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An Ensemble Learning Approach for Land Use/Land
Cover Classification of Arid Regions for Climate

Simulation: A Case Study of Xinjiang,
Northwest China

Haoyang Du , Manchun Li, Yunyun Xu, and Chen Zhou

Abstract—Accurate classifications of land use/land cover
(LULC) in arid regions are vital for analyzing changes in cli-
mate. We propose an ensemble learning approach for improving
LULC classification accuracy in Xinjiang, northwest China. First,
multisource geographical datasets were applied, and the study
area was divided into Northern Xinjiang, Tianshan, and Southern
Xinjiang. Second, five machine learning algorithms—k-nearest
neighbor, support vector machine (SVM), random forest (RF),
artificial neural network (ANN), and C4.5—were chosen to develop
different ensemble learning strategies according to the climatic
and topographic characteristics of each subregion. Third, strat-
ified random sampling was used to obtain training samples and
optimal parameters for each machine learning algorithm. Lastly,
each derived approach was applied across Xinjiang, and subregion
performance was evaluated. The results showed that the LULC
classification accuracy achieved across Xinjiang via the proposed
ensemble learning approach was improved by ≥6.85% compared
with individual machine learning algorithms. By specific subregion,
the accuracies for Northern Xinjiang, Tianshan, and Southern
Xinjiang increased by ≥6.70%, 5.87%, and 6.86%, respectively.
Moreover, the ensemble learning strategy combining four machine
learning algorithms (i.e., SVM, RF, ANN, and C4.5) was superior
across Xinjiang and Tianshan; whereas, the three-algorithm (i.e.,
SVM, RF, and ANN) strategy worked best for the Northern and
Southern Xinjiang. The innovation of this study is to develop a
novel ensemble learning approach to divide Xinjiang into different
subregions, accurately classify land cover, and generate a new land
cover product for simulating climate change in Xinjiang.
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I. INTRODUCTION

M onitoring land use/land cover (LULC) is indispensable
for investigating earth system processes, as it can provide

thematic information of the earth’s surface while capturing biotic
and abiotic characteristics that closely correlate with the ecolog-
ical conditions on the ground [1]. Moreover, accurate mapping
of LULC can greatly improve analyses of environmental change
and is more capable of reflecting the interactions between human
activities and the geographical environment [2], [3].

Since the International Geosphere Biosphere Program (IGBP)
proposed the LULC change project in 1995, numerous LULC
products have been successively developed by major geoscience
research institutions around the world [4], including

1) IGBP data and information system cover (IGBP DISCover)
[5], [6], [7];

2) University of Maryland Land Cover dataset [8];
3) Global Land Cover 2000 (GLC2000) [9];
4) Ecosystem Classification and Land Surface Parameters

database [10];
5) moderate resolution imaging spectroradiometer (MODIS)

land cover dataset (MOD12Q1 and MCD12Q1) [11];
6) Climate change initiative land cover dataset (CCI-LC) [12];
7) the finer resolution observation and monitoring of global land

cover (FROM-GLC) [13];
8) global LULC data (GlobeLand30; 30 m resolution) [14];
9) China’s land-use/cover datasets (CLUDs) create by the Chi-

nese Academy of Sciences (CAS) [15].

Although these LULC products are diverse and readily avail-
able, they are plagued by large inconsistencies in their accura-
cies [16]. For example, the overall accuracies of FROM-GLC,
MCD12Q1, GLC2000, and GlobeLand30 are 64.9%, 78.8%,
77.9%, and 80.3%, respectively [11], [13], [14], [17]. Ac-
cordingly, it remains difficult to compare and combine these
products to extract more accurate LULC information related to
ecological, hydrological, and climatological studies [18], [19],
especially the study of climate change. Previous studies have
shown that the accuracy of land-cover data below 80% has a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2056-4474
https://orcid.org/0000-0002-2707-2624
mailto:duhaoyang15@mails.ucas.ac.cn
mailto:yyxu.nju@gmail.com
mailto:chenzhou@nju.edu.cn
mailto:limanchun@nju.edu.cn
https://doi.org/10.1109/JSTARS.2023.3247624


2414 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

great impact on the results of precipitation research, and, as the
accuracy continues to decrease, the results may become worse
[20]. Unfortunately, both the overall and class-specific accura-
cies of most datasets do not meet the common requirements
for regional climate modeling [21]. Furthermore, research has
shown that the accuracy of these products over Xinjiang are
significantly lower than that in other regions [22], [23], thus
failing to meet the high requirements for optimal use in this
area and restricting further improvements in research related
to regional-climate simulations, desertification monitoring, and
ecosystem service assessments. Therefore, it is necessary to
generate high-precision land-cover datasets for climate simula-
tion based on existing land-use, land-cover, and some auxiliary
datasets.

To overcome these limitations, the objective of this study is
to present an ensemble learning method for LULC classification
in Xinjiang with complex topographic areas. Furthermore, this
study aims to generate a set of high-precision land-cover data via
the application of multisource geographical datasets, including
Landsat 8 OLI images, FROM-GLC, MCD12Q1, ESA-LC, a
digital elevation model (DEM), the enhanced vegetation in-
dex (EVI), net primary production (NPP), and leaf area index
(LAI). The Xinjiang Province in northwest China was chosen
as a typical case, and it was divided into three subregions
according to the complex topography and climate. Subsequently,
different ensemble learning strategies were developed for each
sub-region. Lastly, training samples were obtained, and the
parameters of machine learning algorithms were calculated to
assess the accuracy of each ensemble learning-enabled LULC
classification. The main contribution of our study lies in taking
topographic conditions into account in land-cover classification
and developing a new ensemble learning method to accurately
classify land cover in Xinjiang. Furthermore, we developed a
new land-cover product using a two-level classification sys-
tem, which solves the problem of low accuracy of land-cover
classification in Xinjiang climate simulation and can be used
in other research areas, such as territorial space planning and
hydrological simulation. The outcomes of this study will help
gain a deep understanding of the interactions between land and
atmosphere in arid areas.

