
features. Lastly, in the third block, using the refined parameters,
a point cloud colorization approach is implemented to assign
RGB information to the point cloud. More details about each
step of the proposed framework are discussed in the following
sections. It is worth noting that the main concept of the ap-
proaches pertaining to the first block in Fig. 6 was introduced
and discussed in [5]. However, to ease the understanding of the
entire workflow, we will start by briefly describing the initial
registration step.

A. Initial Point Cloud Registration

The conceptual basis of this step is to use conjugate planar
features among all scans at different stations to derive a regis-
tered point cloud with a reasonable alignment. This procedure
is implemented in four steps, as shown in the first block in
Fig. 6. In the first step, the objective is to reconstruct the LiDAR
point clouds from S scans at a given station (e.g., S = 7)
in a common frame, e.g., the coordinate system defined by
the pole at the first scan. This is conducted by estimating the
pole rotation matrices Rp(1)

p(k) with k ranging from 2 to 7, using
an image-based LiDAR coarse registration approach [5]. More

specifically, using a set of conjugate points established between
successive images, incremental camera rotation matrices—i.e.,
R

c(k−1)
c(k) where k > 1—are derived. Then, the pole rotation

matrices—i.e., Rp(1)
p(k)—are estimated by considering the bore-

sight angles relating the camera coordinate system and pole body
frame denoted as Rp

c .
It is worth mentioning that establishing conjugate points

among images acquired in salt storage facilities is quite chal-
lenging due to presence of repetitive patterns in the facility.
In order to overcome such an issue, a new image matching
algorithm—denoted as rotation-constrained matching—was de-
veloped in our previous study [5]. In order to reduce the matching
ambiguity, this approach exploits the nominal pole rotation to
predict the location of a conjugate point in an image for a
selected point in another one. Fig. 7 shows two successive
scans from the single station in the US-2313 dataset before
coarse registration, identified conjugate points (derived from the
rotation-constrained image matching) between captured images
in these scans, and image-assisted coarse registration result.
One should note that the rotation-constrained image matching
algorithm is only designed for the SMART system with the
assumption that there is no translation between successive scans
at a given station. Consequently, derived matched points, al-
though accurate, cannot be used for 3-D reconstruction, and
thus, volume estimation of stockpiles.

Next, planar features are extracted from individual scans
through a modification of the region-growing segmentation tech-
nique proposed by Habib and Lin [28]. In the modified version
of the segmentation strategy, points in the LiDAR data are repre-
sented as spherical coordinates rather than Cartesian ones. The
former provides more meaningful neighborhoods that are robust
to point density variations caused by sparse scanning. Given
the image-based coarse registration parameters and extracted
planar features, conjugate features among scans at a given station
can be identified using the similarity of surface orientation and
spatial proximity between such planes. Sample plane extraction
results for the single station in the US-231 dataset are shown in
Fig. 8.

At this stage, LiDAR scans from the same station are coarsely
aligned and planar features are derived from those scans. Next,
an automated approach is adapted from the linear feature-based
registration approach proposed by Al-Durgham and Habib [29]
for the alignment of scans from multiple stations, if available.
Multistation registration is sequentially established for two sta-
tions at a time, referred to as reference and source stations. Linear
features in this step are derived by intersecting nonparallel planes
in each station. These lines might or might not correspond to
physical lines in the study site. Conjugate linear features between
the two stations are then identified and used for the estimation of
registration parameters. The reason for exploiting lines instead
of direct use of planar features is that the estimation of the
registration parameters requires establishing a minimum of three
nonparallel plane pairs, whereas only two sets of nonparallel
conjugate lines are enough to derive these parameters. There-
fore, searching for two conjugate linear features in combined
scans at two stations is much easier than searching for three
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Fig. 6. Proposed data processing framework for deriving well-aligned colorized point clouds from the SMART system.

Fig. 7. Image-aided coarse registration results for two successive scans in the
US-231 dataset. (a) Top view (left) and side view (right) of two scans before
registration. (b) Identified conjugate points between captured images in these
scans. (c) Top view (left) and side view (right) of the two scans after coarse
registration (point clouds are colored by scan ID).

conjugate planar features. More details regarding how to estab-
lish conjugate lines and use them for the estimation of registra-
tion parameters can be found in [29] and [30], respectively.

It is important to note that the generated point cloud in this
step might not be well-aligned for two reasons: 1) scans from
individual stations are coarsely aligned using the image-aided
registration approach; and 2) deriving linear features from planar

Fig. 8. Top view (left) and side view (right) of extracted/matched planes for
the single station in the US-231 dataset (points are colored by plane ID).

ones leads to the propagation of errors. Fig. 9(a) shows a sample
of multistation registration results for two stations in the Rens-
selaer dataset where one can observe coarse alignment among
scans. In order to derive a fine-registered point cloud, planar
feature matching is first conducted to establish corresponding
features among all scans/stations. Finally, a planar feature-based
LSA is adopted for simultaneous fine registration of all scans at
all stations while solving for the parameters of the best-fitting
planes using the approach proposed by Lin et al. [31]. The
fine registration results for the scans at the two stations in the
Rensselaer dataset are shown Fig. 9(b).

B. Calibration/Registration Parameter Refinement

This step of the proposed framework aims at refining the cal-
ibration/registration parameters using conjugate linear features
among LiDAR scans and imagery. One should note that only a
limited number of linear features that were previously derived
from plane-to-plane intersection represent physical lines. Thus,
only a few of these linear features are visible in the imagery. This
step focuses on developing strategies for extracting/matching
physical lines in image/LiDAR data using these features for the
refinement of calibration/registration parameters, as shown in
the middle block of Fig. 6.

