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Multitask GANs for Oil Spill Classification and
Semantic Segmentation Based on SAR Images

Jianchao Fan , Member, IEEE, and Chuan Liu

Abstract—The increasingly frequent marine oil spill disasters
have great harm to the marine ecosystem. As an essential means
of remote sensing monitoring, synthetic aperture radar (SAR)
images can detect oil spills in time and reduce marine pollution.
Many look-alike oil spill regions are difficult to distinguish in SAR
images, and the scarcity of real oil spill data makes it difficult for
deep learning networks to train effectively. In order to solve the
abovementioned problems, this article designs a multitask gener-
ative adversarial networks (MTGANs) oil spill detection model to
distinguish oil spills and look-alike oil spills and segment oil spill
areas in one framework. The discriminator of the first generative
adversarial network (GAN) is transformed into a classifier, which
can effectively distinguish between real and look-alike oil spills. The
generator of the second GAN model integrates a fully convolutional
symmetric structure and multiple convolution blocks. Multiple
convolution blocks can extract the shallow oil spill information,
and the fully convolutional symmetric structure can extract the
deeper features of the oil spill information. The algorithm only
needs to use a small number of oil spill images as the training set
to train the network, and the limitation of the oil spill dataset can
be solved. Validation evaluations are conducted on three datasets
of Sentinel-1, ERS-1/2, and GF-3 satellites, and the experimental
results demonstrate that the proposed MTGANs oil spill detection
framework outperforms other models in oil spill classification and
semantic segmentation. Among them, the classification accuracy of
the oil spill and look-alikes can reach 97.22%. The average OA for
semantic segmentation of the oil spill area can be 97.47% and the
average precision can reach 86.69%.

Index Terms—Generative adversarial networks (GANs),
multitask, oil spill image classification, semantic segmentation,
synthetic aperture radar (SAR).

I. INTRODUCTION

THE reasons for the occurrence of marine oil spills are
caused mainly ship accidents, marine transportation, and
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Fig. 1. Illustration of oil spill detection process based on SAR images.

the leakage of offshore oil drilling platforms. The threat of
marine oil spills to the marine water ecosystem is more severe
than other accidents [1]. Once an oil spill occurs in the ocean,
it will not only damage the marine environment but also harm
marine life. The use of satellite remote sensing technology to
monitor marine oil spills can detect marine oil spills in time, deal
with them quickly after disasters occur, and better reduce marine
pollution. Among many remote sensing technologies, synthetic
aperture radar (SAR) can observe the ground on all-day and has
the sensitivity of oil film pressure wave effect, which has become
an essential means of oil spill monitoring [2], [3]. The polariza-
tion mode of SAR image will affect oil spill detection. The VV
polarization from the sea surface exhibits stronger backscatter-
ing than the HH polarization, and VV polarized images are much
brighter than VH images due to their strong scattering. Thus, oil
spills can be better detected using VV polarized SAR images [4].
The process of detecting oil spills based on SAR images is shown
in Fig. 1. Marine oil spills appear in dark areas of SAR images
due to the specular backscattering [5]. However, there will be a
lot of look-alikes areas, such as upwelling, low wind speed areas,
leeward areas, and biological slicks, also appearing as dark re-
gions in SAR images [6]. Therefore, a crucial task is to correctly
classify these dark areas into real or look-alike oil spills in the
beginning.

Due to the development, the machine learning has been used
by more and more researchers to solve many complex problems.
Li et al. [7] used the support vector machine (SVM) model to
detect oil slicks and similar objects with high accuracy. However,
when using SVM for oil spill classification, it is necessary to
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consider selecting an appropriate kernel function and its param-
eter configuration. Tong et al. [8] utilized the random forest
to detect marine oil spills on polarimetric SAR data. Bandiera
et al. [9] proposed a Bayesian edge detector that can be used to
detect black spots on the ocean surface and, therefore, can be
used as a first stage in identifying and monitoring oil spills. Basic
image processing techniques, such as K-means clustering [10]
to detect oil spills. Frate et al. [11] used neural networks for
oil spill detection on ERS-SAR data. Li et al. [12] applied four
types of machine learning models to study oil spill identification
or classification and described the reflectance characteristics.
The results obtained were consistent with those of previous
studies. For the classical machine learning methods, feature
extraction and selection of oil spills are carried out manually.
These depend on a lot of expert experience and take a long time to
process.

In recent years, deep learning neural networks have been
applied to oil spill detection due to the advantages of automatical
feature extraction and high detection precision [13], [14], [15].
Chen et al. [16] used two deep learning algorithms to identify
oil spills and classify them as mineral, emulsion, and natural oil
slicks. Yekeen et al. [17] developed a new deep learning oil spill
detection model based on the mask region-based convolutional
neural network model, in which, even in the case of overlap-
ping, the target could be segmented with high accuracy. Zhang
et al. [18] proposed a supervised detection network for petroleum
context and boundary (CBD-Net) that fused multiscale features
to extract oil spill areas. The performance of the CBD-Net net-
work had the great improvement compared with the U-Net [19]
model. Zhou et al. [20] proposed U-Net++ based on U-Net. Ma
et al. [21] proposed an intelligent oil spill detection architecture
based on a deep convolutional neural network, which performed
better than traditional methods. Laurentiis et al. [22] studied oil
slick classification under the framework of deep learning, and
this classifier could separate mineral oil film from biological oil
slick and clean ocean. Nieto-hidalgo et al. [23] proposed a ship
and oil spill detection system based on airborne side-looking
radar images. This method was composed of three pairs of
convolutional neural networks, and the results had shown that the
method was effective. Abdul et al. [24] studied the application
of deep learning in oil spill detection and classification and
modified U-Net for oil spill and similarity recognition. Xia
et al. [25] proposed an SAR image segmentation method based
on the principle of nonlocal processing with a multiscale active
contour model, and the results displayed the effectiveness and
feasibility of the method. Raeisi et al. [26] used an efficient
cuckoo search algorithm and nonnegative matrix factorization
of different Zernike moment features for discrimination between
oil spills and look-alikes in SAR images. Aghaei et al. [27], [28]
developed GreyWolfLSM and OSDES-Net methods for oil spill
detection. Wang et al. [29] used the convolutional neural network
AlexNet model to perform local connection, weight sharing, and
learning representation of oil spill images to extract oil spill
information from SAR images. Wang et al. [30] presented the
MDOAU-Net model for SAR image segmentation in aquacul-
ture raft monitoring. Two novel fusion networks were proposed
for hyperspectral and SAR image classification [31], [32]. Deep

learning methods [33], [34] achieved good performance in image
segmentation, but there are still limitations. Most deep learning
relies on a large amount of training data to ensure the accuracy
of detection results, while in reality, there is a relative lack of a
large amount of actual oil spill data.