The article is organized as follows: Section II summarizes the
theoretical basis of machine and ensemble learning in LULC
classification. Section III introduces the study area and data
used. Section IV describes the basic framework of the proposed
method Section V analyzes the experimental results. Section VI
discusses the broader application and future works. Finally,
Section VII summarizes the findings and conclusions of this
study.

II. RELATED WORK

A. LULC Classification

LULC classification accuracy is closely related to the remote
sensing data used and the classification method chosen [24].
With the advancement of computational abilities and remote
sensing technologies, machine learning has gradually become
one of the most effective methods for LULC classification [25],

[26]. Among the available methods, the most widely employed
classification algorithms for remote sensing imagery include K-
nearest neighbor (KNN), decision trees (DTs), random forest
(RF), support vector machine (SVM), artificial neural network
(ANN), and extreme learning machine [27].

Previous studies have shown that owing to the complexity
of multisource remote sensing imagery data, distinct machine
learning algorithms have different advantages when classifying
certain LULC types; thus, any single classifier is limited in its
ability to significantly improve the accuracy of all LULC types
[28]. Accordingly, identification of the optimal classification
algorithms remains challenging. For example, in one LULC clas-
sification within an individual area, SVM accuracy for irrigated
herbs was 92%, while that for oak forests was only 72% [24].
Recently, classifier ensembles (i.e., multiple classifier systems)
have received considerable attention in remote sensing image
analyses owing to their high classification accuracy by exploiting
the advantages of different classifiers while minimizing their
limitations [29], [30], [31]. Various combinatorial strategies
have been developed and widely used to integrate different
classifications. For example, Chen et al. employed SVM, C4.5,
DTs, and ANNs to construct ensemble learning classification,
resulting in an overall accuracy (OA; 88.12%) and Kappa (0.87)
value superior to those of any basic classifiers [32]. Hu et al. used
two ensemble methods based on ANNs to classify LULC in the
Zoige wetlands of China, showing that the ensemble technology
improved the classification ability and stability of any single
ANN [26].

In addition, the successful implementation of classification
methods largely depends on the characteristics of the study area
and nature of relevant data [33]. Therefore, to improve the effects
of multiclassifier ensemble learning, both the machine learning
algorithm and feature data characteristic must be considered
[32]. Ultimately, compared to traditional classification methods,
machine learning algorithms are efficient and effective because
they do not rely on normal assumptions or statistical parameters
[34], yet appropriate classification-algorithm selection for a
given area remains essential.

B. Machine Learning

The theoretical basis of the ensemble learning classification
methods used in the present study is summarized in this section.
For a deeper understanding of the theoretical background of a
particular algorithm, refer to the references provided.

1) KNN: KNN is a nonparametric machine learning algo-
rithm and one of the simplest instance-based regression
and supervised classification techniques [35]. It deter-
mines the sample category by evaluating the distance
relationship between an unknown category and K adjacent
training samples, ultimately calculating the similarity de-
gree between the two [36]. For further details on the KNN
algorithm, see [35].

2) SVM: Support vector machine (SVM) is a machine
learning method proposed by Vapnik in the 1990s and
was initially applied on the recognition of hand-written
digits (i.e., pattern recognition) [37], [38], [39]. It is
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characterized by a small number of training samples,
high noise resistance, support for high-dimensional data,
and strong stability [32]. Moreover, it can generate high
accuracy for modeling complex nonlinear decision bound-
aries and is not easy to be over fitting. Therefore, it is a
supervised learning technique commonly used in a series
of remote sensing applications [25]. A detailed description
of the SVM algorithm can be found in [40].

3) RF: RF is a modeling classification algorithm that inte-
grates multiple unrelated classification and regression (de-
cision) trees using a bagging strategy. It is characterized by
eliminating generalization errors to achieve nondeviation
classification, thereby enhancing classification accuracy,
particularly for multisource remote sensing classification
[41]. Accordingly, RF has been widely employed in LULC
classification due to its high accuracy [42]. For detailed
introduction to RF, refer to paper [43].

4) ANN: ANN is a machine learning algorithm developed to
simulate the ability of the human brain to resolve problems
related to pattern recognition [34]. It is advantageous
owing to its nonlinearity, strong anti-interference, high
adaptability, parallel processing, and self-organization of
learning-process characteristics; therefore, ANN has been
applied to ever-increasing remote sensing image classifi-
cation in recent years [44]. Refer to the following resources
for further ANN algorithm details [45], [46].

5) C4.5: C4.5 is a decision tree algorithm modified on the
basis of the previously developed Iterative Dichotomiser
3 algorithm [47], and is characterized by its advantageous
strong logic, simple rule set, and effective suppression of
image noise for suitable multisource remote sensing image
data classification [48]. Refer to the following resources
for further C4.5 details [47].

C. Ensemble Learning

Ensemble learning is a method of training multiple machine
learning algorithms to improve the predictive performance and
classification accuracy based on the additive effect of the ad-
vantageous characteristics [49]. In addition to fully utilizing the
respective advantages of different classifiers, ensemble learning
can address the problem of over-fitting any single classifier in
instances with small amounts of data [50], [51]. Refer to the
following resource for further details on ensemble learning [52].