Linear feature extraction from LiDAR scans: Linear features
in indoor environments are often located in a close proximity to
planar features, e.g., exposed ceiling beams in storage facilities.
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Fig. 9. Registration results for two stations in the Rensselaer dataset. (a)
Multistation coarse registration and (b) planar feature-based fine registration
(point clouds are colored by station ID).

Fig. 10 shows examples of those features with the help of
sample images from the three datasets used in this study. When
working with sparse point clouds, these linear features cannot
be reliably extracted using general segmentation techniques. To
overcome the arising challenges from having sparse scans in the
SMART system, this study develops a region-growing-based
approach that relies on edge points extracted from individual
scans captured by each LiDAR unit to derive linear features.
This approach consists of three steps, as shown in Fig. 11, which
are discussed in this section.

Step 1 aims at generating seed linear segments in the point
cloud. To do so, a strategy inspired by the LiDAR odometry and
mapping (LOAM) method [32] is implemented. In LOAM, edge
and planar points are extracted from individual LiDAR frames,
i.e., captured data by a multibeam spinning LiDAR sensor at
each instance of data collection (a scan is comprised of two
LiDAR frames for the SMART system). Feature extraction is
conducted by calculating the curvature at a point using its local
region; points with high curvature value are considered as edge
features and those with low value are considered planar points.

In this study, LOAM edge points are used to extract a set of
reliable linear features that are extended across the scanlines
in LiDAR frames. In the implemented approach, given an edge
point on a scanline s (1 ≤ s ≤ 16 for the LiDAR units used in the
SMART system), a line segment is initiated by finding its closest
edge point on scanline s+ 1, provided the two edge points have a

similar timestamp (all laser beams rotate simultaneously). Simi-
larly, edge points from adjacent scanlines are sequentially added
to the line segment if they have a small timestamp difference to
the last point on the segment and their normal distance to the
edge line is smaller than a predefined threshold. This threshold
is selected as 0.10 m according to the thickness of the utilized
linear features (e.g., exposed ceiling beams) in this study. For a
line segment to be considered as a valid feature, it should have
a minimum of four points, i.e., extracted line segments consist
of 4–16 edge points. Fig. 12 shows detected LOAM edge points
as well as extracted linear features from a frame captured by
the first LiDAR unit of the SMART system in the Rensselaer
dataset. As shown, although not all points on the edge lines are
extracted, the majority of the derived linear features are correctly
segmented. It should be noted that the LOAM approach might
identify points before/after gaps caused by occlusion as edge
points, as depicted in the zoomed-in region shown in Fig. 12(a).

In Step 2 (see Fig. 11), conjugate edge lines derived from
different frames captured at single or multiple stations are
established. To identify collinear segments, initial calibration
and registration parameters are used to derive all edge lines in
the mapping frame. Fig. 13(a) and (b) shows all extracted edge
points and lines, respectively, for the Rensselaer dataset where
points are colored by their respective station ID. As shown in
these figures, only a small portion of edge points on existing lines
are segmented as linear features. Therefore, in order to derive
full edge lines, extracted linear features from LiDAR frames are
considered as seed segments and a region growing is conducted
on the entire edge points. In this procedure, given a seed segment,
edge points with a small normal distance to the linear feature
are successively added to the line segment. The point-to-line
distance threshold is determined according to the expected ac-
curacy of initial registration/calibration parameters (e.g., 0.10 m
in this study). One should note that through the region-growing
process, conjugate linear features among scans are implicitly
established. Fig. 13(c) depicts the full edge lines resulting from
the region-growing procedure on edge lines/points shown in
Fig. 13(a) and (b) (points are colored by feature ID). As shown,
the majority of existing line segments in the facility have been
extracted after the region-growing step. Nevertheless, due to the
sparsity of the LiDAR data, a single edge line in the object space
might be fragmented during the region-growing process.

Finally, in Step 3, a line grouping strategy is implemented to
merge linear features that are believed to originate from a single
edge line in objects space. In this regard, for each line segment li
that consists of a set of n points Pli = {pli1 , pli2 , . . . , plin } , line
orientation (θli) and length (Lli ) are calculated using endpoints
pli1 and plin . In general, longer lines can be considered to be more
reliable than shorter ones. As a result, the grouping process
starts with sorting the linear features in a descending order
according to their length. This will result in a set of LiDAR
lines L = {l1, l2, . . . , lm } , with l1 and lm representing the
longest and shortest lines, respectively. In the grouping process,
for a selected line li, we look for its collinear segments in L
by first filtering out lines that show a large angular deviation
from li (e.g., ≥ 3◦). Such threshold is selected according to
the characteristics of the physical lines, e.g., their thickness
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Fig. 10. Illustration of sample linear features in indoor facilities highlighted with red ellipses where the majority of line segments are located near planar features.

Fig. 11. Workflow of the proposed LiDAR linear feature extraction approach.

and/or straightness. A line lj that survived the angular proximity
check is deemed collinear with li (Lli ≥ Llj ) if: 1) the root
mean square (rms) of the normal distances between the points
on llj —i.e., Plj = {plj1 , plj2 , . . . }—to line li is smaller than a
threshold (e.g., 0.10 m), and 2) the minimum distance between
neighboring endpoints of the two lines is smaller than a prede-
fined threshold. For a more reliable grouping, this threshold is
selected as Llj so that the algorithm does not allow merging of
two segments that are far from each other. If lj is considered
to be collinear with li, all points in Plj are added to Pli and
line lj is removed from L. The line grouping procedure is con-
ducted for each line in L and repeated untilx no more grouping
occurs.

