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Abstract—Hyperspectral imaging is able to provide a finer de-
livery of various material properties than conventional imaging
systems. Yet in reality, an optical system can only generate data
with high spatial resolution but low spectral one, or vice versa,
at video rates. As a result, an issue that fuses low-resolution hy-
perspectral and high-resolution multispectral images has gained
great attention. However, most fusion approaches depend purely
on hand-crafted regularizers or data-driven priors, leading to the
issues of tricky parameter selection or poor interpretability. In this
work, a subspace-based deep prior regularization is proposed to
tackle these problems, which takes both hand-crafted regularizer
and data-driven prior into account. Specifically, we leverage the
spectral correlation of the images and transfer them from the
original space to the subspace domain, within which a modified
U-net-based deep prior learning network (SDPL-net) is designed
for the fusion issue. Moreover, instead of taking the output of
SDPL-net directly as the result, we further feed the output back to
the model-based optimization. Under such prior regularization, the
recovered high-resolution hyperspectral image holds a high consis-
tency to its inherent structure and hence tends to present enhanced
reliability and accuracy. Experimental results on simulated and
real data reveal that the proposed method excels other state-of-
the-art methods in both quantitative and qualitative metrics.

Index Terms—Deep learning (DL), fusion, hyperspectral image
(HSI) superresolution, low-rank subspace, Sylvester equation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) comprise various
bands acquired by the sensor at different wavelengths,

which allow more reliable dissemination of information in
real scenes than conventional images with only a few bands.
The rich spectrum of HSIs can facilitate the characterization
of imaging scenes and greatly improve the performance of
numerous computer vision applications, e.g., object detection,
classification, tracking, and segmentation [1], [2], [3], [4], [5],
[6], [7], [8]. However, owing to the finite incident energy, there
exists a crucial tradeoff between spatial and spectral resolution
for real-world applications. Specifically, a typical optical system
may only generate images with high spatial resolution but a
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limited amount of spectra [i.e., high-resolution multispectral
(HRMS) images], or images with plenty of spectral bands but a
low spatial resolution [i.e., low-resolution hyperspectral (LRHS)
images] [9]. Therefore, a research topic of HSI superresolu-
tion, which fuses these two kinds of images to produce high-
resolution hyperspectral (HRHS) images has received much
attention [10], [11]. In practice, following a physically delicate
degradation model, the input LRHS image and HRMS image
are considered as spectrally and spatially degraded observations
(i.e., linear down-sampled versions) of latent HRHS images,
respectively.

Commonly, HSI fusion is a highly ill-posed issue due to
large scaling factors in both spectra and space. Most traditional
approaches consider the incorporation of certain hand-crafted
prior to bound the solution space, which holds the potential
of achieving acceptable performance without the support form
extra training samples [12], [13]. According to the structure
of the prior knowledge employed in optimization, available
methodologies can be broadly categorized into three types:
spectral unmixing-based methods [12], [14], [15], [16], sparse
representation-based methods [17], [18], [19], [20], [21], and
tensor decomposition-based methods [13], [22], [23], [24], [25],
[26], [27]. However, these prior constrained approaches are still
inherently flawed in three ways. First, the involved optimiza-
tion often requires excessive iterations, which further demands
prolonged time to recover an HRHS image. Second, a single
prior tends to express only one aspect of the visual properties,
hence is insufficient to fully reveal the complex structure of HSIs.
Third, the blend of multiple hand-crafted priors may pose further
hardships in dealing with the concerned optimization issue.

In recent years, inspired by the strong fitting capacity of
deep learning (DL) in many computer vision applications, most
convolutional neural networks (CNNs) have been introduced
to the superresolution field [28], [29], [30], [31], [32], [33]. In
comparison to optimization methodologies based on predefined
regularizer, the DL approaches demand little assumption on the
prior knowledge of general HSIs, putting in their best effort to
learn latent information from the training data in an end-to-end
fashion. However, these approaches often ignore the blurring
and down-sampling operators as well as the spectral response
function during degradation process, even these components
have a clear physical interpretation that relates LRHS and HRMS
to the HRHS image. To relieve this problem, more current
end-to-end methods [34], [35], [36] succeed in improving the
quality of the recovered images by learning spectral response
function and down-sampling operator. Moreover, several deep
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prior-based methods are lately presented [37], [38], [39], which
marry the merits of both degradation and DL approaches.

Albeit attaining encouraging performance, the DL-based su-
perresolution methods still suffer from some drawbacks. The
most critical one is the ignorance of the explicit priors, which
are known as the inherent properties of most HSIs, e.g., spectral
low-rank property [40]. This may lead to a deviation of the
network output from the general prior configuration and im-
pact negatively on the recovery accuracy. Another significant
challenge facing the current deep prior-based method lies in the
overfitting issue. Mostly, due to labor and hardware costs, only a
limited amount of paired LRHS and HRMS can be collected. As
a result, the mismatch issue of training-testing bias often exists
in practical scenarios. Accordingly, the overfitting issue tends to
occur in this circumstance. Other drawbacks lie in the specific
design of the network framework for two inputs differing in sizes
and features, which inevitably results in complex architectures,
tremendous parameters, and information distortions.