III STUDY AREA AND DATA

A. Study Area

Located in the northwest China (34.40–48.10° N, 73.60–96.3°
E), Xinjiang is far from oceans and maintains a typical conti-
nental, arid, or semi-arid climate. The mean temperatures in the
coldest (January) and hottest (July) months are −17.1 and 27.1
°C, respectively [53]. The average annual precipitation in the
Taklimakan Desert is < 50 mm·yr−1, whereas that in Tianshan
is ∼800 mm·yr−1 [54]. Xinjiang has a unique spatial shape for

a mountain basin [55], with the general topographical charac-
teristics of three mountains and two basins: the Altai Mountains
to the north, Tianshan in the middle, and Kunlun Mountains
to the south. Between the Altai Mountains and Tianshan, there
lies the Gurbantungut Desert in the Junggar Basin, while the
Taklamakan Desert in the Tarim Basin lies between Tianshan and
the Kunlun Mountains [56]. The unique geographical location
and topographical characteristics in Xinjiang have created a
unique ecosystem in the region.

B. Data

Landsat satellite-image data are often used to classify
regional-level LULC owing to their free availability and global
coverage [57]. Here, because spring and summer images contain
most of the phenological changes [24], [58], Landsat 8 L2
images were downloaded from the United States Geological
Survey website for Xinjiang. The images from April 1, 2015
to August 31, 2015 were used in LULC classification. The EVI,
normalized difference building index (NDBI), and improved
normalized water index (MNDWI) were calculated via Landsat
bands 2, 3, 4, 5, 6, and the composite spectral index of Landsat
8. Additionally, four sources of LULC data in Xinjiang—1)
CLUDs, 2) FROM-GLC, 3) CCI-LC, and 4) MCD12Q1—were
used in the present study. To ensure highly accurate LULC
classification, auxiliary data including the following:

1) vegetation type maps of 11 populations and 54 types;
2) physical geographical data including elevation (DEM) and

slope information;
3) NPP;
4) LAI were also employed here.

Table I lists all data and sources used in the present study.

IV. METHODOLOGY

A. Basic Framework

Previous studies have shown that geographical characteristics
(e.g., complex landforms) and diverse climates affect LULC
classification accuracy [24]. Considering the complex topogra-
phy and diverse climate of the study area, Xinjiang was divided
into three sub-regions, and different ensemble learning strate-
gies were developed for each to optimize overall classification
accuracy. The basic framework was as follows (see Fig. 1).

First, the subregional division according to climate and to-
pographic features is discussed in Section IV-B. Second, the
spatial consistency of different products was analyzed, and, on
this basis, a hierarchical random sampling method was adopted
to obtain machine learning training samples (see Section IV-C).
Third, machine learning algorithms suitable for the study area
were selected according to different data characteristics of Land-
sat 8, NPP, EVI, DEM, LAI, etc. (see Section IV-D). Lastly, a
confusion matrix was used to evaluate the accuracy of different
ensemble strategies of LULC classification across each subre-
gion, and the most suitable technique was selected to draw the
spatial patterns of LULC classification in Xinjiang.
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TABLE I
MULTISOURCE GEOGRAPHICAL DATASETS USED IN THE PRESENT LAND USE/LAND COVER STUDY OF XINJIANG, CHINA

Fig. 1. Flowchart of land use/land cover (LULC) classification for Xinjiang,
China.

B. Regionalization

The spatial distribution of vegetation is affected by both cli-
mate and terrain variability. For example, changes in topographic
characteristics drive the gradual shift in surface vegetation from
low mountain deserts, arid grasslands, irrigated farmlands, and
broadleaf forests to mid-mountain grasslands, evergreen needle-
leaf, and mixed forests, and further to alpine meadows/dwarf
shrubs [59]. Accordingly, during LULC classifications, the in-
troduction of geographic divisions by climate and topography
can reduce the probability of errors. Based on meteorological
station data and the DEM, KNN was used to further divide
the research region into three sub-regions: Northern Xinjiang,
Tianshan, and Southern Xinjiang (see Fig. 2). Refer to [55] and
[60] the partitioning method for details.

Fig. 2. Pertinent locations in Xinjiang, China.

C. Spatial Consistency Analysis

In the present study, an inference rule for spatial data mining
based on grid consistency was proposed to identify LULC types
where the primary methods consisted of spatial feature extrac-
tion and consistency analyses. First, for the zoning shape to
facilitate LULC classification, fishnet was created using ArcGIS
v.10.2, (resolution, 0.25 km2). Second, four LULC products,
vegetation type, and other auxiliary data were extracted from the
fishnet feature points by extract multiple values to points. Then,
the net feature points and net data were spatially aggregated to
obtain the net data containing 13 types of attribute information.
Lastly, the spatial consistency levels of CLUDs, FROM-GLC,
CCI-LC, MCD12Q1 and vegetation type maps were analyzed
using the grid comparison method under the IGBP classification
systems.