In order to remove potential outlier line segments, e.g., lines
extracted from the edge points at the boundary of gaps caused
by occlusions, a line filtering step is conducted. A line segment
is deemed as an outlier if it has a line fitting error larger than
a threshold. According to the thickness of the utilized linear
features as well as the accuracy of the initial registration pa-
rameters, this threshold is set to 0.10 m. Additionally, due to
the nature of available linear features in salt storage facilities,
segments that are shorter than 0.1 times the length of the longest
segment (which is usually one of the exposed ceiling beams)
are selected as outliers. Fig. 14 shows the final LiDAR line
segments after applying the line grouping/filtering process on
the segments shown in Fig. 13(c). Examining this figure, one

can observe that the implemented approach results in a set of
LiDAR line segments that represent unique physical lines with
a good distribution over the study site.

Extracting linear features from imagery: In order to derive
image linear features, the LSD algorithm [23] is used in this
study. As mentioned earlier, images captured by the SMART
system exhibit large distortions; thus, a straight line in the
object space might not appear as a straight line in the imagery.
Consequently, line detection algorithms would extract a physical
line in the object space as several noncollinear lines in the
imagery. This issue is illustrated in Fig. 15, where LSD line
detection results on a sample original image in the three datasets
are shown. To mitigate this problem, the LSD algorithm is
applied on rectified images, i.e., images where the distortion pa-
rameters have been corrected for. The distortion parameters are
established through the previously mentioned indoor calibration
procedure, as discussed in Section II. Although such parameters
might change overtime, initial estimates would still significantly
reduce the impact of distortions. Following the application of
LSD, a line grouping strategy similar to the one discussed
for LiDAR lines is implemented to merge similar collinear
image lines. In order to assure a reliable merging process—i.e.,
where only line segments that represent the same physical line
are merged—conservative thresholds are used in this process.
Lastly, short lines, e.g., lines whose length is smaller than 0.1
times the length of the longest segment, are considered outliers
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Fig. 12. Perspective view (left) and side view (right) of a LiDAR frame in the
Rensselaer dataset. (a) Points are colored by laser beam ID with LOAM edge
points shown in black. (b) Extracted linear features are colored by feature ID
and the remaining points are in black.

Fig. 13. Top view (left) and side view (right) of edge points/lines extraction
results for the entire Rensselaer dataset. (a) Extracted edge points colored by
station ID, (b) extracted edge lines colored by station ID, and (c) region-growing
results (points are colored by linear feature ID).

and removed. Fig. 16 shows the final image lines detected from
the images shown in Fig. 15.

LiDAR/image line matching: At this stage, image and LiDAR
lines have been extracted. Moreover, LiDAR lines have been
matched in the individual LiDAR frames from the different
stations. This step aims at establishing conjugate linear features

Fig. 14. Top view (left) and side view (right) of final linear features
merged/filtered for the Rensselaer dataset (points are colored by linear feature
ID).

Fig. 15. LSD line detection results (in blue) from sample original images in
(a) Rensselaer dataset, (b) Lebanon dataset, and (c) US-231 dataset.

between LiDAR data and imagery. The matching process starts
by projecting the LiDAR lines onto imagery using the initial
calibration/registration parameters. Fig. 17 shows a sample of
detected image lines (in blue) and projected LiDAR lines (in red)
where, as expected, a misalignment can be observed between
the two sets of line segments due to inaccuracy of the initial
registration/calibration parameters.

Having LiDAR lines projected to the all images, line matching
process is conducted one image at a time. For an image in
question, conjugate image/LiDAR lines are established through
a two-step strategy. In the first step, for every image line li,
a potential LiDAR line match is identified. A LiDAR line is
considered as a potential match if its projection shows close
spatial/angular proximity to the image line in question. Also,
there should be no ambiguity in identifying the potential Li-
DAR line match, i.e., projection of the remaining LiDAR lines
should not exhibit relative-close proximity to li. In the matching
process, among projected LiDAR lines that are in a close angular
proximity to the image line in question, the one with the smallest
distance to li is selected as a potential candidate match ll (closest
projected LiDAR line). In this regard, the distance between the



HASHEMINASAB et al.: LINEAR FEATURE-BASED IMAGE/LIDAR INTEGRATION FOR A SMART 2613

Fig. 16. Final linear features (in blue) detected from sample rectified images
in (a) Rensselaer dataset, (b) Lebanon dataset, and (c) US-231 dataset.

Fig. 17. Extracted image lines in blue (left) and projected LiDAR lines in red
(right) for an image in the Rensselaer datasets.

two lines is determined as the mean of the normal distances
between the endpoints of projected LiDAR line and the image
line. Also, the second-closest projected LiDAR line (ll′ ) is the
one with the smallest angular/spatial proximity to ll. Given these
three linear features, i.e., image line li, closest LiDAR line ll, and
second-closest LiDAR line ll′ , a matching hypothesis between
li and ll is established if the distance between li and ll (d1)
is smaller than a predefined threshold (e.g., d1 ≤ ρ times the
image diagonal, where ρ is selected as 0.01 according to the
image size while considering the accuracy of the initial calibra-
tion/registration parameters), whereas the distance between li
and ll′ (d2) is significantly larger than d1 (e.g., d2 ≥ 2ρ times
the image diagonal to ensure a good separation between the two
projected LiDAR lines). One should note that when multiple line
segments with similar orientations are in the same vicinity of
the image, all of them would be assigned to a single LiDAR line
as a potential match. To ensure reliable matching results, once

Fig. 18. Two sample image lines (in blue) and their corresponding closest
and second-closest projected LiDAR lines in red and green, respectively, for an
image in the Rensselaer dataset.