To sum up, achieving accurate identification and detection is a
problem in the case of limited samples. Zhang et al. [35] offered
a graph information aggregation cross-domain few-shot learn-
ing framework for image classification. So far, some methods
have been developed, such as metalearning [36], [37], metric
learning [38], [39], transfer learning [40], [41], these methods
mainly make full use of existing knowledge and experience to
guide the learning progress of new tasks, but these methods
rely on the feature representation ability of the model, which
is complex and unintuitive. A straightforward way to solve the
limited-sample learning problem is to increase the number of
training samples through data augmentation. However, manual
design is required in all of these methods [42]. As another data
augmentation method, sample generation can solve the above-
mentioned problems. Sample generation cannot only expand the
number of samples but also enrich the content of samples. These
generated samples can improve the model is generalization abil-
ity and suppress the risk of overfitting. Generative adversarial
networks (GANs) are an emerging type of generative model.
GANs [43] were first proposed in 2014. Because the original
GAN training is not constrained, Mirza et al. [44] improved the
network and proposed conditionalGANs to guide the generator
to synthesize the fake samples. Radford et al. [45] designed
deep convolution generative adversarial networks, combining
convolutional neural networks and GANs, effectively achieving
high-quality image generation. Augustus et al. [46] offered
semisupervised learning with generative adversarial networks
(SGAN), an efficient classifier created. Gulrajani et al. [47]
used Wasserstein GAN (WGAN) to solve the training instability
problem. Later, an improved Wasserstein GAN-gradient penalty
(WGAN-GP) [48] was presented based on the WGAN scheme.
With the gradual development of GANs, the application fields
have become more extensive, not only in data generation but also
in image segmentation [49], [50], image classification [51], [52].
Other fields also have very amazing performance. GANs can
expand the number of samples and increase adversarial samples
to improve the ability of discriminative generalization. Only a
small number of training samples are required during training.
Therefore, GANs can also be used as a method for oil spill
detection, Yu et al. [53] used a detection model with adversar-
ial f-divergence learning for automatic oil spill identification.
Li et al. [54] developed a multiscale conditional adversarial
network (MCAN) using the GAN network. Only four oil spill
images are needed in the network training, and the limitation
that a large number of oil spill data are difficult to obtain can be
solved. But it does not deal well with a variety of SAR images
with small oil leak proportions.

Note that these GAN models do not consider how to dis-
tinguish real oil spills from look-alike oil spills, which is the
most important part of oil spill monitoring. Moreover, it is
hard for GANs to converge effectively because it is difficult to
generate good adversarial samples. So, we make full use of these
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look-alike oil spills as effective adversarial samples to improve
the classification and segmentation accuracy in the adversarial
learning process, which can effectively combine the advantages
of the GAN model with the special application of oil spills. In
addition, the previous oil spill detection was a single task. It
is not yet possible to simultaneously achieve the classification
and segmentation of oil spills in one framework. How to design
an end-to-end structure is more in line with the actual daily
monitoring of oil spill satellite remote sensing.

Therefore, this article proposes a multitask generative adver-
sarial networks (MTGANs) oil spill detection model to distin-
guish real and look-alike oil spills and segment real oil spill areas
in one framework. The main contributions of this study are as
follows.

1) Design an MTGANs oil spill detection framework. The
two GANs network models can accurately distinguish
between real and look-alike oil spills, and the oil spill
area can be segmented simultaneously for the first time.

2) Modify the discriminator of GANs. The discriminator is
trained as an oil spill multiclassifier to discriminate real
oil spill images, look-alike oil spill images, and pseu-
dosamples accurately, while the generator is used to enrich
similar samples to improve the discriminative ability of the
model.

3) Integrate a fully convolutional symmetric structure and
multiple convolution blocks in the oil spill semantic seg-
mentation task. Multiscale oil spill features are extracted,
respectively, to improve semantic segmentation accuracy
with very little training data.

The rest of this article is organized as follows. Section II
introduces the related work related to the research direction of
this article and provides prior knowledge. Section III introduces
the proposed MTGANs model in detail for SAR image oil spill.
Section IV shows the experimental results of the work. Finally,
Section V summarizes the highlights of the article and future
research.

II. RELATED WORKS

A. Generative Adversarial Network

In 2014, Goodfellow et al. [43] first proposed GAN. It marks
the official birth of GAN. In the original network, the GAN is a
network composed of two models, one is the generator, and the
other is the discriminator. The purpose of the generator is to learn
the data distribution of real images and to try to generate real
images to deceive the discriminator. The discriminator’s goal is
to distinguish the images generated by the generator from the
real images. The generator and the discriminator constitute a
dynamic game process. Eventually, in the ideal state, a Nash
equilibrium state is reached. The generator generates enough
fake images to fool the discriminator. For the discriminator, it is
difficult to determine whether it is from the real data or the data
generated by the generator. The GAN model framework is shown
in Fig. 2. The generator inputs random noise z and generates
pseudosamples G(z), then G(z) are fed into the discriminator
together with the real data, and true or false is output by the
discriminator. The output of the discriminator will guide the

Fig. 2. GAN framework.

Fig. 3. SGAN framework.

generator in reverse so that the generator can generate more
realistic images.

The traditional GAN network is a simple two-layer feedfor-
ward neural network, which is not combined with the convo-
lutional neural network and cannot effectively achieve high-
quality image generation. The generated image samples are also
unconstrained, making predicting the results difficult. Therefore,
the oil spill segmentation task cannot be performed directly.

B. Semisupervised Generative Adversarial Network

So far, the goal of most GAN variants is to generate realistic
data samples. Therefore, generators are always a concern. The
main purpose of the discriminator is to help the generator to
improve the quality of the generated images. At the end of the
training, discriminators are usually ignored and only trained
generators are used to generate real data.

The main concern in SGAN [46] is the discriminator, and the
SGAN combines the discriminator and the multiclassifier into
one. The discriminator here does not just need to distinguish
between true and false but learns to distinguish n+ 1 classes,
where n is the number of classes in the training dataset, and 1
adds a class to the pseudosamples generated by the generator,
the original binary classifier is transformed into a multiclassifier.
The goal of the discriminator during the training process is to
distinguish between classes. The purpose of the generator is
to improve its classification accuracy by providing additional
information to help the discriminator learn relevant patterns
in the data. At the end of the training, the generator will be
discarded, and the trained discriminator will be used as the
classifier. The model framework of SGAN is shown in Fig. 3.
The generator inputs random noise z and outputs the generated
pseudosamples G(z). The input of the discriminator consists
of three parts, the data with class labels, the data without class
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Fig. 4. MTGANs framework. In the design of the MTGANs oil spill detection framework, the input of the whole framework is the images of oil spills and
look-alikes, and the final output is the generated oil spill segmentation map. The framework is divided into three parts in total. (I) Classification and identification
of oil spill images. (II) Oil spill image judgment. (III) Semantic segmentation of oil spill images.

labels, and the pseudosamples generated by the generator. After
the discriminator is discriminated, the output is the classification
result.