D. Machine Learning Algorithm Selection

During data mining, the characteristics of remote sensing data,
as well as the advantages and disadvantages of various machine
learning methods must be considered before classifying LULC
[34], [41]. Combining different characteristics of Landsat 8,



DU et al.: ENSEMBLE LEARNING APPROACH FOR LAND USE/LAND COVER CLASSIFICATION OF ARID REGIONS FOR CLIMATE SIMULATION 2417

NPP, EVI, DEM, LAI, etc., the most suitable machine learning
algorithm for LULC classification in Xinjiang was screened
according to the following process:

First, the EVI and LAI of different vegetation types can be
similar; therefore, KNN classification was adopted here because
it is based on the similarity of training sample data. Secondly,
because remote sensing data have nonlinear properties (e.g.,
Landsat 8 spectral information data, DEM, etc.), the radial
basis kernel function (RBF) of SVM can map nonlinear data
in high-dimensional space, thereby generating classification hy-
perplane decision boundaries and making it linearly separable.
Therefore, SVM was employed in the present study. Moreover,
we observed that Landsat 8 contained “salt and pepper” noise.
When compared with other machine learning techniques, RF
showed the greatest insensitivity to noise, training stability, and
efficiency; therefore, it was employed here. Because the spectral
mixing degree of Landsat 8 data is high, especially in montane
areas with complex topography, ANN was also employed here
because it adapts well to the characteristics of rich texture
and high spectral confusion of remote sensing. Furthermore,
numerous missing values in the remote sensing data throughout
alpine areas (especially in Tianshan) were observed here owing
to cloud cover. Because C4.5 has a superior processing effect
on samples with missing values, it was also selected here. For
different machine learning combinations, model training was
carried out across Xinjiang, as well as the three sub-regions
to identify the most suitable parameters (see Section V-B for
specific parameters).

E. Ensemble Learning Strategy

Knowledge of the differences between base classifiers is
key to constructing ensemble learning [61]. Considering the
differences, advantages, and disadvantages of different machine
learning techniques, different stacks of ensemble learning strate-
gies across Xinjiang and its three subregions are proposed here.
First, the random sample data were divided into two at a 3:1 ratio
of training to validation data. Second, ≥2 of the base classifiers
(KNN, SVM, RF, ANN, and C4.5) were selected as level 0 of the
stacking ensemble strategy model, and RF was selected as level
1. Lastly, across Xinjiang and the three subregions, the ensemble
learning models under different stacking strategies were trained,
and the OA, producer’s accuracy (PA), user’s accuracy (UA), and
Kappa were compared to obtain the optimal LULC classification
ensemble strategy.

F. Evaluation Indicators

The classification effect of machine learning algorithms repre-
sents the most critical evaluation index. A confusion matrix was
used to evaluate the classification abilities of different algorithms
and ensemble learning strategies. Accordingly, the OA, PA, UA,
and Kappa were calculated from the confusion matrix according
to the following equations:

OA =
1

N

r∑

i=1

Xii (1)

UAi =
Xii

X+i
(2)

PAi =
Xii

Xi+
(3)

Kappa =
N

∑r
i=1 Xii −

∑r
i=1 (Xi+ ×X+i)

N2 −∑r
i=1 (Xi+ ×X+i)

(4)

where N represents the total number of training samples; r is
the number of rows in the confusion matrix; Xii is the number
of samples in row i and column i of the confusion matrix (i.e.,
on the diagonal at the intersection); and X+i and Xi+ are the
marginal totals of row r and column i, respectively.

Although the OA and Kappa are the two most popular met-
rics for assessing classification accuracy, the samples used to
calculate Kappa cannot always be independent in all cases
because the same test set is used when evaluating the accuracy
of each map [34]. Hence, the pairwise Z-score test was used
to evaluate whether the differences in classification accuracy
among different ensemble learning strategies were statistically
significant [62]. A Z-score greater than 1.96 was considered
statistically significant at the 5% level.

Field surveys and visual inspection are the ideal methods
used to select samples to obtain high land-cover classification
accuracy [13], [63]. Therefore, in order to compensate for the
shortcomings of the confusion-matrix schedule evaluation, 42
sampling points were selected across Xinjiang, which overall
covered all land cover types described in this study. For each
sampling point, we identified real land cover type of the sampling
point through field photography and Google Earth.

V. RESULTS

A. Spatial Consistency

On comparing the five remote sensing products, the inconsis-
tency among the LULC classification was readily apparent, par-
ticularly for the forest classes. The CAS divided the forest into
forested land, open forest, shrubland, and other forests, whereas
other products split forest cover into evergreen and deciduous on
the basis of leaf fall, and broadleaf and needleleaf on the basis
of leaf size. Accordingly, to best facilitate comparison, different
classification schemes were converted into IGBP schemes (Table
S1, see the Supporting Information); 0 represents complete
disagreement between the five products, and 5 indicates perfect
consistency among them. The highest consistency of forest was 4
because the forest in the CAS classification cannot be converted
into IGBP schemes, and, for other land types it was 5. Here, it was
assumed that when the consistency of certain forest attributes
was≥ 3, it was defined as the corresponding forest type, whereas
all other land types were defined as the corresponding land type
only when the consistency was ≥4. Fig. 3 shows the spatial
consistency level of the five LULC products as well as the
sampling points under the IGBP classification system. Notably,
complete or level 4 consistency was achieved for water areas,
deserts, and the Gobi belt. In the transition zone between oasis
and desert or mountains, the observed data consistency level was
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Fig. 3. Spatial consistency level between the five land cover products under
the IGBP classification system.

Fig. 4. Proportion of machine learning training samples in different regions:
ENF, evergreen needleleaf forests; DNF, deciduous needleleaf forest; DBF, de-
ciduous broadleaf forest; MF, mixed forest; SL, shrublands; GL, grasslands; DL,
dry land; CNM, cropland/natural vegetation mosaics; UB, urban and built-up
lands; RL, rural land; IM, industrial and mining; PW, permanent wetlands; PS,
permanent snow and ice; BL, bare lands; WB, water body.

generally <3. Fig. 4 shows the proportion of machine learning
training samples in different regions.