TABLE II
MATCHING COST FUNCTIONS AND HYPOTHESES FOR THE IMAGE/LIDAR LINES

SHOWN IN FIG. 18

candidate LiDAR lines are established for every image line (if
possible), in the second step, a potential LiDAR line match is
accepted if it is only associated with a single image line within
a given image.

The two-step procedure will ensure reliable matches (pair-
ings) between LiDAR/image lines. These reliable matches will
correspond to high-resolution regions, i.e., regions with small
ground sampling distance (GSD), of the imagery. In other areas,
i.e., regions with low-resolution (high GSD), we would have
ambiguity in identifying image/LiDAR line matches, i.e., the
matching cost function for the second-closest match (d2) is
not significantly different from that for the closest match (d1).
Fig. 18 shows two examples of detected image lines (in blue)
along with their corresponding closest and second-closest Li-
DAR lines (in red and green, respectively). The two matching
cost functions for the line segments shown in Fig. 18(a) and
(b) are presented in Table II. As reported in this table, image
line li and LiDAR line ll in Fig. 18(a) are considered as can-
didate matches. On the other hand, the matching hypothesis is
rejected for the pair in Fig. 18(b) due the small value of d2, i.e.,
high ambiguity in identifying image/LiDAR line matches in the
low-resolution part of the image.

C. LSA for the Refinement of Calibration and Registration
Parameters

Once conjugate linear features are established, an LSA proce-
dure is conducted to refine the system calibration, registration,
and feature parameters. In this study, a line in a LiDAR scan is
defined by a set of extracted edge points on that line. Among all
edge points that belong to a single line (extracted from several
scans), the two with the maximum distance in the mapping
frame are used to establish the representation scheme of the
linear feature in the object space. These two endpoints (line
parameters) are denoted as points A and B and are solved for in
the LSA procedure. In the meantime, image lines are represented
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Fig. 19. Set of intermediate points along a conjugate image/LiDAR line in the
Rensselaer dataset (point cloud is shown in top view).

Fig. 20. Schematic illustration of image/LiDAR intermediate points along
the linear feature for the SMART system (points I and i represent different
intermediate points along the linear feature observed by LiDAR and camera,
respectively).

by a sequence of points along the line. Representing an image
line by a sequence of points will help in refining lens distortion
parameters since the points’ deviation from the straight line
passing through the endpoints is a function of the distortion.
Sample intermediate points along a conjugate image/LiDAR
line as well as the representation scheme of this line in the object
space (endpoints A and B) are shown Fig. 19.

Two optimization target functions are implemented for mini-
mizing the discrepancies between conjugate image/LiDAR lines
while simultaneously solving for the unknowns. The involved
quantities in the two target functions are schematically illus-
trated in Fig. 20. The first optimization target function min-
imizes the normal distance between the mapping coordinates
of the intermediate point I extracted from LiDAR scan to its
corresponding linear feature (defined by the endpoints A and
B). This constrained is mathematically described in (1), where x
represents theL2-norm of the vector x, rmA and rmB are the object
coordinates of the two endpoints that are determined through
the LSA, and rmI is the coordinate of LiDAR point I along
the line. The LiDAR point coordinates in the mapping frame
(rmI ) are defined using the point positioning equations, as per
(2). Considering (1) and (2), one can note that the first LSA
target function incorporates the registration parameters, LiDAR
mounting parameters, and feature parameters

‖(rmB − rmA )× (rmB − rmI ) ‖
‖rmB − rmA ‖ = 0 (1)

rmI = rmp(k) +Rm
p(k)r

p
luj

+Rm
p(k)R

p
luj

r
luj(k)
I (2)

where:
rmp(k) and Rm

p(k): position and rotation matrix of the pole body
frame relative to the mapping coordinate system (registration
parameters) for the kth scan;
rpluj

andRp
luj

: lever-arm and boresight rotation matrix relating
the jth LiDAR unit coordinate system and pole body frame (j
can be either 1 or 2 for the SMART system); and
r
luj(k)
I : position of the intermediate point I with respect to the

LiDAR unit frame that is derived from the raw measurements
of the jth LiDAR unit at kth scan.

The second optimization target function forces the vector from
the perspective center (PC) to an intermediate image point i
along the linear feature (rmPC−i) to lie on the plane defined by
the PC and endpoints of the object line (i.e., the plane defined by
vectors rmPC−A and rmPC−B , as shown in Fig. 20). This constraint
is mathematically presented by the triple product in (3), where
rmPC−A is defined by rmA − rmc(k) with rmc(k) representing the
camera position relative to the mapping frame at scan k. Consid-
ering the lever-arm relating the camera system to the pole body
frame (rpc ), rmPC−A is rewritten as rmA − [rmp(k) +Rm

p(k)r
p
c ] and

similarly, rmPC−B is defined as rmB − [rmp(k) +Rm
p(k)r

p
c ]. Also,

rmPC−i is rewritten as Rm
p(k)R

p
cr

c(k)
i with Rp

c representing the
boresight rotation matrix relating the camera system and pole
body frame and r

c(k)
i defining the vector from the camera PC

to the intermediate image point i along the line in the camera
frame captured at scan k

(
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where in r
c(k)
i =

⎡
⎣

xi − xp − distxi

yi − yp − distyi

−c

⎤
⎦ , xp and yp are the

camera’s principal point coordinates; c is the camera’s princi-
pal distance; and distxi

and distyi
are distortions in the xy-

directions for image point i. Overall, the second minimization
target function incorporates the registration parameters, camera
IOP, camera mounting parameters, and feature parameters.