Therefore, SGAN can be used in the research field of oil
spill classification and recognition. A discriminator is trained
to achieve the classification of oil spills and look-alike spills.

III. PROPOSED METHOD

A. Overview

The model consists of three parts, as shown in Fig. 4. The
first part has a generator and a discriminator. The generator’s
input is random noise, and the generator outputs pseudosamples.
Thermal noise removal, coherent speckle filtering, and terrain
correction are preprocessed for the oil spill image and look-alike
oil spill image. The preprocessed image is fed to the discrimi-
nator along with the pseudosamples generated by the generator.
After input discriminator, the discriminator realizes the oil spill
classification, look-alike, and fake sample classification. The
role of the second part is the connection between the first and
third parts. It is screened by the results of the classification in
the first part, and the first part is classified as an image of the
oil spill, and its label value is compared. The groundtruth label
is the image of the oil spill, and the filtered result is used as
the input for the next part. The third part is composed of a
generator and a discriminator. The generator is input results
from the screening in the second part, and the output is the
generated oil spill segmentation map. The real oil spill image,
the generated segmentation map, and the segmentation label map

are fed into the discriminator. The discriminator distinguishes
the generated segmentation map from the real segmentation
map. Reverse optimization of the generator according to the
discriminant results so that the generator can generate a more
realistic oil spill segmentation map and realize the semantic
segmentation of oil spill images.

B. Oil Spill Classification Model

The oil spill classification model is built according to the
idea of an SGAN. The classification model is shown in the
first stage of Fig. 4. Use to classify oil spills and the like. The
classification model consists of a generator Gc and a discrimi-
nator Dc, the discriminator is improved into a classifier for the
oil spill classification task. The construction of the generator
starts with the BatchNorm layer. The BatchNorm layer can
solve the problem that the data distribution changes during
the training process so as to prevent the gradient from disap-
pearing or exploding and speeding up the training speed. Then
there are upsampling layers, convolutional layers, BatchNorm
layers, and LeakyReLU activation function. The function of
the upsampling layer is to increase the length and width of
the image and then input the convolution layer. To prevent
vanishing gradients and overfitting during feature extraction, a
normalization layer is added after the convolution layer. The
LeakReLU activation function is added after the BatchNorm
layer, which can make the network converge quickly. Then it also
goes through the upsampling layer, the convolution layer, the
BatchNorm layer, and a BatchNorm layer, and the LeakyReLU
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Algorithm 1: Classification model.
Input: x : real and look-alike oil spill images

y : classification label
z : random noise
CE : cross entropy loss
BCE : binary cross entropy loss

Output: Classification result
for epochs do

x′ = Gc(z, y)
Loss Dc = CE(Dc(x

′, y) +Dc(x, y))+
BCE(Dc(x

′) +Dc(x))
Update Dc

Loss Gc = CE(Dc(x
′, y)) + BCE(Dc(x

′))
Update Gc

end for

activation function in sequence. Finally, the convolutional layer
and the Tanh activation function. The discriminator consists of
four convolutional blocks, each of which has a convolutional
layer, a BatchNorm layer, a LeakyReLU activation function
connected in turn. The output layer has a sigmoid activa-
tion function and a softmax activation function. The sigmoid
function is used to distinguish between true and false, after
the output of the sigmoid function, there will be two cases
representing the true or false samples. The softmax function
is used for multiclass classification. After the softmax function
output, the discrimination between look-alike oil spill images,
oil spill images, and fake samples can be achieved.

The generator and discriminator of the oil spill classification
model need to input oil spill category information corresponding
to the training data during the training process. Therefore, the oil
spill classification model is a supervised model. The input to the
generator is random noise z, and the output of the generator
is the generated pseudosample. The discriminator inputs the
pseudosample generated by the generator, the oil spills, and
look-alike oil spills marked by the real category. The cross-
entropy (CE) loss function and binary cross-entropy (BCE) loss
function are used to calculate the loss of discriminant results in
classification models. CE is used after the softmax activation
function and defined as

CE = −
n∑

i=1

yi log(f(xi)) (1)

where, f(xi) is the predicted value of the output of the sample x
after passing through the network. y represents the true category
information corresponding to the corresponding sample x. The
CE function was used to calculate the loss of multiple classifi-
cation results of the discriminator, which improved the accuracy
of the oil spill, look-alike spill, and pseudosample classification
of the model. BCE loss function is defined as

BCE = −b log b̂− (1− b) log(1− b̂) (2)

where, b is the true value of sample x, which is true or false. b̂ is
the value predicted by the network. BCE is used to distinguish
between real samples and fake samples, and this loss function

guides the generator to generate images closer to the real sample.
So, the discriminator can distinguish between real and fake, and
classify real and look-alike oil spills. The objective function of
the oil spill classification model is defined as

min
Gc

max
Dc

V (Dc, Gc) = Ex∼pdata(x)

n∑
i=1

[yi log(Dc(xi))

+ yi log (Dc(x
′
i)) + logDc(x)]

+ Ez∼pz(z) [log (1−Dc(Gc(z)))]
(3)

where, z represents random noises, x represents real and look-
alike oil spill images, y is oil spill category information, and
Gc(z) is the generated pseudosample. The classification model
training strategy is formally described in Algorithm 1. The dis-
criminator is trained to maximize the discrimination ability. With
the improvement of the discriminator, the true and false samples
are distinguished more correctly. The generator is trained to the
minimization to generate images as close as possible to the real
oil spill and look-alike oil spill, and finally, successfully fool the
discriminator.

After the final training, the generator is discarded, and the
discriminator is retained, through which the purpose of classi-
fying the oil spill image and the imitation oil spill image can
be achieved. On the other hand, the convolutional parts of (the
classification part) and (the semantic segmentation part) have the
same structure. The trained Dc weights are set to the Ds initial
weights. The effect of similar adversarial images is transferred
to the semantic segmentation part to improve the convergence
speed and segmentation accuracy of the algorithm. Therefore,
the same structural parts of the two GANs models share weight
information in the multitask framework.