B. Machine Learning Parameters

The key to KNN classification lies in selecting an appropriate
K value; thus, KNN classification accuracy was tested here
using K ranging from 1 to 30. The RBF of SVM is primarily
controlled by two parameters: the cost (C) and weight of the
RBF kernel (γ). Here, the optimal combination of C (2−2, 2−1,
20, 21, 22, 23, 24, 25, 26, 27) and γ (2−5, 2−4, 2−3, 2−2, 2−1, 20,
21, 22, 23, 24) was tested on training and validation samples.
RF classification relies on the number of random samplings as
a candidate variable (Mtry) and the number of random trees
(Ntree) [34], [64]. It is recommended that Mtry be set as the
square root of the input variable, and Ntree be set as a multiple of
500 to achieve the optimal classification effect [42]. Therefore,
different Mtry values from 1 to 16 and Ntree values from 500
to 5000 (500 intervals) were examined here. ANN accuracy

Fig. 5. (a) PA and (b) UA of different LULC types obtained using various
machine learning techniques for the whole Xinjiang. (c) PA and (d) UA for
Northern Xinjiang. (e) PA and (f) UA for Tianshan. (g) PA and (h) UA for
Southern Xinjiang.

depends largely on the number of hidden layer nodes, which
ranged from 1 to 50 in the present study [34]. Furthermore,
the neurons that receive input information are then transformed
using an activation function to ensure nonlinear prediction [26].
This study used the sigmoid function as the activation function
[65]. Alternatively, C4.5 does not require any parameter setting
due to its inherent simplicity. The machine learning parameters
are shown in Table II.

C. Classification Effect of Single Classifier

Table III shows the effects of different classifiers across
Xinjiang and the three subregions, revealing that KNN had
the best classification effect on all assessed regions (except for
Tianshan), of which northern Xinjiang has the best performance
(OA = 94.67%); however, according to the PA and UA (see
Fig. 5), KNN maintained poor classification effects on evergreen
needleleaf forests, shrublands, paddy fields, and industrial and
mining across Xinjiang. Specifically, the classification accuracy
for evergreen needleleaf forests, mixed forests, shrublands, dry
lands, paddy fields, and industrial and mining in Tianshan was
poor, whereas the classification of evergreen needleleaf forest,
mixed forest, and paddy fields was poor in Northern and South-
ern Xinjiang. This might be due to the imbalance of KNN [66];
some of the land LULC types with high PA or UA increased
the OA [25]. Therefore, OA and Kappa, in addition to PA and



DU et al.: ENSEMBLE LEARNING APPROACH FOR LAND USE/LAND COVER CLASSIFICATION OF ARID REGIONS FOR CLIMATE SIMULATION 2419

TABLE II
ADJUSTED PARAMETER VALUES OF EACH NONPARAMETRIC CLASSIFIER USED IN THE LULC CLASSIFICATION

TABLE III
OA AND KAPPA COEFFICIENTS OF DIFFERENT MACHINE LEARNING CLASSIFIERS ACROSS XINJIANG AND THE THREE SUBREGIONS (%)

TABLE IV
OA AND KAPPA OF CLASSIFICATION (%) UNDER EACH ENSEMBLE STRATEGY

UA, must be considered when employing machine learning to
classify LULC [32], [67], [68].

Except for KNN, C4.5 had the highest classification accuracy
across Xinjiang (OA = 86.91%; Table III), whereas SVM had
the highest classification accuracy in Tianshan (OA = 90.73%),
and RF had the highest classification accuracy in Northern
and Southern Xinjiang (OA = 92.87% and 92.54%, respec-
tively). When comparing the classification effects for the three
subregions, the average OAs for Southern, Northern Xinjiang,
and Tianshan were 91.98%, 91.46%, and 90.13%, respectively,
notably higher than the average OA across Xinjiang (86.26%).
Thus, geographically subdividing the study area based on topo-
graphic conditions further improved the LULC classification ac-
curacy by machine learning. Additionally, Tianshan maintained
the lowest accuracy among the three subregions, indicating that
terrain may be the reason for the low classification accuracy and
the importance of considering topographic factors during LULC
classification [69], [70].

D. Ensemble Learning Classification

Accordingly, this study adopted SVM, RF, ANN, and C4.5 to
construct various ensemble learning models for LULC classifi-
cation in Xinjiang, and its three subregions. The OA and Kappa
of each ensemble strategy were compared to select the optimal
classification method, and the accuracy results are shown in
Table IV.

The greatest level of improvement in LULC classification
accuracy was achieved across Xinjiang, with the OA and Kappa
increasing by ≥6.85% and 8.25%, respectively. By subregion,

Tianshan and Northern Xinjiang were the next most improved,
with OAs increasing by ≥5.60% and 5.24%, and Kappa values
increasing by ≥6.63% and 5.99%, respectively. The lowest
increase was observed in Southern Xinjiang, where the OA and
Kappa increased by ≥5.01% and 6.25%, respectively. Thus, it
was concluded here that ensemble learning classification based
on different single classifier combinations can significantly im-
prove LULC classification accuracy across Xinjiang and its three
subregions, especially in montane areas.

Moreover, by comparing the different ensemble learning clas-
sifications in the three subregions and across Xinjiang, the OA
and Kappa of the four-machine learning algorithm—SVM, RF,
ANN, and C4.5—ensemble strategy in Tianshan and across
Xinjiang was found to be significantly higher than those of
any three-machine learning ensemble, where the OA increased
by 1.99%–2.33% and 1.88%–2.75%, and the Kappa increased
by 2.58%–4.52%, and 3.12%–5.48%, respectively. However,
in Northern and Southern Xinjiang, the OA values of any
three-machine learning ensemble strategies were similar, with an
increase of≤1.00% and 0.80%, and Kappa increased by≤0.48%
and 1.01%, respectively (see Table IV). Thus, the number and
type of classifiers in ensemble learning have a strong influence,
with a theoretical ideal number and type necessary for achieving
an optimal classification effect [71], [72].