It is worth noting that the optimization procedure can be con-
ducted using either LiDAR lines only (for registration purposes,
using (1)) or image/LiDAR lines simultaneously [for aligning
image and LiDAR data, using (1) and (3)]. In summary, in the
LSA procedure, one equation—i.e., (1)—is established for each
intermediate point along the LiDAR line. Also, every interme-
diate point along the image line introduces one equation—i.e.,
(3)—to the LSA procedure. For each linear feature endpoint,
three LiDAR point position equations—i.e., (2)—are also es-
tablished. The unknown parameters include the camera IOP and
mounting parameters, LiDAR mounting parameters, position
and orientation of the pole at each scan (except for the reference
scan), and ground coordinates of the line endpoints (feature
parameters).
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Fig. 21. Schematic illustration of the point cloud colorization process for the
SMART system.

D. Point Cloud Colorization

Once the parameter refinement is conducted, a fine-registered
point cloud can be generated from all acquired scans at all
stations. In the last step of the proposed framework, a colorized
point cloud is generated by assigning an RGB value to each point
in the final point cloud provided that the point is visible in at least
one of the images. A LiDAR point is considered visible in the
imagery if it is located in front of the camera and its projection
lies within the image format. To colorize a given LiDAR point
in the point cloud, its closest station is first determined using
the pole position information derived from the LSA. Then, the
point in question is projected to all images captured at the closest
station. Among projected points, the one with closest distance to
the image center, i.e., with less probability of collusion, is used
to assign color information to the LiDAR point. This procedure
is schematically shown in Fig. 21. In order to avoid the double
mapping problem, i.e., problem caused by the fact that a LiDAR
point could be occluded in a specific image, the Z-buffer strategy
proposed by Ahmar et al. [33] is implemented. In this approach,
the point cloud colorization procedure keeps track of projected
LiDAR points to a given image location. When several LiDAR
points are projected to the same image pixel, the closest point
to the PC of the image in question is deemed visible, whereas
others are considered occluded. Occluded points are then pro-
jected to other images to identify the ones where they might be
visible in.

IV. EXPERIMENTAL RESULTS

This section evaluates the capability of the developed im-
age/LiDAR integration strategy for deriving well-aligned col-
orized point clouds from the SMART system. First, impact of the
extracted/matched LiDAR lines (without corresponding image
lines) on the registration process is evaluated through a com-
parison with the results derived from the planar feature-based
registration (i.e., initial registration in this study). The capability
of the proposed framework for aligning image and LiDAR data
is then qualitatively and quantitatively verified. The selected
threshold values used in the proposed image/LiDAR integration
approach are presented in Table III.

A. LiDAR Fine Registration Results

In this section, only the LiDAR linear features derived from
the proposed strategy are used to study their impact on the

TABLE III
SELECTED THRESHOLD VALUES FOR THE PROPOSED IMAGE/LIDAR

INTEGRATION STRATEGY

quality of point cloud alignment compared to that from the planar
feature-based LSA. For a quantitative comparison of the two
approaches, the following criteria/metrics are reported.

1) Number of features: This metric refers to the total number
of planar/linear features that are used in the registration
process and shows how common these features are within
the study site in question.

2) Minimum number of features per scan: This crite-
rion refers to the minimum number of features ex-
tracted/matched in a LiDAR scan. The criterion represents
the ability of the approach in providing sufficient number
of features for estimating the registration parameters for
all acquired scans.

3) Matching repeatability: This metric shows the ratio be-
tween the average number of scans among which a given
feature is matched and the total number of scans. A high
value of this metric is an indication of repeatedly identified
conjugate features.

4) Feature fitting error: This criterion represents the rms of
the normal distances between the points and their respec-
tive best-fitted feature derived from the LSA procedure.
This value is expected to be within the noise level in the
point cloud.

The above-mentioned evaluation criteria for the three datasets
are reported in Table IV. As can be seen in this table, a number
of extracted linear features are almost three times the number
of planar features for all datasets. This observation shows that
linear features can be found in large quantities when compared
to planar ones for the involved facilities. Also, inspecting the
minimum number of features in a scan reported in Table IV,
one can note that there are always more than 20 conjugate linear
features for every scan of the LiDAR data in all datasets. Since
only two nonparallel linear features are enough for deriving the
registration parameters of a given scan, such large number of
extracted/matched features significantly increases the control
information for estimating the unknown parameters in the LSA
procedure. On the other hand, the minimum number of planar
features in a scan is in the range of 4–6 planes in the all datasets.
Having such a small number of planar features in those scans
might not always provide adequate control that can lead to



2616 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE IV
PERFORMANCE COMPARISON BETWEEN PLANAR AND LINEAR FEATURE APPROACHES IN TERMS OF THE NUMBER OF FEATURES USED IN LSA, MINIMUM NUMBER

OF FEATURES EXTRACTED/MATCHED IN A SCAN, MATCHING REPEATABILITY, AND FEATURE FITTING ERROR

Fig. 22. Perspective view (left) and side view (right) of the extracted/matched
features for a LiDAR frame in the Rensselaer dataset. (a) Seven planar features
with a total of∼20 000 points and (b) 21 linear features with a total of 213 points
(points are colored by feature ID).

accurate registration parameters. The number and distribution
of planar and linear features used in the LSA procedure are
illustrated with the help of Fig. 22 for a frame in the Rensselaer
dataset (previously shown in Fig. 12).