C. Oil Spill Image Judgment

The judgment model is shown in the second stage of Fig. 4.
Because the oil spill images identified in the previous step may
have misclassifications of look-alikes oil spill images, to ensure
that they are all oil spill images during semantic segmentation,
a screening operation should be performed to eliminate the oil
spill images misclassified as oil spill images. Here, the label
value is used for the judgment operation. The label values are
the oil spill and look-alike oil spill category labels in the first
stage. If the true label value is also an oil spill image according to
the discrimination result, this image will be retained. Otherwise,
the image is rejected. After filtering, the data left are all oil spill
images, which will be used as input for the next step.

D. Semantic Segmentation Model

The segmentation model is shown in the third stage of Fig. 4,
and consists of the generator Gs and the discriminator Ds. The
generator network first consists of four downsampled and four
up-sampled fully convolutional symmetric structure networks,
forming a U-shaped structure. The pooling layer and the double-
layer convolutional layer are the downsampling components,
and two convolutional layers and a ReLU activation function
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Algorithm 2: Segmentation model.
Input: I : oil spill images

S : segmentation label
Output Generated oil spill segmentation map Ŝ
for epochs do

LDs
=

Ds(I, Ŝ)−Ds(I, S) + λ2(∇�
S
Ds‖S −

�

S‖2 − 1)2

Update Ds

LGs
= λ1‖S − Ŝ‖1 −Ds(I, Ŝ)

Update Gs

end for

form the double-layer convolutional layer. Upsampling consists
of deconvolutional layers and double-layered convolutional lay-
ers. Two convolutional layers and a ReLU activation function are
combined into two convolutional layers. For the four times of
fully convolutional symmetric structure sampling, the image is
scaled to a total of 16 times. Symmetrically, the upsampling
is performed four times, and the obtained high-level semantic
feature map is restored to the resolution of the original image.
After four times of upsampling, the information, such as the
edge of the oil spill segmentation map is also recovered more
finely. The fully convolutional symmetric structure is added to
the generator, which can extract the feature information of the
oil spill from global to local and generate a more accurate oil
spill segmentation map with the help of the discriminator. The
fully convolutional symmetric structure network is followed by a
convolutional layer and three convolutional blocks, each having
a convolutional layer, a BatchNorm layer, and a LeakyReLU
activation function. Finally, there is a convolutional layer and a
Tanh activation function. The construction of the discriminator
consists of four convolutional blocks, each containing a convo-
lutional layer, a BatchNorm layer, and a LeakyReLU activation
function. The last layer is a convolutional layer.

The segmentation model is trained using WGAN-GP loss [48]
to stabilize the training. The objective function of the generator
is shown in the following:

LGs
= λ1‖S − Ŝ‖1 −Ds(I, Ŝ) (4)

where, λ1 is the Gs weight balance parameter, S is the input real
segmentation label map, Ŝ is the segmentation map generated
by the generator, and I is the real oil spill image. ‖S − Ŝ‖1 is
the l1 norm, which penalizes the pixelwise distance between the
segmentation label map and the generated segmentation map.
Minimizing the training of the generator to generate a more
realistic segmentation map of the oil spill can finally deceive the
discriminator successfully.

The objective function of the discriminator is shown in the
following:

LDs
= Ds(I, Ŝ)−Ds(I, S) + λ2

(
∇�

S
Ds‖S −

�

S‖2 − 1
)2

(5)
where, λ2 is Ds the weight balance parameter, this item
Ds(I, Ŝ)−Ds(I, S) represents the adversarial loss, which
increases the discriminant’s discriminative ability. The term

λ2(∇�
S
Ds‖S −

�

S‖2 − 1)2 represents penalized gradient loss,
which produces stable gradients that neither vanish nor explode.
�

S represents a random variable sampled uniformly between S

and Ŝ. Minimize the training of the discriminator to distinguish
the generated oil spill segmentation map from the oil spill
segmentation label map.

The generator input is the real oil spill image, and the output
is the semantic segmentation map of the oil spill image. The
input to the discriminator is the real oil spill image, the semantic
segmentation map generated by the generator, and the oil spill
image segmentation label map. After being discriminated by the
discriminator, the discriminant score is output. The discrimina-
tor then reverse optimizes the generator to guide the generator
to generate a more accurate oil spill segmentation map. In the
initial training ofDs, theDc weights trained in the classification
model are loaded, and the effect of similar adversarial images
is transferred to the semantic segmentation part to improve the
convergence speed and segmentation accuracy of the algorithm.
At the end of the final training, the discriminator is discarded,
and the generator is retained. The generator can generate an
oil spill segmentation map of oil spill images. The purpose of
semantic segmentation of the oil spill image is achieved. The
segmentation model training strategy is formally described in
Algorithm 2, the overall objective function of the segmentation
model is shown in the following:

min
Gs

max
Ds

L(Ds, Gs) = Ds(I, S)−Ds(I, Ŝ)

+ λ1‖S − Ŝ‖1 − λ2

(
∇�

S
Ds‖S −

�

S‖2 − 1
)2

. (6)

After training, the segmentation model discards the discrimi-
nator and keeps the generator. The generator is used to generate
the oil spill segmentation map to realize the segmentation task
of the oil spill area. Finally, the discriminator of the classifica-
tion model and the generator in the segmentation model are
integrated to form an MTGANs, which is used for oil spill
classification and semantic segmentation to form a complete oil
spill detection framework. The process of the overall framework
is the sequential learning method. After the classification and
judgement part is completed, begin the semantic segmentation
process. So learning errors in the semantic segmentation part
are not backward to the judgment and classification models.
However, the classification and segmentation models share the
weights of the discriminator, whose convolutional parts have
the same structure. Dc weights after training are set as Ds initial
weights. The effect of similar adversarial images is transferred to
semantic segmentation, which improves the convergence speed
and segmentation accuracy. Therefore, the overall framework is
not entirely multistage independent learning.

IV. EXPERIMENTS

A. Dataset Descriptions and Preprocess

In order to prove the effectiveness of the proposed method, the
Sentinel-1, GF-3, and ERS-1/2 satellite data are used to conduct
comparative experiments.
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1) Sentinel-1 data: Two satellites of the Sentinel-1 satel-
lite carry SAR sensors, active microwave remote sensing
satellites with a resolution of up to 5 m and a width of 400
km. Interferometric wide swath imaging mode is used,
the polarization mode is VV polarization, and the angle of
incidence is 20◦–45◦. In the experiment, the observed oil
spill data are selected and cut after preprocessing. Cropped
oil spill image size 256 × 256 pixels.