Against the abovementioned issues, we attempt to perform
hyperspectral fusion by using jointly the handcrafted prior as
well as the data-driven knowledge, which naturally holds the
opportunity of providing better performance and meanwhile
generalizing well [10], [41]. Note that the joint consideration
also taps the potential of using simpler network architecture for
the fusion problem. The specific and primary contributions of
this work can be highlighted as follows.

1) Since the bands of HRHS image are highly correlated, the
spectral vectors often live in a low-dimensional subspace.
On that basis, we propose a subspace-based deep prior
regularization to recover the HRHS images using two
factor matrices. The first is produced via a simple singular
value decomposition (SVD) of the LRHS image, with
the guarantees of leveraging the spectral correlation and
retaining the low-rank property. The second matrix can be
readily leaned by a relatively concise network due to the
narrowed band size.

2) To avoid the hand-crafted regularizer as used in most
traditional approaches, we develop a U-net-based model,
namely SDPL-net, to learn deep priors in the subspace
domain instead of the original one. Note that to highlight
the individual features of each band, the RCAB [42]
block is further introduced, permitting the low-frequency
structures to be bypassed and enabling more concentration
on high-frequency information. As a result, the recovered
HRHS image finely complies with the intrinsically visual
structure and guarantees better reliability, benefitting both
from the explicitly low-rank property as well as the im-
plicitly learned prior.

3) Instead of using SDPL-net directly as the outcome pro-
ducer, we further feed the output, behaving as a prior-
learned regularizer, back to the optimization-based model.
Such a prior-inspired method enjoys promising general-
ization capability. When the spatial and spectral informa-
tion in the training and test images is constrained, our
proposed method can automatically extract low-rank and
deep priors from latent HRHS images. For more tough cir-
cumstances in which data are captured from diverse optical
scenarios, even different sensors with variant spatial and

spectral information, SDPR can be readily generalized to
new test samples and perform well.

The rest of this article is organized as follows. The relevant
literature is reviewed in Section II. In Section III, the proposed
HSI fusion method is described in details. Section IV displays
and analyzes experiments on several publicly available datasets.
Finally, Section V concludes this article and conceives some
future investigations.

II. RELATED WORK

This section provides a brief review of several existing ap-
proaches relevant to our work.

A. Spectral Unmixing Based Methods

Leveraging prior to spectral unmixing has been experimen-
tally instantiated to be conducive for HSI fusion, mostly under
certain constraints, such as nonnegativity and sum-to-one. The
work [14] develops a coupled nonnegative matrix factorization
for alternately unmixing LRHS and HRMS images in order to re-
cover the HRHS one. With a similar framework, [15] decouples
the optimization issue into two restricted least square problems,
followed by a solver that jointly unmixes the two input images.
Concerning the endmembers and their abundances, in [16], the
latent HRHS image is reconstructed employing the alternating
direction method of multipliers [43]. By fully exploiting the
specific properties of matrix decomposition, a four-stage fusion
framework dubbed as MDF is proposed in [12].

B. Sparse Representation Based Methods

Sparse representation is another promising scheme for the
fusion of LRHS and HRMS images, which sparsely encodes
the latent HRHS image using a proper spectral dictionary ac-
quired from the inputs. For instance, [17] merges hyperspectral
and multispectral images following a variational framework,
in which a sparse regularizer is designed by factorizing the
scenes over a given dictionary. More recently, a nonnegative
sparse coding scheme is proposed [18], which employs not
only the pixelwise sparsity but also the nonlocal spatial simi-
larity, yielding an improved performance. Similarly, in [20], a
fusion method based on nonlocal low-rank tensor approximation
(LRTA) and sparse representation is given, in which the sparsity
of abundances is highlighted by a delicately devised constraint.
Depending on a newly structured low-rank representation, the
approach in [21] represents images as linear combinations of
bases in an appropriately learned dictionary, inducing sparse
property inferred from certain subspace decomposition of the
affinity matrix.

C. Tensor Decomposition-Based Methods

Another crucial technique for HSI fusion relies on tensor
decomposition, which has been widely employed to reveal the
correlations among different modes. In [22], the fusion issue
is formulated as a coupled sparse Tucker decomposition, al-
ternately updating dictionaries of three modes as well as the
sparse core tensor. The work in [23] develops a low tensor train
rank for the learning of correlations among spatial, spectral, and
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nonlocal modes of all analogous cubes. A novel subspace-based
low-tensor multirank regularization (LTMR) is proposed in [24],
which leverages both the spectral correlation and the nonlocal
similarity in HRHS images. Through a coupled tensor canonical
polyadic decomposition, [25] probes into the intrinsic relation-
ship between HRHS and LRMS images. The approach in [26]
develops a novel low-rank tensor ring decomposition for HSI
superresolution. By exploiting the idea from the field of tensor
completion, [13] develops an LRTA method to directly enforce
spatial and spectral low rankness while avoiding computation-
ally complicated steps, such as patch clustering and dictionary
learning.