The significance-test results (see Table V) show that the
Z-scores of pairs different ensemble learning combination strate-
gies across Xinjiang and three subregions. There were significant
differences between the combination of four different machine
learning algorithms (i.e., SVM, RF, C4.5, ANN) and each of the
combinations of three different machine learning algorithms (Z
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TABLE V
Z-SCORE TEST WITH ASSOCIATED PROBABILITY VALUE (P) FOR MODEL PAIRS

score ≥ 1.96, p≤5%) across Xinjiang and Tianshan, while there
was no significant difference in northern and southern Xinjiang.
This proved that the ensemble learning strategy combining four
machine learning algorithms (i.e., SVM, RF, ANN, and C4.5)
was superior across Xinjiang and Tianshan; whereas, the strategy
combing three algorithms (i.e., SVM, RF, and ANN) worked best
for Northern and Southern Xinjiang.

Additionally, compared with the ensemble learning classi-
fication across Xinjiang, the ensemble learning in the three
subregions can significantly improve the accuracy of LULC
classification, with the OAs of Southern Xinjiang, Northern
Xinjiang, and Tianshan increasing by 6.86%, 6.70%, and 5.87%,
respectively. Thus, geographically subdividing Xinjiang based
on topographic conditions effectively reduced the misclassifica-
tion of vegetation types caused by terrain differences, or highly
heterogeneous surface vegetation in the LULC classification
across the complex conditions of Xinjiang.

E Ensemble Learning Effects on Classification

Fig. 6 shows the PA and UA of different LULC types through-
out Xinjiang and its subregions under different ensemble learn-
ing strategies. Compared with machine learning classification
(see Fig. 5), ensemble learning significantly improved the PA
and UA of different land classes. Among them, in the entire
region of Xinjiang, forests (evergreen needleleaf, deciduous
needleleaf, deciduous broadleaf, mixed, and shrubs), urban,
industrial and mining as well as snow and ice, exhibited the most
obvious improvement effects, with the PA and UA of forests
increasing by 3.55%–20.22% and 4.81%–14.98%, 11.52% and
12.82%, 14.81% and 11.85%, and 12.44% and 19.68%, respec-
tively. By subregion, the PA and UA improvement effects of
Northern Xinjiang were similar to the entire region of Xinjiang

Fig. 6. (a) PA and (b) UA of different LULC types obtained by ensemble
learning for the whole Xinjiang. (c) PA and (d) UA for Northern Xinjiang. (e)
PA and (f) UA for Tianshan. (g) PA and (h) UA for Southern Xinjiang.

for forests (8.42%–19.93% and 8.54%–13.42%, respectively),
urban (15.29% and 11.29%), paddy fields (21.41% and 18.81%),
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TABLE VI
IMPROVEMENT OF CLASSIFICATION PA AND UA (%) UNDER ENSEMBLE LEARNING OF DIFFERENT SUBREGIONS COMPARED WITH WHOLE XINJIANG

industrial and mining (17.85% and 13.98%), as well as snow and
ice (11.59% and 13.68%).

The PA and UA in Tianshan increased the most dramati-
cally for forests (6.15%–24.02% and 6.70%–18.01%, respec-
tively), paddy fields (17.36% and 24.56%), industrial and mining
(20.67% and 25.54%), and permanent wetlands (14.32% and
13.68%). In southern Xinjiang, the most significant improve-
ment in PA and UA were observed for forests (5.07%–16.12%
and 5.73%–24.64%, respectively), paddy fields (10.66% and
15.13%), industrial and mining (13.48% and 10.98%), per-
manent wetlands (17.84% and 13.85%), as well as snow and
ice (20.64% and 12.08%). Overall, the correct classification of
forests, permanent wetlands, paddy fields, urban, industrial and
mining, as well as snow and ice in ensemble learning, were the
keys to its higher classification performance compared to any
single classifier.

Table VI shows the comparison of PAs and UAs for Xin-
jiang and its sub-regions. Compared with the entire region of
Xinjiang, subregion ensemble learning showed the following
three improvement trends for different land categories: First,
shrublands, permanent wetlands, dry land, and paddy fields,
showed significant improvement effects, with their PAs and UAs
increasing by an average of 7.04% and 7.21%; 11.15% and
6.82%; 5.29% and 5.38%; and 7.03% and 7.18%, respectively.
This may be due to the spectral and phenological characteris-
tics of the same vegetation types across different geographical
regions being too dissimilar, as it is difficult to identify the
same vegetation types using ensemble learning across Xinjiang,
whereas subregion level ensemble learning reduced any differ-
ence in surface spectra and vegetation phenology within a given
vegetation type, thereby improving the classification. Second,
the improvement effects of mixed forests, evergreen needleleaf,

deciduous needleleaf, and deciduous broadleaf forests, in addi-
tion to grasslands, croplands/natural vegetation mosaics, urban,
rural, and industrial and mining were clear in one or two zones.
For example, grassland classification improved significantly in
northern Xinjiang but not in either of the other two sub-regions.
Lastly, snow, ice, and water showed insignificant improvement
effect and even negative correlation in the three sub-regions. For
example, the PA of snow and ice in Northern Xinjiang and South-
ern Xinjiang decreased by –1.08% and –3.94%, respectively;
whereas the UA of water in Tianshan decreased by –2.45%,
possibly because these LULC types are unique, and do not
require ensemble learning methods to identify them. The spectral
signature for these land classes may be an overfit, thus resulting
in the mild decrease in accuracy observed. Furthermore, the
ensemble learning under complex topographic conditions here
may have been limited by too few training samples.