In terms of the matching repeatability, the two approaches
show a value in the range of ∼0.6–0.8, indicating that a given
feature is matched among the majority (more than half) of the
scans. This observation can be attributed to the ability of the
SMART system for scanning diverse features in all directions at
a given scan (as previously shown in Fig. 3). According to the rms
of normal distances presented in Table IV, LSA using planar fea-
tures shows an rms value within 4.5–7.1 cm, whereas this value is
in the range of 2.7–3.4 cm in the case of linear feature registration
for all datasets. This level of accuracy is within the noise level
of point cloud, i.e., ±3 cm according to the utilized sensor spec-
ifications. Such small feature fitting errors indicate the ability of
the proposed strategy in extracting accurate LiDAR lines.

Next, the estimated calibration parameters are presented. It is
worth noting that to define the pole coordinate system relative to
the mapping frame, the mounting parameters of the first LiDAR
unit on the SMART system are manually measured and are
fixed in the LSA procedure. Table V presents the second LiDAR

unit’s initial and estimated mounting parameters along with their
respective standard deviation (STD) derived from the LSA. The
different initial values for the US-231 dataset compared to the
other two are due to using a different setup of the SMART system
for this dataset. As one can see in Table V, planar and linear
feature approaches result in very similar lever-arm components
(within ±2 cm) and boresight angles (within ±0.1◦) for all
datasets. Also, Table V shows that there are slight improvements
in STDs of the estimated parameters when using planar feature
registration. This can be explained by the huge redundancy
produced by the large number of points on planar features (e.g.,
∼20000 points on the planar features compared to 213 points
on the linear features as reported/shown in Fig. 22).

RMS of differences between the estimated pole position and
orientation at each scan derived from the plane-based and line-
based registration approaches pertaining to the three datasets is
reported in Table VI. According to these values, we can see that
although the positional differences of the registration parameters
derived from the two approaches are small (in the range of
1–5 cm), there are large differences between the estimated pole
rotation angles, e.g., Δκ of 0.28◦ in the US-231 dataset. Since
the estimated mounting parameters from the two approaches are
very similar (as reported in Table V), with such differences in
the registration parameters one would expect notable differences
in the alignment quality of the point clouds generated by
these approaches. Figs. 23–25 illustrate fine-registered point
clouds derived from the planar and linear feature registration
approaches for the three datasets. Although these figures show
relatively good quality of the generated point clouds from both
approaches, a closer inspection reveals that there are some
misalignments among the scans in the case of planar feature
registration. A better alignment of point clouds when using linear
feature approach can be attributed to the large number of lines
extracted/matched in the different LiDAR scans as reported in
Table IV and/or the possibility of having more outlier points on
utilized planar features.

In order to quantitively evaluate the generated point clouds,
planar features pertaining to two ceilings, four walls, and one
floor (seven in total) are extracted, and a least-squares-based
plane fitting is conducted using all extracted points on the planes.
Table VII reports the mean rms value of normal distances be-
tween points and their respective best-fitted planes. In addition,
stockpile volumes are estimated using digital surface models
generated from the point clouds as described in [5] and reported
in Table VII. According to this table, as expected, a smaller
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TABLE V
INITIAL AND ESTIMATED MOUNTING PARAMETERS FOR THE SECOND LIDAR UNIT ON THE SMART SYSTEM THROUGH THE PLANAR AND LINEAR FEATURE

APPROACHES

TABLE VI
RMS OF DIFFERENCES BETWEEN THE ESTIMATED POLE POSITION AND ORIENTATION AT EACH SCAN DERIVED FROM THE PLANE-BASED AND LINE-BASED

REGISTRATION APPROACHES

Fig. 23. Point clouds generated for the Rensselaer dataset using the estimated
parameters from (a) planar and (b) linear features (points are colored by scan
ID).

Fig. 24. Point clouds generated for the Lebanon dataset using the estimated
parameters from (a) planar and (b) linear features (points are colored by scan
ID).



2618 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 25. Point clouds generated for the US-231 dataset using the estimated
parameters from (a) planar and (b) linear features (points are colored by scan
ID).

TABLE VII
MEAN PLANE FITTING ERROR AND ESTIMATED VOLUMES USING THE TWO

APPROACHES

rms value is observed for the linear feature approach (∼3–4 cm)
compared to the planar one for all datasets (∼4–6 cm). However,
reported volumes in Table VII show that the two approaches
only lead to different volume estimates in the range of 0.1 m3

(US-231 dataset) to 1.1 m3 (Rensselaer dataset), which might
not be significant for stockpile monitoring applications.