D. End-to-End Learning Methods

In [34], an unsupervised adaptation learning (UAL) method
is proposed, which develops a two-stage CNN to leverage char-
acteristics of latent HRHS targets and estimate the unknown
down-sampling operator simultaneously. With the aid of at-
tention mechanism and pixel shuffling, in [35], a simple yet
effective CNN architecture is presented holding a high reliabil-
ity of outputting spatially high-quality details. In [36], a new
fusion model is formulated that considers both spectral and
spatial degradation. Accordingly, a deep CNN dubbed MHF-net
is raised to tackle the fusion issue iteratively. Unfortunately,
these end-to-end learning methods still have evident drawbacks.
For instance, given limited samples, the data-driven approaches
are sensitive to variations in spatial and spectral information,
suffering severely from the mismatch between training and test
sets [35]. Such an overfitting problem happens frequently, since
real data are generally acquired under changing environmental
settings or even with different sensors.

E. Deep Prior-Based Methods

The work in [37] shows that neural networks can naturally
capture the visual prior implicitly. On that basis, acceptable
results can be guaranteed in standard inverse problems, such as
denoising, superresolution, and inpainting. Following this idea,
in [38], a deep hyperspectral image sharpening (DHSIS) method
is presented to directly learn deep prior via CNN-based residual
learning. In [39], a novel network architecture is developed to
leverage both the spectral and spatial characteristics of latent
HRHS images, whose outputs serve to regularize the superres-
olution issue. Albeit with acceptable performance, the explicit
priors, such as spectral correlation, possessed by most HSIs,
are often ignored by such “black-box” deep models, leaving
considerable room for further performance improvements. Our
approach is inspired by this line of research. As a whole, we
aim to construct a framework that incorporates the explicitly
hand-crafted regularizer and the implicitly learned prior in our
investigation.

III. PROPOSED METHOD

A. Preliminaries

The desired HRHS image is denoted as X ∈ RW×H×S ,
where W , H , and S are the width, height, and band number

of the target image, respectively. Accordingly, Y ∈ Rw×h×S

denotes the observed LRHS image with w × h pixels (w <W ,
h <H) and S spectral bands. Following the physically delicate
degeneracy model, Y is a spatially degraded observation of X :

Y(3)=X(3)BS (1)

where, the matricesX(3) ∈ RS×WH andY(3) ∈ RS×wh are ac-
quired by unfoldingX andY along the third mode, respectively.
S ∈ RWH×wh denotes the down-sampling matrix. The blurring
matrix is represented by B ∈ RWH×WH . Practically, B can be
diagonalized as

B = FKF−1 (2)

where, F denotes the fast Fourier transform (FFT) and F−1

represents inverse FFT (FF−1 = IWH , and IWH is a WH ×
WH identity matrix). Eigenvalues of B are held by diagonal
matrix K.

Within the same scene, the HRMS image with W ×H pixels
and s spectral bands (s <S) is represented by Z ∈ RW×H×s.
Z can be modeled as a spectrally degenerate observation of X ,
that is

Z(3) = RX(3) (3)

where, Z(3) ∈ Rs×WH is the matrix acquired by unfolding Z
along the third mode. R ∈ Rs×S is the spectral response matrix.

Due to the fact that HSI owns a close correlation among
different bands, the globally spectral low-rank property is a
dominant prior for most subsequent applications. Particularly,
the pixels located at the same spatial position but with different
spectral bands often live in a low-dimensional subspace, whose
ambient size is much less than that of the original one. Therefore,
it is a natural operation to reveal the spectral low-rank property
by using the subspace decomposition technology, i.e.,

X(3) = DC(3). (4)

Here, D ∈ RS×L denotes the domain switching matrix that
records the mapping from the low-rank subspace domain to
the original image domain. L is the number of atoms resulted
from the subspace representation. The matrixC(3) ∈ RL×WH is
acquired by unfoldingC ∈ RW×H×L with the third mode, where
C(i, j, :) is the coefficient of spectral pixel X (i, j, :). Regarding
the subspace, two remarks are made: a) value of L is small, that
is L <S, which means that the spectral vectors lie in a low-
dimensional subspace. Generally, the reduction of dimension
favors a more efficient computation; b) columns of subspace
are orthogonal, implying that each spectral vector X (i, j, :)
holds the same Frobenius norm as the corresponding coefficient
C(i, j, :). In this manner, self-similarity among spectra can be
translated into the subspace domain.

Thus, the superresolution issue can be rephrased into esti-
mating the switching matrix D and coefficients C from two
input images. Since the LRHS image retains most of the spectral
information from the HRHS image, the two images are supposed
to lie in the same spectral subspace. Therefore, by borrowing
the simple SVD decomposition, we can estimate the domain
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Fig. 1. Overall scheme of our proposed SDPR method.

switching matrix from the LRHS image

Y(3) = UΣVT (5)

where, U and V are both orthogonal matrices and the diagonal
matrix Σ contains singular values aligned in descending order.
By holding the L largest singular values and eliminating the
remaining ones, the learned subspace matrix D is given as

D = U(:, 1 : L). (6)

With all the preliminaries prepared, the overall flowchart of
our method is given in Fig. 1. Generally, there are three main
steps, including a preacquisition of the initial estimation, a
learning of subspace-based deep prior, and an integration of the
prior into the degradation model. In the sequel, we first provide
the integration idea, followed by a sequential presentations of
different steps.