F. LULC Products Based on Ensemble Learning

Fig. 7 shows the spatial distribution of LULC in Xinjiang
in 2015 based on ensemble learning classification, in which the
three-machine learning (SVM, RF, and ANN) ensemble strategy
was used in Northern and Southern Xinjiang, and four-machine
learning (including C4.5) ensemble strategy was used in Tian-
shan. Evergreen needleleaf forests were mainly distributed in
the Altai Mountains of Northern Xinjiang. Alternatively, de-
ciduous needleleaf and mixed forests were mainly distributed
in Tianshan, whereas deciduous broadleaf and shrub forests
were mainly distributed on the oasis edge of Southern Xinjiang.
Grassland and sparse vegetation were mainly distributed in
the Altai Mountains, Tianshan, Kunlun Mountains, and desert
transition zone of northern Xinjiang; furthermore, grasslands
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Fig. 7. Spatial distribution of LULC in Xinjiang.

at the edge of the oasis were also abundant. Dry land, paddy
fields, urban, and rural were mainly distributed near river oases;
wetlands around rivers and lakes; and snow/ice was mainly
distributed in the Tianshan and Kunlun Mountains.

Based on the proposed method of LULC classification in
Xinjiang, a map of LULC data (resolution 500 m), including
the entire of Xinjiang, and its three sub-regions under IGBP
classification scheme was generated. The coordinate system is
WGS84 coordinate system using horizontal Mercator projec-
tion. Data can be opened, viewed, and processed using Esri
ArcGIS software. Our findings can be used for climate change
simulations, as well as for assessing ecological services and the
hydrological cycle across Xinjiang.

VI. DISCUSSION

This section further discusses potential improvements, com-
parison with other land-cover products, broader application, and
future scope of this study.

A. Limitations

In this study, owing to limited data sources, various remote
sensing data with different spatial resolutions were resampled
into coarse resolutions to produce the final land cover product
at 500 m. However, raster data model is a representation using
regular grids and the discrete cells in a raster structure cannot
reflect the accurate boundary of spatial objects. Therefore, the
process of resampling high-resolution data to coarse resolutions
inevitably suffers from a loss of spatial information. The prop-
erties of a spatial object such as the area, shape, and location can
be lost during the process [73]. The consistency of topological
relations between different spatial objects may also be lost [74].
This introduces different types of errors and uncertainties when
further employing the resampled product for other research.

For classified land-use data, effective approaches to reduce the
loss in spatial properties have been proposed. Specifically, many
studies have focused on the vector-to-raster conversion and have

put forward different methods to preserve an individual spatial
property of area, topology, or shape [75], [76], and to achieve
balanced preservation of various properties [77]. In addition,
some researchers have paid attention to the resampling process
and presented an area-preserving method for maintaining the
area property after resampling categorical raster data [78]. In
this study, we have chosen the majority sampling method to
upscale the remote sensing data to reduce the loss in spatial
properties. However, the errors and uncertainties introduced by
the resampling process still remain unclear. In future, we would
like to evaluate such type of errors and investigate effective
approaches to further preserve important spatial properties for
land cover classification.

B. Comparison With Other Land Cover Products

The difference between classification schemes is one of the
main factors leading to inconsistent classification results [16].
This also makes rigorous comparison and collaborative use of
different maps challenging [13], [23]. Moreover, to compare
land cover datasets that use different schemes, it is generally
necessary to convert land cover products with more detailed
classes to land cover classification schemes with fewer classes.
This may result in loss of the ability to describe detailed land
cover features and the conversion is not possible, such as forest
land in CAS classification scheme cannot be converted to IGBP
classification scheme [79].

Considering that main purpose of this study was to generate a
new land cover data product that can be suitable for simulating
climate change across Xinjiang, the internationally used IGBP
land cover classification system is optimal for famous climate
models such as WRF model and MM5 model for land cover clas-
sification [80]. Because the classification system of MCD12Q1
[81] and CCI-LC [12] land-cover products is an IGBP classifica-
tion system or can be easily converted to an IGBP classification
system, we selected the resolution of MCD12Q1 and CCI-LC
land cover products to be 500 m by field sampling method, and
compared the accuracy of these products with our product. As
can be seen from Table S2 (see the Supporting Information), the
classification accuracy of MCD12Q1 and CCI-LC land cover
products in Xinjiang was only 59.52% (25 out of 42 sampling
points are correct) and 66.67% (28 out of 42 sampling points are
correct), which is consistent with the results of previous studies
[16], [23], [79]. In comparison, the sampling accuracy of our
land cover products reached 88.09% (37 out of 42 sampling
points are correct).