B. Image/LiDAR Integration Results

Having discussed the capability of the proposed approach for
identifying sufficient, well-distributed conjugate linear features
among all LiDAR scans, this section discusses the image/LiDAR
integration results for the three datasets. To do so, the im-
age/LiDAR feature matching results are first presented. Then,
the quantitative and qualitative alignment between the point
clouds and imagery are analyzed. Fig. 26 shows all identified Li-
DAR/image line matches (six in total) for a rectified image in the
Rensselaer dataset. Inspecting this figure, one can observe that

Fig. 26. LiDAR/image line matching results for an image in the Rensselaer
dataset (image lines are in blue and corresponding LiDAR lines are in red).

TABLE VIII
IMAGE/LIDAR FEATURE MATCHING RESULTS IN TERMS OF MATCHING RATE

AND AVERAGE NUMBER OF CONJUGATE LINES PER IMAGE FOR THE THREE

DATASETS

all established matches are correct, and they are well-distributed
in the image space.

The percentage of LiDAR lines for which at least one conju-
gate image line is identified—i.e., referred to as image/LiDAR
matching rate—and the average number of matched LiDAR
lines in a given image are reported in Table VIII. The presented
image/LiDAR matching rates reveal that nearly 80% of the
LiDAR lines were matched with image lines in the Rensselaer
and Lebanon datasets. On other hand, almost half of the LiDAR
lines were not matched with image lines in the US-231 dataset.
The lower matching rate for this dataset is caused by the lower
overlap between images and LiDAR scans as the data collection
is only conducted at one station. Also, considering the average
number of matched LiDAR lines reported in Table VIII, one can
see that the proposed approach results in an average of ∼5–7
conjugate lines per image for the three datasets. As a result, a
large number of constraint equations, i.e., (3), are established in
the LSA procedure that contribute to the estimation of involved
unknown parameters.
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TABLE IX
INITIAL AND ESTIMATED CAMERA DISTORTION PARAMETERS THROUGH THE PROPOSED INTEGRATION APPROACH

TABLE X
INITIAL AND ESTIMATED CAMERA MOUNTING PARAMETERS THROUGH THE PROPOSED INTEGRATION APPROACH

It should be noted that the estimated registration as well as
LiDAR mounting parameters when using image/LiDAR lines
are very similar to those derived from LiDAR lines only (pre-
sented in Tables V and VI). Hence, in this section of the experi-
mental results only the estimated camera calibration parameters
are presented. In this study, among camera IOP, only distortion
parameters are considered as unknowns in the LSA procedure,
i.e., principal distance and principal point coordinates are as-
sumed to be stable over time according to what is reported by
Zhou et al. [34]. Initial and estimated camera IOP along with
their respective STD derived from the linear feature-based LSA
are reported in Table IX. The small STD values reported in
Table IX indicate precise estimation of the camera distortion
parameters for the three datasets. A comparison between the
estimated camera IOP among different datasets verifies the
hypothesis that these parameters are not stable over time for
a consumer-grade camera. Such instability in the parameters is
more significant for the decentering lens distortions (P1 and P2)
compared to the radial distortion parameters (K1 and K2).

Table X presents the initial and estimated camera mounting
parameters. Similarly, by comparing the estimated mounting
parameters among different datasets, one can see that there is a
significant change in the estimated parameters, especially in the
case of boresight angles. These changes are even more notable
for the US-231 dataset with the largest change in Δω—i.e.,
−3.81◦—compared to the derived value from the initial cal-
ibration. Such variations in the boresight angles can cause a
displacement in the object space with a magnitude of ∼0.66 m
at a 10 m distance from the camera (average camera-to-object
distance in a typical salt storage facility). The variations in the
mounting parameters could be caused by potential movements
of the camera due to battery and/or memory card replace-
ment before each data acquisition. Overall, the inconsistency
in the camera IOP and mounting parameters necessitates the

Fig. 27. Projected LiDAR lines for a sample image in the Rensselaer dataset:
(a) before LSA and (b) after LSA.

estimation of these parameters for every dataset acquisition to
assure good alignment between LiDAR and image data.

Having discussed the LSA results using image/LiDAR con-
jugate lines, now the capability of the proposed framework for
improving the alignment between corresponding image and
LiDAR lines is evaluated. Figs. 27–29 show the projection of
LiDAR lines to a sample image before and after LSA for the
three datasets. As shown in these figures, when using initial reg-
istration/calibration parameters, significant misalignment can be
observed between projected LiDAR lines and their respective
image lines. Such misalignment is more notable for the US-231
dataset [see Fig. 29(a)], which supports the previous observation
in Table X regarding the significant differences between the
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Fig. 28. Projected LiDAR lines for a sample image in the Lebanon dataset:
(a) before LSA and (b) after LSA.

Fig. 29. Projected LiDAR lines for a sample image in the US-231 dataset: (a)
before LSA and (b) after LSA.

TABLE XI
PROJECTION ERROR BETWEEN IMAGE LINES AND THEIR CORRESPONDING

LIDAR LINES BEFORE AND AFTER LSA

initial and refined boresight angles in this dataset. On the other
hand, Figs. 27(b), 28(b), and 29(b) illustrate a good alignment
between the projected LiDAR lines and image ones after the
LSA procedure.

The rms values of the distances between image lines and their
conjugate projected LiDAR lines (denoted as projection error,
i.e., d1 distance discussed in Section III) before and after LSA
are presented in Table XI. Considering the reported projection
errors before LSA, a significant discrepancy between the image

Fig. 30. Sample 2-D analysis for the Rensselaer dataset through back-
projecting a point in the colorized point cloud to all images where it is visible
in (represented by magenta markers): (a) before LSA and (b) after LSA.

lines and their corresponding LiDAR lines can be observed in
all datasets. As expected, such misalignment is more notable for
the US-231 dataset with a magnitude of 64.4 pixels. On the other
hand, the projection errors after LSA show that the alignment
between the two sets of linear features is improved to the range
of 4–7 pixels for all datasets, even for the dataset with only one
station (US-231).