B. Integrating Prior Into the Degradation Model

Using the degenerate model in (1), (3), and (4), C can be
estimated by introducing appropriate priors and penalizing the
following biobjective function:

Ĉ(3) = argmin
C(3)

J (C(3))

= argmin
C(3)

J1(C(3)) + μJ2(C(3)) (7)

where

J1(C(3)) =
∥∥Y(3) −DC(3)BS

∥∥2
F
+
∥∥Z(3) −RDC(3)

∥∥2
F
(8)

with ‖ · ‖2F representing the matrix Frobenius norm. J1(C(3))
denotes a data fidelity term. J2(C(3)) represents a regularizer
that shrinks the solution space and enforces certain prior prop-
erties. Moreover, μ > 0 is a hyperparameter that balances J1

and J2. As demonstrated in (7), the subspace-based deep prior
structure of latent HRHS images is encoded in J2(C(3)). As
known, it is nontrivial to handcraft a sophisticated regularizer.
Recently, benefiting from the rocketing development of the vari-
able splitting technique, plug-and-play approaches have been
introduced to address diverse HSI inversion issues [44], [45],
[46]. In contrast, in this article, we design a regularizer that
leverages network output C̃ ∈ RW×H×L to ensure a close solu-
tion of (8) to the learned subspace-based deep prior. Concretely,
we let J2(C(3)) be the squared Euclidean distance between C
and C̃ in the subspace coefficient domain

J2(C(3)) =
∥∥∥C(3) − C̃(3)

∥∥∥2
F

(9)

where, C̃(3) ∈ RL×WH is the matrix resulted from the unfolding

of C̃ along with the third mode. Then (7) can be rewritten as

argmin
C(3)

∥∥Y(3) −DC(3)BS
∥∥2
F
+
∥∥Z(3) −RDC(3)

∥∥2
F

+ μ
∥∥∥C(3) − C̃(3)

∥∥∥2
F

. (10)

Compared to other possible formulations, cost function (10)
allows a straightforward solution owing to the differentiability of
the Frobenius norm. Employing a promising deep prior structure
for C̃ is the key point to achieve a satisfactory recovery of the
latent HRHS image.

C. Preoptimization

Although deep CNN can efficiently learn the prior from
existing HSIs, two inputs Y and Z that contain redundant
information and differ in sizes are difficult to map to C directly.
Not that only the spatial and spectral features are tough to extract
individually, but the information distortion in feature merging
of different dimensions is also hard to implement. We tackle
this issue by a preacquisition of estimated Ĉ ∈ RW×H×L by
adequately exploiting Y and Z , followed by an immediate feed
into SDPL-net. Similar to (10), the practical implementation
simply replaces the third term of J2 with the Euclidean distance
between DĈ(3) and Yup(3) in the original image domain

argmin
̂C(3)

∥∥∥Y(3) −DĈ(3)BS
∥∥∥2
F
+
∥∥∥Z(3) −RDĈ(3)

∥∥∥2
F

+ λ

∥∥∥DĈ(3) −Yup(3)

∥∥∥2
F

(11)

where, Ĉ(3) ∈ RL×WH and Yup(3) ∈ RS×WH are, respec-

tively, the unfolded versions of the expected estimation Ĉ and the
upsampled LRHR image Yup ∈ RW×H×S . λ > 0 is the trade-
off parameter. In our implementation, the bicubic interpolation
scheme is selected as the upsampling operation. Note that C̃(3)

and Ĉ(3) denote different stages of the subspace coefficientC(3)

when the algorithm is running, so that different superscript hats
are used for ease of identification. That is to say, C̃(3) and Ĉ(3)

also satisfy the properties of C(3), e.g., X(3) = DĈ(3), during
the optimization stage.
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Algorithm 1: Solution by Solving the Sylvester Equation
w.r.t. Yup.

To solve (11), we enforce the derivative of (11) w.r.t. Ĉ to be
zero. As a result, the solution of (11) can be further achieved by
the following Sylvester equation:

H1Ĉ(3) + Ĉ(3)H2 = H3. (12)

Since the domain switching matrix is acquired by SVD, it fulfills
DTD = IL. Thus, we are able to derive the following equation:

H1 = (RD)TRD+ λIL

H2 = BS(BS)T

H3 = DTY(3)(BS)T + (RD)TZ(3) + λDTYup(3) (13)

where, IL is the identity matrix with size L× L. According to
the theoretical analysis in [47], the Sylvester equation (12) has
a unique solution if and only if the summation of eigenvalues of
H1 and H2 is nonzero. It is known that both (RD)TRD and
IL are positive definite, hence H1 is positive definite. Moreover,
considering that H2 is a semipositive definite matrix, then the
arbitrary summation of eigenvalues of H1 and H2 is surely
larger than zero, guaranteeing a unique solution of (12). On
that basis, we borrow the idea from [48] to analytically and effi-
ciently get the solution of Ĉ(3). The concrete solver is given in
Algorithm 1.

In Algorithm 1, convolution blurring B can be factorized as
illustrated in (2), in which the diagonal matrix K ∈ CWH×WH

is given as

K =

⎡
⎢⎢⎢⎣

K1 0 · · · 0
0 K2 · · · 0
...

. . .
...