2) GF-3 data: The GF-3 satellite is China’s multipolarization
SAR satellite. It was launched in 2016, and the sensor was
equipped with C-band. The width is 10–650 km, and the
resolution can reach 1 m. The imaging mode is FSI, FSII,
and SS. The angle of incidence of FSI and FSII is 19◦–50◦,
and the incidence angle of SS is 17◦–50◦. The polarization
mode is VV polarization. The oil spill data observed in the
experiment are preprocessed and cropped, and the oil spill
image size is 256 × 256 pixels.

3) ERS-1/2 data: ERS-1 and ERS-2 ESA were launched in
1991 and 1995, respectively, with sensors equipped with
C-band. The polarization mode is VV polarization, and
the angle of incidence is 23◦–60◦, and the width is 80–
100 km. The observed oil spill data are selected and cut
after preprocessing. Cropped oil spill image size 256 ×
256 pixels.

Preprocessing operations of thermal noise removal, radiomet-
ric calibration, coherent scatter filtering, and terrain correction
are performed on the acquired SAR images. Thermal noise
removal performing thermal noise removal can improve the
thermal noise problem. Radiation calibration due to the pen-
etrating nature of clouds, a radiation calibration operation needs
to be done on SAR data. Radiation calibration can eliminate
the sensor’s error and determine the accurate radiation value at
the entrance of the sensor. Coherent spot filtering is a common
phenomenon in SAR images. There are various filters to remove
coherent spots. Here, the refined Lee filter is used. This is
the most commonly used coherent spot filter. The processing
effect is excellent. The refined Lee filter has a filter window
size setting set to 7 × 7 window size. The terrain correction
ensures that the real geographic coordinates correspond to the
remote sensing image, and the distance Doppler method is used
to correct the terrain. The image is input into the model after the
abovementioned processing.

In the experiment, the groundtruths of oil spill SAR images
are collected through relevant news reports, literature publica-
tions, and our daily oil spill monitoring. In addition, look-alike
areas can be identified by querying the synchronous marine
environment, such as wind speed, sea surface temperature,
and chlorophyll concentration [6]. The semantic segmentation
groundtruths of oil spill SAR images are generated by LabelMe
annotation tool.

B. Experimental Setup

All experiments are compiled under Windows 10 with python
3.8, pytorch 1.7.1, and cuda 10.1, run with GeForce RTX 2080
Ti GPU, and the input data size is 256×256 SAR images.

Classification model train generator Gc and discriminator Dc

using Adam optimizer with b1 = 0.5 and b2 = 0.999, network
learning rate is 0.0002. Classification model train 300 epochs.
The classification model uses Sentinel-1 data with 120 images.
The ratio of the training set and test set is set to 7:3.

Segmentation model train the generator Gs and discriminator
Ds using the Adam optimizer withβ1 = 0.5 andβ2 = 0.999, the
network has a learning rate of 0.0005 and a minibatch size of 1.
The balance parameter of the �1-norm constraint is λ1 = 10, and
the gradient penalty weight for the WGAN-GP loss is λ2 = 10.
The segmentation model is trained for 50 epochs. The training set
and test set of the segmentation model include Sentinel-1 data,
GF-3 data, ERS-1/2 data, of which Sentinel-1 data, ERS-1/2
data select four oil spill images as for training, 20 images are
used for testing, four oil spill images are selected as training,
and five images are used for testing GF-3 data.

Evaluate the performance of MTGANs on SAR images and
separate the oil spill classification and segmentation models
for their comparative experiments. The classification model is
compared with the K-nearest neighbor algorithm (KNN) [55],
SVM [7], random forest classifier (RFC) [8], decision tree
classifier (DTC) [12], and the Bernoulli naive Bayes classi-
fier (NBC) [9]. The segmentation model is compared with
MCAN [54], SegNet [33], U-Net++[20], MODAU-net [30],
DeepLabv3+[34], respectively. To ensure the reliability of the
experiments, all comparative experiments use the same training
set as training, and the same performance indicators are used for
evaluation.

C. Evaluation Criteria

The accuracy rate is used to evaluate the performance of the
classification model, which is the proportion of the total sample
where oil spills and look-alikes oil spill images are correctly
classified. The accuracy rate is shown in the following:

Accuracy =
a

m
(7)

where, a represents the number of correctly classified samples,
and m represents the total number of samples. Calculate the OA,
Precision, F1-score, Kappa, and MIoU based on the confusion
matrix to evaluate the performance of the oil spill segmentation
model. OA represents the proportion of the total correctly pre-
dicted in the generated oil spill segmentation map and defined
in the following:

OA =
TP + TN

TP + TN + FP + FN
. (8)

Recall represents what fraction of the oil in the spill area has
been detected and defined in the following:

R =
TP

TP + FN
. (9)

Precision represents what proportion of the oil spill area in the
generated oil spill segmentation map is a real oil spill defined in
the following:

P =
TP

TP + FP
. (10)
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Fig. 5. After the discriminator Dc discriminates the result graph, (a), (b), (c)
are discriminate as oil spill images, (d), (e), (f) are discriminated as look-alike
oil spill images.

F1-score considers both precision and recall and defined in the
following:

F1 =
2 · P ·R
P +R

. (11)

MIoU represents each class’s average intersection ratio and is
often used as an evaluation index for semantic segmentation and
defined in the following:

M =
1

2

(
TP

TP + FP + FN
+

TN

TN + FN + FP

)
. (12)

Kappa is used for image consistency check and defined in the
following:

K =
OA− Pe

1− Pe
(13)

where

Pe =
(TN + FP )× (TN + FN ) + (TP + FP )× (TP + FN )

N ×N
.

(14)

D. Experiment 1: Sentinel-1 Dataset

1) Oil Spill Classification: Conduct experiments in the oil spill
classification model. The classification results for the six images
are presented in Fig. 5. Among them, Fig. 5(a), (b), and (c) is
judged as oil spill images, and Fig. 5(d), (e), and (f) distinguished
as look-alike oil spill images.