C. Ensemble Learning Strategy of This Study

In this study, Xinjiang, with its highly heterogenous LULC
under complex topographical conditions, was chosen as a rep-
resentative study region and was divided into three sub-regions
according to the climatic and topographic characteristics. Then
different ensemble learning strategies were formulated, and the
accuracy of land cover classification was compared for each sub-
region. Furthermore, significance test results (see Table V) show
the Z-scores of pairs different ensemble learning combinations
strategies across Xinjiang and its three subregions.
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The results of this study show that in the complex topographic
area of Tianshan compared with the three different ensemble
learning enabled land cover classifications, the four machine
learning algorithm ensemble strategies in Tianshan can improve
the OA by at least 1.99%–2.33% (see Table IV), and the differ-
ence of classification accuracy passed the significance test of Z
score (Z ≥1.96 and p ≤0.05) (see Table V). In Tianshan, with its
complex topographical conditions and extremely uneven spatial
distribution of LULC, the integration of more machine learning
algorithms may be necessary for greater accuracy; using fewer
algorithms may be insufficient for constructing an ensemble,
which is stronger than the single classifier in LULC classification
of Tianshan [71]. However, the OA for the northern Xinjiang and
southern Xinjiang could only be improved by at most 0.99% and
0.80%, and there was no significant difference. As previous stud-
ies have indicated, an optimal number of component classifiers
for an ensemble can obtain the most accurate results with these
classifiers. Increasing or decreasing the number of classifiers
from this ideal point may worsen the prediction or not add
any benefit to the overall performance [72], [82]. Some studies
suggest the number of class labels in a dataset as the ideal number
of component classifiers [72], [83]. However, the real-world data
are very complex and it is still challenging to determine the
ideal number of classifiers in ensemble learning. More machine
learning in ensemble learning classification might not always
yield better classification effect [72]. For example, compared
with the combination of three machine learning algorithms (i.e.,
SVM, RF, ANN), the OA of the combination of three machine
learning algorithms (i.e., SVM, RF, C4.5, ANN) only improved
by 0.04% and 0.51% in Northern and Southern Xinjiang.

D. Broader Application and Future Work

Previous studies have shown that the complexity of topo-
graphic conditions is the main factor leading to the high hetero-
geneity of LULC estimates, which greatly limits the improve-
ment of LULC classification accuracy [24]. Accordingly, the
influence of topographic conditions must be considered when
classifying LULC for large areas [69]. To reduce the impact
of topographic factors on ensemble learning classification, it is
necessary to subdivide complex topographic areas according to
climate and topographic characteristics. The method used here
has been proved to be effective for improving accuracy. Accord-
ing to this logic, geographically subdividing the study area based
on topographic conditions can potentially be an effective method
for further improving the classification accuracy of typical
arid regions [34], [84]. Therefore, the subregions used here could
potentially be subdivided further, especially the Tianshan region,
for additional improvements in accuracy [60], [85], [86].

Future efforts should focus on following factors: First, five
primary types of machine learning algorithms (KNN, SVM, RF,
ANN, and C4.5) were applied in the present study. A larger
number or more diverse assortment of machine learning algo-
rithms could be employed for more efficient ensemble learning.
In addition, the stacking strategy is primarily used in ensemble
learning for classification, and other diversity strategies should
be tested in LULC classification; for example, Bagging and

Boosting, could also be assessed for their capacity to improve
accuracy. Moreover, Xinjiang is only divided into three regions:
Northern Xinjiang, Tianshan Mountain, and Southern Xinjiang.
Future research needs to further subdivide Xinjiang to improve
the classification accuracy of land cover. Such as, the Tianshan
can be subdivided into the North Tianshan, the East Tianshan,
and the West Tianshan [34]. Furthermore, the presented en-
semble learning approach, which considers the difference in
various geographical regions, can also be applied in other global
locations with similar geographical characteristics, including
montane areas with complex topographic conditions and arid
desert-oasis mosaic landscapes with highly heterogeneous sur-
face vegetation types. Lastly, the resolution of the generated
LULC products in this study was 500 m, and higher resolution
remote sensing imagery could be combined for achieving an
improved resolution of the results.

VII. CONCLUSION

Here, an ensemble learning approach was proposed for per-
forming LULC classification in Xinjiang, northwest China. The
study area was divided into three subregions according to cli-
mate and topographic characteristics, and five machine learning
algorithms—KNN, SVM, RF, ANN, and C4.5—were integrated
to develop different ensemble learning strategies for LULC
classification. The accuracy and efficiency of each proposed
ensemble learning approach were evaluated and analyzed, and
the following three primary conclusions were drawn.

First, compared with individual machine learning algorithms,
the ensemble learning strategy proposed here significantly im-
proved LULC classification accuracy, with the approach having
the greatest effect on Tianshan (OA and Kappa values were in-
creased by 5.60% and 6.63%, respectively), followed by North-
ern Xinjiang (5.24% and 5.99%), and Southern Xinjiang (5.01%
and 6.25%). In addition, the correct classification of different
forest types via ensemble learning was the main contributor
driving the higher classification accuracy.

Second, optimal combinations of machine learning algo-
rithms were revealed for use in ensemble learning so that LULC
classification was optimized for each subregion. Specifically,
adopting SVM, RF, and ANN in the ensemble learning strategy
was the most efficient for Northern and Southern Xinjiang (OA
values of 96.35% and 96.92%, respectively), whereas a strategy
employing SVM, RF, ANN, and C4.5 for ensemble learning was
the most efficient for Tianshan (OA = 96.33%).

Lastly, the impacts of the proposed ensemble learning ap-
proach on classifying different land types could be summarized
into three scenarios: First, the proposed approach was efficient
for all three sub-regions, particularly for land types including
shrublands, permanent wetlands, dry land, and paddy fields.
Second, the approach was more successful for one or two
subregions with mixed forests, evergreen needleleaf, deciduous
needleleaf, and deciduous broadleaf forests, in addition to grass-
lands, croplands/natural vegetation mosaics, urban, rural, and
industrial and mining. Third, the approach was not successful
in any of the three subregions with land types of snow, ice, and
water.
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In summary, we introduced complex terrain and climate con-
ditions of Xinjiang into land-cover classification, and developed
a new ensemble learning method to achieve accurate land-cover
classification. Furthermore, we produced a new land-cover prod-
uct with a two-level classification system, which solves the
problem of low accuracy of land-cover classification in Xinjiang
climate simulation and can be used in other research areas, such
as territorial space planning and hydrological simulation.
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