0 0 · · · Kd

⎤
⎥⎥⎥⎦ (14)

where, Ki ∈ Cwh×wh and d denotes the spatial down-sampling
factor. The eigen decomposition of H1 yields the unitary matrix
Q and the diagonal matrix Λ, i.e., H1 = QΛQ−1, where Λ is

expressed as

Λ =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λL

⎤
⎥⎥⎥⎦ (15)

with λl representing the eigenvalue of H1 and Q holding the
eigenvectors of H1 in its columns. ol denotes the lth row
of O = Q−1C(3)F, that is, O = [oT

1 ,o
T
2 , . . . ,o

T
L ]

T . 1d ∈ Rd

represents a vector whose elements are all 1.

D. Subspace-Based Deep Prior Learning

Instead of using the hand-crafted regularizer, we propose to
learn the prior in the subspace coefficient domain of latent HRHS
images from hyperspectral datasets. Note that, after preoptimiza-
tion, we obtain the initial estimation Ĉ with the same size as the
target C in the subspace coefficient domain. Taking Ĉ and C as
input and output, respectively, in the sequel, we construct an
end-to-end deep network dubbed SDPL-net following a U-Net
architecture.

U-Net has been proven to be an effective tool for various
tasks, including magnetic resonance spectroscopy imaging [49]
and biomedical image segmentation [50]. In contrast to another
well-known model Resnet [51], U-Net primarily operates by
performing pixelwise transformation on input images, which is
applicable to the superresolution problem. Using convolutional
layers, U-Net first continuously down samples the input image to
a small size, which aids in extracting globally valuable features.
Next, the image is scaled up through a reverse operation. This
process helps to identify locally vital features so as to refine
the image at a finer resolution. Unfortunately, the features in
U-Net architecture contain redundant low-frequency informa-
tion equally across all channels, which inevitably hinders the
representability. To solve this problem, we employ RCAB in
our network. In particular, RCAB permits the low-frequency
structure to be bypassed via the multiple skip connections, en-
abling CNN to concentrate more on high-frequency information.
Meanwhile, RCAB adaptively rescales channelwise features
taking interdependencies among channels into account.

As shown in Fig. 2, the overall network follows an encoder–
decoder design. To begin, a convolution layer without activation
function is initially employed to extract the shallow features. In
addition, the modules of encoder and decoder are sequentially
appended. Note that the encoder module intends to learn the
blurring and down-sampling operators, which is much simpler
than the decoder module for the learning of upscaling mapping.
In practice, the encoder block is designed with only two con-
volutional layers and a LeakyReLU activation layer, which is
considerably efficient, yet it functions well in our experiment.
As for the decoder block, unlike the baseline U-Net, RCAB is
utilized to boost the model capacity. Besides, shortcut connec-
tions, which consider the hierarchical nature of the features,
are employed in the feature extraction process. We try this
connection since typical convolutional networks tend to finalize
their output with high-level features, neglecting the importance
of low-level features [8]. In general, high-level features refer to
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Fig. 2. Architecture of the SDPL-net. The green boxes represent the feature maps of the encoding module and the yellow boxes denote the feature maps of the
decoding module. We utilize shortcut connections to concatenate the corresponding shallow and deep feature maps, following the U-Net framework.

semantic knowledge, whereas low-level features mostly facili-
tate information about contours, boundaries, etc. We argue that
low-level features are indispensable for HSI superresolution.
Therefore, the features from the encoder block are merged into
the decoder block in the feature extraction process.

It has been proven that �1-norm is more applicable than �2-
norm in low-level visual tasks since it experimentally delivers
improved performance [52]. Therefore, the loss function based
on �1-norm is employed

�(Θ) =

M∑
m=1

∥∥∥F (
Ĉm; Θ

)
− Cm

∥∥∥
1

(16)

where, {(Ĉm;Cm)}Mm=1 represents M training pairs for the
learning of parameter Θ in SDPL-net F .

The superresolution result derived from our SDPL-net, re-
ferred to C̃ in subspace, is again employed in the regularizer J2,
as shown in the biobjective optimization formulation (10). More
specifically, C̃ behaves as a spatial-spectral prior and contributes
positively to the finer estimation of C. The solver of (10) is
similar to that of (11) and will not be repeated here. Finally,
the desired result of the HRHS image X can be obtained by
calculating (4).

Overall, the joint usage of low-rank decomposition, deep
priors, and degradation knowledge is considered in our model.
Recall that the hand-crafted prior-based optimization methods
could guarantee an acceptable performance given no training
samples [12], [13]. Besides, using a network to recover a sub-
space variable instead of the original one would compress the
model parameters. Both of these two merits favor the relief of
the overfitting issue. Moreover, the fast inference of Sylvester
equation given in Algorithm 1 would guarantee an efficient
solution.

IV. EXPERIMENTS

In this section, the presented SDPR approach is compared
with several SOTA HSI fusion methods: LRTA fusion [13],

Fig. 3. 12 test HSIs from CAVE dataset: (a) balloons, (b) cd, (c) chart and
stuffed toy, (d) clay, (e) fake and real beers, (f) fake and real lemons, (g) fake and
real tomatoes, (h) feathers, (i) flowers, (j) hairs, (k) jelly beans, (l) watercolors.

UAL framework [34], matrix decomposition fusion (MDF) [12],
LTMR [24], DHSIS [38], and MHF-net [36].