To ensure the reliability of the method for oil spill classifi-
cation model comparison experiments. The data of Sentinel-1
is used, and the ratio of the oil spill and look-alike oil spill
is set to 1:1 and 1:2, respectively, in training set to conduct
the experiment, and compare KNN [55], DTC [12], SVM [7],
RFC [8], and plain NBC [9] methods. The experimental results
are shown in Table I. From the experimental results, in the
case of the 1:2 ratio of the oil spill and look-alike oil spill
data, the models did not show excellent performance due to the

TABLE I
PERFORMANCE METRICS RESULTS FOR DIFFERENT RATIO OF THE SENTINEL-1

DATASET UNDER SIX CLASSIFICATION METHODS

unbalanced ratio of the oil spill and look-alike oil spill data. After
balancing the dataset and adjusting the ratio of the oil spill and
look-alike oil spill data to 1:1, the model performance of all six
methods improved. The NBC model assumes that the attributes
should be independent of each other, and when the number of
attributes is relatively large or the correlation between attributes
is large, and the NBC classification effect is not good, and the
correlation between the oil spill and suspected oil spill data are
large, so there are a large number of images misclassified in
the NBC model in oil spill classification recognition. All four
models, KNN, DTC, RFC, and SVM, show good performance.
Since RFC uses an integrated algorithm, its own accuracy is
better than most individual algorithms, so it has high accuracy
in oil spill classification recognition. The MTGANs proposed in
this article consist of a generator and a discriminator in the oil
spill classification model. The discriminator learns the feature
information of oil spill and look-alike oil spill images and learns
to distinguish between oil spill images and look-alike oil spill
images. The pseudosamples generated by the generator enrich
the number of samples and improve the discriminator’s discrim-
ination ability. Therefore, this article proposes that MTGANs
have the highest accuracy in an oil spill and look-alike oil spill
classification recognition.

2) Oil Spill Segmentation: Experiment with the oil spill
segmentation model, both the training set and the test set are
Sentinel-1 data, only four oil spill images are used for train-
ing, and 20 oil spill images are used for testing. The same
training set and test set are used to conduct comparative ex-
periments with MCAN [54], U-Net++[20], MODAU-Net [30],
DeepLabv3+[34], and SegNet [33] models, respectively, and the
results are evaluated using five performance metrics.

The oil spill segmentation results are compared and analyzed,
and the segmentation results of three oil spill images under
five models are shown in Fig. 6. Most of the oil spill images
selected in this experiment are oil spill images with relatively
large oil spill areas and regular shapes. In using a small amount
of dataset to train the model, U-Net++ also maintains excellent
performance in this experiment because U-Net++ supports a
small amount of data to train the model. Although SegNet,
DeepLabv3+, and MCAN also perform well in this experiment,
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Fig. 6. Experimental results of three oil spill test images from Sentinel-1 data on five comparison methods. (a), (b), and (c) are three different test images.

the segmentation accuracy is not as excellent as U-Net++. The
lack of dataset leads to the relatively blurred edge information
of the oil spill region in the SegNet method segmentation map.
In contrast, the U-Net++ and MCAN methods perform better
in the edge region, but the U-Net++ and MCAN methods may
misclassify the sea surface as the oil spill region. The MODAU-
Net method has optimized edge information compared with the
SegNet method, but there are a large number of misjudgments in
the prediction graph. DeepLabv3+ uses an encoder and decoder.
The encoder provides high-level feature semantic information,
and the decoder replies to boundary information step by step,
which improves the segmentation effect while focusing on the
boundary information. It makes the DeepLabv3+ method supe-
rior to the SegNet method in handling boundary information,
but the SegNet method severely misclassifies the sea surface
as an oil spill area. The MTGANs method proposed in this
article integrates a complete convolutional symmetric structure
and multiple convolutional blocks in the segmentation model.
The multiple convolutional blocks can extract shallow oil spill
information, and the full convolutional symmetric structure can
extract deep features of oil spill information. The generator can
extract global to local oil spill information by refining the edge
information of the oil spill segmentation map with four times
downsampling and four times upsampling, and together with the
discriminator, it can play a guiding role in generating the oil spill
segmentation map for the generator. Therefore, the accuracy of
MTGANs proposed in this article is better than other models
for oil spill segmentation. The five performance metrics of the
three oil spill test images are compared, and the metrics results
are shown in Table II, and the performance metrics in the table
are consistent with our visual results. Therefore, the MTGANs
proposed in this article have the best oil spill image segmentation
performance.

The average performance indexes of the five methods on 20
oil spill test images are evaluated. The average performance
indexes are shown in Table III. It can be seen from the table
that the MTGANs proposed in this article is also the highest in
OA, Precision, F1-score, Kappa, and MIoU performance index

TABLE II
PERFORMANCE INDICATORS OF SENTINEL-1 THREE TEST IMAGES UNDER FIVE

SEGMENTATION METHODS

TABLE III
AVERAGE PERFORMANCE INDEX OF FIVE SEGMENTATION METHODS FOR

SENTINEL-1 DATA

average. The Kappa coefficient is often used to test the spatial
consistency of image classification. The mean value of Kappa
is 65.74%, when a Kappa value of 61%–80% is considered
to be highly consistent, which is consistent with the results
of the visual interpretation. Therefore, the MTGANs method
proposed in this article can achieve high accuracy even with a
small training set.
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Fig. 7. Experimental results of three oil spill test images from ERS-1/2 data on five comparison methods. (a), (b), and (c) are three different test images.

TABLE IV
AVERAGE PERFORMANCE METRICS OF SEGMENTATION RESULTS FOR 18 OIL

SPILL IMAGES AFTER CLASSIFICATION

The MTGANs proposed in this article can be used for both
oil spill classification and semantic segmentation of oil spill
images. The overall experiments are performed on Sentinel-1
data. Forty images are selected as testing; there are 20 oil spill
images and 20 oil spill similar images. The test image is input
into the MTGANs framework for experiments. First, it passes
through the discriminator Dc of the classification model and
outputs the classification results. The test results have an accu-
racy of 95% for the discrimination of oil spills and look-alike
oil spill images. Then, the discrimination results are screened
and filtered. Eighteen images are identified as oil spills, and the
real labels are also oil spills. The generator Gs of the 18 oil spill
image segmentation model is used for semantic segmentation.
Generate oil spill maps and calculate the average performance
index of 18 oil spill images. The average performance indicators
are shown in Table IV.

Some of the current oil spill detection methods can only
perform oil spill classification, some can only perform oil spill
segmentation, and few can achieve both oil spill classification
and experimental oil spill segmentation. Therefore, a compara-
tive test of oil spill classification and segmentation is carried out
to evaluate the performance.

E. Experiment 2: ERS-1/2 Dataset

An oil spill segmentation experiment is conducted on ERS-1/2
satellite data. Four oil spill images are also selected as the train-
ing set and the rest as the test set, and the experimental results
are shown in Fig. 7. In terms of visual effect, the segmentation
effect of oil spills with thin strip shapes is not too accurate,

compared with the MTGANs method proposed in this article,
the segmentation similarity is relatively high.