Another qualitative alignment check between imagery and Li-
DAR is assessed through a 2-D analysis by projecting randomly
selected points in the LiDAR data to all images where it is visible
in Figs. 30–32 illustrate an example of such analysis where the
projected points (represented by magenta markers) are derived
using the initial registration/calibration parameters [Figs. 30(a)–
(32a)] and estimated parameters [Figs. 30(b)–32(b)] for the three
datasets. As expected, a misalignment between the projected
LiDAR point and its respective image points can be observed
when using the initial parameters. On the other hand, using
the refined parameters, accurate projections are derived for all
selected LiDAR points as shown in Figs. 30(b)–32(b). The pro-
jected points in this case are in agreement with their respective
image points within ∼5 pixels for all datasets.

Finally, a 3-D qualitative analysis of the image/LiDAR in-
tegration results is conducted with a visual inspection of the
colorized point clouds. To do so, colorized point clouds using
the initial and refined registration/calibration parameters are
generated for the three datasets and shown in Figs. 33–35.
As expected, inaccuracy in the system parameters adversely
affected the quality of the colorized point clouds in all datasets
[see the highlighted areas with red ellipses in Figs. 33(a)–
35(a)]. On the other hand, Fig. 33(a) and (b) shows good
visual quality of the point clouds generated using the refined
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Fig. 31. Sample 2-D analysis for the Lebanon dataset through back-projecting
a point in the colorized point cloud to all images where it is visible in (represented
by magenta markers): (a) before LSA and (b) after LSA.

Fig. 32. Sample 2-D analysis for the US-231 dataset through back-projecting a
point in the colorized point cloud to all images where it is visible in (represented
by magenta markers): (a) before LSA and (b) after LSA.

Fig. 33. Side view (left) and front view of a zoomed-in region (right) from
colorized point clouds generated for the Rensselaer dataset: (a) before LSA and
(b) after LSA (red ellipse highlights a falsely colored portion of the point cloud).

Fig. 34. Side view (left) and front view of a zoomed-in region (right) from
colorized point clouds generated for the Lebanon dataset: (a) before LSA and
(b) after LSA (red ellipse highlights a falsely colored portion of the point cloud).

Fig. 35. Side view (left) and a zoomed-in region (right) from colorized point
clouds generated for the US-231 dataset: (a) before LSA and (b) after LSA (red
ellipse highlights a falsely colored portion of the point cloud).

parameters. These results suggest that the proposed approach is
capable of producing registration and calibration parameters that
lead to well-aligned image and LiDAR data from the SMART
system.

V. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

In this study, a new image/LiDAR integration using linear
features has been proposed for deriving accurate registration
and system calibration parameters for a SMART. The key
motivation of such development is to produce well-aligned
colorized point clouds from acquired data under challenging
conditions, e.g., sparse LiDAR point clouds and images with un-
favorable geometry (short baseline and/or significant viewpoint
change). The proposed strategy is implemented in three main
steps: initial registration of LiDAR scans using planar features,
calibration/registration parameter refinement using conjugate
image/LiDAR lines, and point cloud colorization. The main
contributions of this study can be summarized as follows.

1) A new approach for the automated extraction of linear
features from sparse LiDAR point clouds has been pro-
posed. The developed strategy extracts seed lines from
edge points derived by the LOAM algorithm [32] and
exploits them in a region-growing procedure to produce
LiDAR lines.
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2) A two-step image/LiDAR line matching strategy has been
proposed that ensures reliable conjugate features (pair-
ings). These matches correspond to high-resolution re-
gions of the imagery, i.e., they are well-separated from
other possible line correspondences.

3) A unified LSA engine has been implemented for system
calibration/point cloud registration that can handle either
LiDAR scans or integrated image and LiDAR data.

The proposed strategy has been evaluated through experimen-
tal results from three datasets with different facility sizes and a
number of data acquisition stations. The results showed that
using the proposed approach, a large number of linear features
with good distribution can be extracted from each LiDAR scan in
the SMART system. A comparison between the registration re-
sults from linear and planar features revealed that the former can
lead to point clouds with better alignments. Nevertheless, both
approaches resulted in similar volume estimates of stockpiles for
all datasets. In addition, image/LiDAR line matching strategy
identified an average of ∼6 conjugate LiDAR lines for each
image. LSA-derived registration and system calibration param-
eters improved the alignment between conjugate image/LiDAR
lines from the range of ∼30–65 pixels before LSA, to the range
of ∼4–7 pixels. Also, visual inspection of the colorized point
clouds generated through the proposed approach showed signif-
icant improvements in the quality of the 3-D model compared to
that generated using initial calibration/registration parameters.

The proposed approach does not incorporate a line match-
ing outlier removal step. When noncollinear line segments are
grouped together and/or initial system calibration parameters are
significantly different from their actual values, matching outliers
might exist among LiDAR lines and/or image/LiDAR pairings.
Those outliers could adversely affect the LSA procedure. To
overcome this issue, future work will implement an iterative
LSA with a built-in outlier removal strategy. Also, the feasibility
of using the proposed approach for facilities with a limited
number of planar features (e.g., dome-shaped storage sites [35])
will be investigated.
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