A. Data and Experimental Settings

In this study, experiments are implemented on two simu-
lated datasets to assess the efficacy of our presented approach:
Columbia computer vision laboratory (CAVE) [53] and Har-
vard [54]. Moreover, we also utilize the University of Houston
(UH) [55] as a real dataset to evaluate the model performance.

CAVE dataset holds 32 high-quality indoor images recorded
by a generalized and assorted pixel camera. These HSIs have
a spatial resolution of 512 × 512 and 31 spectral bands with
wavelengths ranging from 400 to 700 nanometers. Since the
first two spectra of CAVE suffer ambiguity, we remove them to
avoid bias. 20 HSIs are selected at random to train the network,
and the rest 12 HSIs are considered for the test. The example
HSIs of CAVE are given in Fig. 3.

Harvard dataset consists of 77 HSIs covering indoor and
outdoor scenarios of various targets, materials, and scales under
daylight illumination. Each image has 31 bands with wave-
lengths ranging from 420 to 720 nanometers and spatial size
of 1392 × 1040. For the test, ten images are randomly selected,
whose representatives are shown in Fig. 4.
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Fig. 4. 10 test HSIs from Harvard dataset: (a) baskets, (b) bikes, (c) cabinet,
(d) chairs, (e) cushion, (f) door, (g) roof, (h) tree, (i) wall, (j) window.

UH dataset is provided by the IEEE Geoscience and Remote
Sensing Society in 2018, including an HRMS image and an
LRHS image with size 83440 × 24040× 3 and 4172 × 1202×
48, respectively. For uniformity, the HRMS image is resized to
33376 × 9616× 3. As a result, the spatial ratio of HRMS image
to LRHS image is varied to 8. Moreover, we crop a 1024 ×
1024 subimage and a corresponding 128 × 128 subimage from
the HRMS and LRHS images, respectively, for testing.

The images from two simulated datasets are employed as
the ground truths (GTs). LRHS images are obtained from each
simulated dataset by employing an 8 × 8 Gaussian filter with a
standard deviation of 2 and then down sampling with a factor
of 8. The spectral down-sampling matrix R for the CAVE and
Harvard datasets is obtained from the response of the Nikon
D700 camera, which produces HRMS image as RGB image.
In the nonblind case, we treat the convolutional blur B and the
spectral response matrix R as known prior knowledge to guide
the generation of superresolution images. Yet in the blind case,
we follow most well-known works, such as [12], [24] that borrow
HySure [56] to estimate B and R.

B. Quality Measures

Four prevalent metrics are selected in the experiment to assess
the quality of superresolution results.

1) Peak signal-to-noise ratio (PSNR): The average spatial
similarity between produced and reference images across
all bands can be described by the PSNR. The greater
PSNR, the better spatial quality.

2) Spectral angle mapper (SAM): SAM measures the angle
averaged across the whole spatial domain to determine the
spectral quality of the fusion result. The lower degree, the
less spectral distortion.

3) Structural similarity index measure (SSIM): SSIM com-
putes the average structure similarity in the spatial domain
between created and reference images. The higher SSIM,
the better preservation of spatial structure.

4) Root-mean-squared error (RMSE): The discrepancy be-
tween produced and reference images can be described
by the RMSE. Obviously, the smaller value denotes the
better result.

TABLE I
QUANTITATIVE RESULTS OF ALL COMPETING APPROACHES ON CAVE DATASET

C. Parameter Selection

In our method, three key parameters require to be manually
adjusted, including subspace dimensionL as well as two tradeoff
hyperparameters λ andμ. To discuss the effect of different atoms
L on CAVE and Harvard, as shown in Fig. 5(a), we exhibit
the mean PSNR curves of the fusion results against varying
L. As can be observed, with L varied from 4 to 8, the PSNR
values climb rapidly for both CAVE and Harvard. The results
remain relatively stable as L increases further. It is well-known
that Harvard is less challenging than CAVE. Accordingly, the
PSNR curve for the former is substantially smoother than that
for CAVE. As a result, the setting of 8 on subspace dimension
is sufficient to retain the most spectral information, validating
the claim that spectral vectors indeed lie in a low-dimensional
subspace.

Regarding to the quality of X̂ (X̂(3) = DĈ(3)), parameter
λ is employed for preoptimization. Similarly, parameter μ is
utilized to influence the quality of the final superresolution result
X . Therefore, these two parameters need to be properly tuned
for a pleasing performance. Unquestionably, both λ and μ shall
be greater than 0. In consequence, we traverse these parameters
from {1e-5, 1e-4,...,1} to report a better result. As illustrated
in Fig. 5(b), when λ consistently increases, the PSNR values
on two simulated datasets first remain flat and then decrease.
Note that a larger PSNR for X̂ does not assure a better ultimate
result, which is more dependent on the prior learning of the
subsequent operations. That is, λ can be adjusted within a coarse
range. In our implementation, λ = 10−5 is chosen to ensure
an acceptable overall quality. Likewise, in Fig. 5(c), the PSNR
values go stably as μ rises. We attribute this to the fact that C̃
is quite close to the true value C in subspace, which leads to a
reduced fluctuation of PSNR values. In all our experiments, we
simply select the intermediate value, i.e., μ= 0.001, to produce
the fusion results. Note that the traversed span is notably loose
for practical applications, which demonstrates the property of
parameter insensitivity of our method. A finer tuned parameter
would surely promote the performance, yet we leave it a relaxed
setting for easy model selection.