Three images are selected from the ERS-1/2 test data for
analysis, namely, the long strip-shaped oil spill image, the small
area oil spill image, and the complex and elongated shape
oil spill image. The experimental results of this method are
shown in Fig. 7. Since most of the selected oil spill images
in this experiment are small and irregularly shaped oil spill
areas, although U-Net++ supports a small amount of data to
train the model, the oil spill images of small areas will lead to
training difficulties. Therefore, the segmentation performance of
U-Net++ is low in this experiment, and the same situation occurs
in SegNet and DeepLabv3+. From the three result images, the
U-Net++, SegNet, and DeepLabv3+ methods can only segment
the general shape of the oil spill, and the segmented oil spill area
is not obvious, as shown in Fig. 7(b). The MODAU-Net method
has excellent segmentation performance on ERS-1/2 dataset, but
it will miss the edge information of oil spills. For the small area
oil spill image, the shape of the whole oil spill area cannot be
completely segmented in the segmentation result. The segmen-
tation results for complex oil spill images cannot completely
segment the shape of the entire oil spill area, while the slender
shape of the oil spill cannot be segmented at all. Compared
with the other three methods, MCAN outperforms U-Net++,
SegNet, and DeepLabv3+ in segmenting oil spill images of
small regions because it uses a multiscale strategy with cascaded
coarse-to-fine data streams to enhance the representation of the
model. However, MCAN can have incorrectly segmented areas,
incorrectly segmenting areas that are not oil spills as oil spill ar-
eas. The MTGANs method proposed in this article is integrated
with a fully convolutional symmetric structure and multiple
convolutional blocks due to the integration in the generator. It
can capture oil spill information from shallow to deep layers.
Therefore, MTGANs can achieve oil spill image segmentation of
small areas and reduce the misclassification of oil spill areas. The
experimental results show that the MTGANs proposed in this
article outperform other models in segmenting oil spill images
with small areas and irregular shapes. The performance indexes
of the three oil spill images are shown in Table V. From the data
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TABLE V
PERFORMANCE INDICATORS OF ERS-1/2 THREE TEST IMAGES UNDER FIVE

SEGMENTATION METHODS

TABLE VI
AVERAGE PERFORMANCE INDEX OF FIVE SEGMENTATION METHODS FOR

ERS-1/2 DATA

in the table, the performance index values of Precision, F1-score,
Kappa, and MIoU are also the highest for the MTGANs method
proposed in this article. The performance metrics in the table
are consistent with our visual results.

Combined with the average performance index, the average
performance index of 20 oil spill images is shown in Table VI. It
can be seen from the table that the F1-score, Kappa, and MIoU
index values of U-Net++, SegNet, and DeepLabv3+ methods are
generally low because of the small data training set. Four training
sets cannot guarantee the accuracy of prediction segmentation,
and there will be inappropriate predicted images in the test
results of U-Net++ and DeepLabv3+ methods. The similarity
between the segmentation result map and the segmentation label
map is almost 0, which is why the performance indicators of
U-Net++ and DeepLabv3+ methods are low. Compared with
them, the SegNet method does not have a complete prediction
error, but the segmentation effect is not excellent. Both the
MCAN method and the MTGANs method proposed in this
article can solve the limitation of the lack of data and achieve
good segmentation results with a small number of training sets.
However, the similarity of the segmentation maps generated by
the MCAN method is not high, and there are nonoil spill re-
gions segmented into oil spill regions. Therefore, the MTGANs
method proposed in this article has a better segmentation effect
on the oil spill area.

TABLE VII
PERFORMANCE INDICATORS OF GF-3 THREE TEST IMAGES UNDER FIVE

SEGMENTATION METHODS

F. Experiment 3: GF-3 Dataset

Due to the lack of a GF-3 dataset, nine oil spill datasets are
selected for the oil spill segmentation experiment. Among the
nine oil spill datasets, four oil spill images are used as the training
set, and five oil spill images are used as the test set.

The test results of the three GF-3 oil spill images are shown
in Fig. 8. Due to the lack of GF-3 data, there will be images
with bad oil spill imaging and more noise interference in the
dataset, and the U-Net++ method still has excellent segmentation
performance for large area oil spill images, as shown in Fig. 8(a),
which is also consistent with the results of Experiment 1. The
segmentation performance is low for the images with bad oil
spill imaging and more noise interference, as in Fig. 8(b). The
MODAU-Net method has better segmentation performance than
U-Net++ for complex oil spill images, but the segmentation
consistency is low, and the oil spill cannot be completely seg-
mented. The SegNet method has the worst segmentation results,
which again proves that the SegNet method cannot guarantee
the accuracy of oil spill segmentation for small data in the
absence of datasets. This is also consistent with the results
of the first two experiments. DeepLabv3+ uses the decoder
to gradually return the boundary information, which improves
the segmentation effect while paying attention to the boundary
information. However, in this experiment, due to the lack of a
training set, DeepLabv3+ only retains the boundary informa-
tion and loses the internal information. MCAN outperforms
U-Net++ in segmenting images with more noise interference
due to the multiscale and discriminator, but MCAN still has
incorrectly segmented areas, which is also consistent with the
results of the first two experiments. The MTGANs method
proposed in this article works well for the segmentation of oil
spill images with large or small areas and high noise impact.
The performance index results of the three test images in Table
VII, again our judgments on the visual effects are consistent.
Therefore, the MTGANs proposed in this article show excellent
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Fig. 8. Experimental results of three oil spill test images from GF-3 data on five comparison methods. (a), (b), and (c) are three different test images.

TABLE VIII
AVERAGE PERFORMANCE INDEX OF FIVE SEGMENTATION METHODS FOR GF-3

DATA

performance in oil spill images with a large percentage of oil
spill area, complex oil spill shape, small area, and high noise
interference.

The average performance of the five GF-3 oil spill test images
is compared, and the average performance indicators are shown
in Table VIII. Overall, the MTGANs method proposed in this
article has the highest Precision, F1-score, Kappa, and MIoU.
Also, it is again proved that the MTGANs method proposed
in this article has the best performance compared with small
data segmentation performance, which is also consistent with
the conclusions of Experiment 1 and Experiment 2.

G. Ablation Study

The discriminator of the classification model is composed of
multiple convolutional blocks. In order to show the effect of
the number of layers of convolution blocks on the recognition
accuracy of oil spills and look-alike oil spills, the number of
layers of convolution blocks is varied and set to 3, 4, and 5, re-
spectively, and the classification results are tabulated in Table IX.
It can be observed that the number of layers of the discriminator
is not necessarily better the higher the performance. Through
experimental comparison, it is found that the highest accuracy
in identifying oil spills and look-alike oil spills is achieved when
the number of layers of the discriminator is 4.

In the model, the discriminator Ds uses multiple layers of
convolutional blocks, and the generator Gs has multiple convo-
lutional blocks connected after the full convolutional symmetric

TABLE IX
PERFORMANCE METRICS OBTAINED BY VARYING THE NUMBER OF LAYERS OF

THE CLASSIFICATION MODEL DISCRIMINATOR

TABLE X
PERFORMANCE METRICS OBTAINED BY CHANGING THE NUMBER OF LAYERS

OF GENERATORS AND DISCRIMINATORS

structure in the generator. In order to show whether the number
of convolutional blocks affects the oil spill segmentation effect,
the number of layers of convolutional blocks of the discriminator
is set to 3, 4, and 5, and the number of layers of convolutional
blocks of the generator is set to 2, 3, 4, and 5, respectively. The
segmentation results are tabulated in Table X.

It can be observed that a higher number of generator layers
does not necessarily lead to better performance, as a higher
number of generator layers results in a longer training time and
a tendency to overfit the network. A smaller number of layers
does not help the network to learn the feature information. The
discriminator also has an impact on the segmentation accuracy,
but not as much as the generator. In contrast, by combining F1,
Kappa, and MIoU coefficients for a comprehensive analysis and
comparison, it is found that the segmentation network model is
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TABLE XI
EFFECT OF BALANCING PARAMETER VALUES ON EXPERIMENTAL RESULTS

optimal in terms of F1, Kappa, and MIoU coefficients when the
discriminator is four layers and the generator is three layers. This
also shows that setting the discriminator to 4 and the number of
layers of the generator to 3 in the model is crucial to obtain a
good segmentation.

In addition, the experimental comparison is carried out by
adjusting the values of λ1 and λ2 parameters under the Sentinel-1
data. A total of 20 oil spill images are selected, and the segmenta-
tion results are analyzed by combining the evaluation index. The
values of the parameters are set to 8, 9, 10, and 11, respectively.
Finally, the experimental results are tabulated in Table XI. When
λ1 = 10, λ2 = 10, the segmentation performance of the oil spill
is optimal.

H. Running Time

The running time of the model is calculated and tested with
20 images, and the classification and segmentation models are
run five times each and averaged. The average running time
of the classification model is 2.10 s, and the running time of
the segmentation model is 5.91 s. For each image, the time to
identify the oil spill and look-alike oil spill is about 0.105 s, and
the time to segment the oil spill area is 0.2955 s. Therefore, in
case of an unexpected oil spill, the model can quickly identify
the oil spill and look-alike oil spill and can accurately determine
the extent of the oil spill. The model can promptly identify
the oil spill and look-alike oil spill and accurately determine
the oil spill area. The model can be used to identify oil spills
and look-alike oil spills quickly and determine the extent of
oil spills accurately so that the oil spill disaster can be dealt
with in time and the pollution to the marine environment can be
reduced.

I. Discussion

The oil spill classification experiment is carried out on the
Sentinel-1 dataset. MTGANs successfully classify through the
discriminator, while the generator enriches the number of ad-
versarial samples. A lot of look-alike oil spill SAR images
are fully used in model learning, significantly improving the
model’s discriminant ability. It is seen that accurate classification
of real and look-alike oil spill images can be achieved from
Fig. 5. There is no prior salient feature selection and marine
physical environment element query. Therefore, MTGANs has
strong discrimination ability compared with traditional machine
learning methods, such as SVM, KNN, and RFC.

The segmentation experiments of oil spills are performed
under three different oil spill datasets, Sentinel-1, ERS-1/2, GF-
3. U-Net++, MODAU-Net, SegNet, DeepLabv3+, and MCAN
methods are used for comparative analysis. The segmentation
effects of all algorithms are basically consistent on the three
datasets and will not be affected by different satellite imaging
effects. MODAU-Net utilizes offset convolutional blocks to
convert spatial information into channel information, which
can accurately segment oil spill fuzzy boundaries, as shown
in Fig. 7(a) and (b). But there are still a large number of
areas without oil spills are predicted as oil spills in Figs. 6(b)
and 8(b). The U-Net++ method resets the jump path based on
U-Net and can integrate the features of different levels, so the
features of different levels of the oil spill are extracted. However,
U-Net++ is difficult to predict the oil spill image with large
noise interference, and the oil spill area cannot be predicted in
Fig. 8(b). The SegNet method is challenging to train under a
small number of datasets, resulting in difficulty predicting the
results, especially in the edge areas. SegNet makes unpredictable
results in Figs. 7 and 8, and fuzzy boundaries in Fig. 6(a) and
(b). The DeepLabv3+ method adopts dilated convolution to
shrink the feature map. Then it uses the bilinear interpolation
upsampling to restore the original resolution so that the operation
cannot recover the lost information. The information on the oil
spill is largely lost in Figs. 7(c) and 8(a). Compared with other
methods, the results generated by the MCAN method are closer
to the groundtruth. However, the generator employs a simple
and lightweight network in the MCAN model, so it cannot fully
capture the overall feature information of the oil spill. MCAN
cannot maintain excellent accuracy, so misjudgments will also
occur when extracting oil spill information. The MTGANs
proposed in this article designs a fully convolutional symmetric
structure to the generator in the segmentation stage, which can
extract global to local oil spill information. It not only maintains
the overall characteristics of the oil spill without losing the
details but also reduces the misclassification of the oil spill from
the overall to the local under the action of the discriminator.
The results of three experiments are consistent with the theory
analysis. Compared with other methods, MTGANs can maintain
the details of oil spill edge features and accurately predict the
oil spill area in Figs. 6 and 7, respectively. MTGANs still has
the best accuracy facing with considerable noise interference, as
shown in Fig. 8. Therefore, the proposed MTGANs can main-
tain excellent performance when classifying and segmenting
oil spills.

V. CONCLUSION

In this article, a novel MTGANs is proposed for oil spill
classification and segmentation. Different from previous works,
the proposed method integrates oil spill classification and seg-
mentation into a single framework. In the classification stage of
MTGANs, the discriminator is key, and the generator is used
to enrich similar samples to improve the discriminative ability
of the model. In the segmentation stage, the fully convolutional
symmetric structure is added to the generator to extract the oil
spill information from the global to the local oil spill. It not only
maintains the overall characteristics of the oil spill but also does
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not lose the details and dramatically reduces the error classifica-
tion under the role of the discriminator. Therefore, MTGANs can
not only solve the problem that oil spills and look-alike oil spills
are difficult to distinguish but also solve the lack of restrictions
on oil spill datasets and reduce the misjudgment rate to achieve
accurate segmentation of oil spills. Experimental results on
three widely used satellite datasets verify the effectiveness of
the proposed method. MTGANs is superior compared with the
current state-of-the-art methods.
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