D. Performance Comparisons

1) Performance Comparison on CAVE: Table I displays the
average PSNR, SAM, SSIM, and RMSE for the 12 test HSIs,
with the best values highlighted by bold fonts and the next
best ones underlined for clarity. It is demonstrated in the table
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Fig. 5. Average PSNR values against different setting of parameters L, λ, and µ, respectively: (a) is for L, (b) is for λ, (c) is for µ.

Fig. 6. Visual comparison of CAVE dataset. (a) LRHS. (b) LRTA. (c) UAL. (d) MDF. (e) LTMR. (f) DHSIS. (g) MHF-net. (h) SDPR. (i) GT. The top and bottom
rows display the fused pseudocolor images (R-29, G-19, B-1) and the reconstruction errors, respectively.

that the suggested SDPR approach exceeds other competing
methodologies across all evaluation measures. Presumably, our
approach can better maintain both spectral and spatial structures.
Furthermore, taking hairs (an image in CAVE) as an example for
visual comparison of the competing methods, Fig. 6 displays the
fused pseudocolor results and their corresponding error maps.
The pseudocolor images are formed by bands 29, 19, and 1 of
the recovered images, while the error maps are the differences
between the recovery and the GT. For ease of observation, a
representative portion of each fused HSI is marked and magni-
fied by a factor of 2. This together with the error maps shows
that SDPR recovers complex structures more efficiently and has
less distortion than all other competitors. Fig. 7(a) further shows
the PSNR curves of all competing approaches to compare the
quality along different bands. As can be seen from this subfigure,
SDPR outperforms the other competitors in almost all spectral
bands.

2) Performance Comparison on Harvard: Table II shows the
average performance of all competing approaches on the 10 test
HSIs of Harvard. We would like to point out that the DL-based
approaches in this experiment are all trained on CAVE and then
tested on other datasets without any retraining or fine-tuning
steps. Therefore, the results from these methods on Harvard
stands as a representative of the generalization ability [35]. As
can be seen from the table, SDPR remains the best in most

TABLE II
QUANTITATIVE RESULTS OF ALL COMPETING APPROACHES

ON HARVARD DATASET

evaluation metrics. Moreover, the margins between SDPR and
other DL-based methods become critically larger. Taking the
clipped portion of test image bikes (an HSI in Harvard data)
as an example, Fig. 8 illustrates the fused images and the
corresponding error maps from all competing approaches. A
representative region is also marked and magnified. From this
figure, the results achieved by LTMR and SDPR are similar and
are very close to the GT. Evidently, they generate the minimum
fusion error in both the edges and the smoothed areas. Fig. 7(b)
further depicts the PSNR curves against the spectral bands of
the whole Harvard dataset. As can be seen, albeit with a similar
visual presentation, LTMR lags behind SDPR numerically in
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Fig. 7. PSNR of all competing methods against different spectral bands. (a) CAVE. (b) Harvard.

Fig. 8. Visual comparison of Harvard dataset. (a) LRHS. (b) LRTA. (c) UAL. (d) MDF. (e) LTMR. (f) DHSIS. (g) MHF-net. (h) SDPR. (i) GT. The top and
bottom rows display the fused images (R-29, G-16, B-7) and the reconstruction errors, respectively.

all spectral bands. On the whole, both the quantitative metrics
and qualitative visuals demonstrate that most DL-based methods
(e.g., UAL and MHF-net) exhibit the weaker generalization than
our model. The main reason owes to the overfitting issue since
the model parameters fit in closely with the features of CAVE,
yet the model perform suboptimally on Harvard dataset.

3) Performance Comparison on UH: In this case, both con-
volutional blurring B and spectral response matrix R are un-
known. For those methods that needB andR given, we estimate
them via HySure. Fig. 9 depicts a portion of the superresolution
results, which are RGB images created by assessed spectral
response function. The visual inspection clearly demonstrates
that the output achieved by SDPR is more realistic and presents
much sharper details.

E. Analysis and Discussion

1) Computational Efficiency: To elucidate the computational
efficiency of SDPR, we examine the running times of each com-
petitive methodology on three datasets. A GeForce GTX 3080
16 GB graphics card is used for all DL-based methods. All fusion

Fig. 9. Visual comparison of UH dataset. (a) LRHS. (b) LRTA. (c) UAL.
(d) MDF. (e) LTMR. (f) DHSIS. (g) MHF-net. (h) SDPR.

programs are run on an Intel(R) Core(TM) i7-11800H CPU
2.30 GHz and 32 GB RAM. Table III shows the average running
times of each competing approach. The results demonstrate that
our SDPR method is faster than all traditional methods including
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TABLE III
RUNNING TIME OF ALL COMPARED METHODS (IN SECONDS)

TABLE IV
QUANTITATIVE RESULTS ON YUP, X̂ , X̃ AND X

LRTA, MDF, LTMR, and most DL-based methods, such as UAL
and DHSIS. In other words, SDPR is second only to MHF-net in
terms of running efficiency. We attribute the advantage mainly
to the enforcement of network on subspace factor, which results
in a remarkably reduced dimension of target variable. Besides,
the concise design of the network architecture also saves the
computational cost. Inevitably, generating initial estimation with
preoptimization, integrating prior into the degradation model,
and estimating B and R would add some computational effort.
Overall, we believe that the speed rank of our SDPR is within
an acceptable range due to the improved fusion quality.

2) Effectiveness of Different Steps: As mentioned, our ap-
proach can be divided into three steps: preoptimization to gen-
erate the initial estimation, using SDPL-net to learn subspace-
based deep prior, and integrating prior into the degradation
model. Table IV provides the average quantitative results of
Yup, X̂ , X̃ (X̃(3) = DC̃(3)), and X on two simulated datasets,
evaluating the effectiveness of these three steps from an objective
perspective. The table shows that X̂ exceeds Yup with a huge
margin on both datasets, demonstrating that the preoptimization
step is qualified to retain both spatial and spectral structures
when the two inputs are initially integrated as a whole. The
result X̃ generated by SDPL-net yields improved quantification
compared to X̂ . This indicates that prior learning plays an
effective and helpful role in the superresolution task. Further-
more, the final superresolution result X based on X̃ achieves a
further rise, showing that integrating prior into the degradation
model has a positive impact on quality improvement. Overall,
these three steps are all indispensable and layerwisely benefit
the performance. Note that more iterates of the three steps
would surely bring more benefit. However, the improvement
is marginal yet with considerably more computational cost.

TABLE V
IMPACT OF THE PROPOSED SUBSPACE LEARNING SCHEME ON THE FUSION

PERFORMANCE

Fig. 10. Comparison of feature visualization on CAVE dataset. (a)–(c) Feature
visualizations. (d) Fused images (R-29, G-19, B-1). The top and bottom rows
are from the SDPR method without a subspace scheme (i.e., deep prior only)
and with a subspace scheme (i.e., hybrid prior), respectively.

3) Ablation Study of Subspace Learning Scheme: We further
carry out an ablation study of the subspace learning scheme, and
the quality of the fusion results are shown in Table V. Taking
MHF-net [36] that ranks second in most experiments as an
example, we also equip it with subspace learning scheme to val-
idate its general transferability. Specifically, with the same SVD
operation, the output of MHF-net is mapped to the subspace
domain, which can be further fed into (10) for the final result.
From this table, the models equipped with the subspace learning
scheme clearly produces improved results in comparison to the
baselines. Especially, the gaps of our SDPR with and without the
scheme are 6.77, 3.01, 0.07, and 0.62 in metrics PSNR, SAM,
SSIM, and RMSE, respectively, on the Harvard dataset.

Furthermore, taking watercolors (an image in CAVE) as an ex-
ample, Fig. 10 visualizes some feature maps as well as the fused
images with and without the equipment of subspace scheme.
As can be seen, the more focused and clearer features can be
learned from the model equipped with the subspace scheme.
For instance, in the first row of Fig. 10(b), more scattered hot
areas can be observed around the central regions. In the first row
of Fig. 10(c), the features of most trees are in a close tangle with
the border areas. All these findings demonstrate the advantage
of the subspace learning scheme in facilitating the capture of
more semantic information and benefiting the generalization
capability.
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TABLE VI
COMPARISON OF THE PERFORMANCE ON STANDARD U-NET AND SDPL-NET

4) Comparison Between U-Net and SDPL-Net: By replacing
SDPL-net with a standard U-Net, we also conduct an ablation
study and report the superresolution results in Table VI. Evi-
dently, compared to U-Net, SDPL-net yields better performance
on both datasets. In particular, on the CAVE dataset, the improve-
ment of SDPR-net over U-Net is 1.43, 0.69, and 0.11 in terms
of PSNR, SAM, and RMSE, respectively. These improvements
demonstrate that the introduction of RCAB indeed benefits the
feature learning and enriches the prior knowledge.

V. CONCLUSION

In this article, we present an explicit–implicit prior-based
HSI superresolution approach called SDPR. Instead of learning
a deep prior in the original image domain, we leverage the
spectral correlation to transform the image into a low-rank
subspace domain. In addition, rather than using a hand-crafted
prior constraint, we utilize explicit–implicit joint knowledge
learned by a newly proposed SDPL-net. Moreover, the output of
SDPL-net is leveraged to regularize the ill-posed fusion mission.
In contrast to most existing DL approaches that always confront
the overfitting problem on the training data, our SDPR method
can readily allow for the capture of invariant reconstruction rules
under response variations. This enables it to be finely generalized
to the test HSIs, even tremendous change happens in terms of
band number, illumination intensity, and spectral information.
Experiments conducted on a variety of synthetic and real-world
datasets have confirmed the superiority of our SDPR method
over both the traditional model-based and the more prevalent
DL-based methodologies.

Full-resolution quality remains an open problem. In fact,
there leaves considerable room for a further performance im-
provement. On the one hand, it makes sense to integrate more
traditional explicit prior and deeper implicit knowledge to solve
the ill-posed issue. On the other hand, ways to model data fidelity
terms by estimating spectral response function and convolution
blur matrix will be investigated. These efforts will further favor
the adaptability of the presented approach to real-world circum-
stances.
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