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Photo Semantic Understanding and Retargeting by a
Noise-Robust Regularized Topic Model

Guifeng Wang , Luming Zhang , Yongbin Li, and Yichuan Sheng

Abstract—Retargeting aims at displaying a photo with an ar-
bitrary aspect ratio, wherein the visually/semantically prominent
objects are appropriately preserved and visual distortions can be
well alleviated. Conventional retargeting models are built upon the
visual perception of photos from a family of prespecified communi-
ties (e.g., “portrait”), wherein the underlying community-specific
features are not learned explicitly. Thus, they cannot appropriately
retarget aerial photos, which contains a rich variety of objects with
different scales. In this article, a novel aerial photo retargeting
framework is designed by encoding the deep features from auto-
matically detected Google Maps (https://www.google.com/maps)
communities into a regularized probabilistic model. Specifically,
we first propose an enhanced matrix factorization (MF) algorithm
to calculate communities based on million-scale Google Maps pic-
tures, for each of which deep feature is learned simultaneously. The
enhanced MF incorporates label denoising, between-communities
correlation, and deep feature encoding collaboratively. Subse-
quently, a probabilistic model called latent topic model (LTM)
is designed that quantifies the spatial layouts of multiple Google
Maps communities in the underlying hidden space. To alleviate
the overfitting from Google Maps communities with imbalanced
numbers of aerial photos, a regularizer is added into the LTM.
Finally, by leveraging the regularized LTM, we shrink the test
photo horizontally/vertically to maximize the posterior probability
of the retargted photo. Comprehensive subjective evaluations and
visualizations have demonstrated the advantages of our method.
Besides, our calculate Google Maps communities are competitively
consistent with the ground truth, according to the quantitative
comparisons on the 2 M Google Maps photos.

Index Terms—Aerial photo, deep feature, matrix factorization,
probabilistic model, retargeting.

I. INTRODUCTION

W ITH the widespread availability of displayers in the
past decade, retargeting has becoming a useful tech-

nique that displays an aerial photo on screens with differ-
ent aspect ratios. For example, to design the wallpaper for
a cell phone, we can adapt a high-resolution aerial photo
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Fig. 1. Aerial photos from different communities are with different spatial
layouts and thus should be shrunk differently.

cropped from Google Maps to a low-resolution cell phone
screen. It is generally acknowledged that nonuniform scal-
ing is suboptimal when the targeted aerial photo’s aspect ra-
tio is apparently different from the original one. Meanwhile,
cropping performs unsatisfactorily if the visually/semantically
salient regions are located dispersely. Aiming at a cross-
resolution displaying technique, content-aware photo retar-
geting was proposed, focusing on optimally preserving visu-
ally/semantically important regions while shrinking the unim-
portant ones to reasonable scale. We have observed that, the ex-
isting content-aware retargeting [32], [34], [36], [37] algorithms
are still frustrated to handle aerial photos due to the following
challenges.

1) Conventional retargeting models are typically trained by
utilizing well-composed aerial photos from a range of
communities, wherein the community-specific deep fea-
tures are not explicitly encoded. As exemplified in Fig. 1,
for community “city,” the salient objects are scattered
around the aerial photo. Thus, the retargeting process
is achieved similarly to uniform scaling. Comparatively,
for community “airport,” there are typically one or mul-
tiple aircrafts centered in the aerial photo. Therefore,
the optimal retargeting should well preserve the center
objects while maximally squeezing the rest background
areas.

2) There are million-scale online aerial photo hosted by
photo sharing websites, e.g., Google Maps and Ope-
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Fig. 2. Pipeline of our proposed community-aware photo retargeting.

nAerialMap.1 It is feasible to employ aerial photos from
them to learn a community-aware retargeting model. Actu-
ally, however, the Google Maps communities are manually
built and maintained, which might be noisy. Ideally, we
want a data mining system that can automatically detect
communities. But designing such a system is difficult.
Potential challenges include how to intelligently avoid the
noisy community labels and how to exploit the intracor-
relation between communities.

3) Each aerial photo website like Google Maps contains
a rich variety of communities. Theoretically, learning a
retargeting model that successfully represents the visual
perceptual elements to multiple communities is a difficult
task. Also, for Google Maps communities such “park”
and “residential area” are somewhat relevant since they
contains lots of “houses” photos. Contrastively, communi-
ties like “airport” and “intersection” are nearly irrelevant.
This examples shows the importance of calculating the
underlying hidden topics from multiple Google Maps
communities. Moreover, some aerial photo communities
typically contains too few aerial photos, which will lead
to overfitting when training models training.

To overcome the aforementioned problems, a community-
guided aerial photo retargeting is designed by encoding deep
features from intelligently detected communities using a regu-
larized latent topic model (LTM). The proposed LTM can be
robustly learned in the presence of noisy image-level labels in
the aerial photo set. Besides, the regularized term can make our
LTM model has a high generalization ability toward categories
with very few aerial photos. An overview of our pipeline is
displayed in Fig. 2. Given a rich set of aerial photos, each
represented by one or multiple communities, we propose an
enhanced MF algorithm to derive the community label of each

1openaerialmap.org

aerial photo. The MF seamlessly integrates three modules:
community label denoising; intracorrelation between commu-
nities; and deep semantic encoding. Accordingly, an iterative
algorithm is utilized to solve the MF problem. Afterward, to
learn the latent topics from communities discovered by our MF
and to handel overfitting, a regularized probabilistic topic model
is formulated to quantify the styles from multiple Google Maps
communities as a feature in the underlying hidden space. Finally,
according to the learned feature, the aerial photo retrageting
process is conducted based on a probabilistic model, where the
test aerial photo is shrunk either horizontally or vertically to
maximize the posterior probability. Extensive user studies on
our compiled aerial photo set have demonstrated the competi-
tiveness of our approach. Besides, quantitative comparisons have
shown that the Google Maps communities discovery algorithm
remarkably outperforms a series of counterparts.

Actually, these hidden communities are not visible compared
to the massive-scale downloadable aerial photos. They are ab-
stract concepts calculated using some data mining technique, by
mimicking human visual perception and cognition. For humans,
when they observe a huge number of aerial photos, they will
perceptually categorize these aerial photos into multiple abstract
concepts, such as “metropolises” and “industrial park.” For our
method, we proposed a novel regularized topic model to auto-
matically discover the abstract concepts from the massive-scale
aerial photos. The benefits are twofold:

1) there is no need to predefine the abstract concepts, which is
highly challenging task based on the domain experiences;

2) we can tune the number of abstract concepts and check
whether our wanted abstract concepts are discovered.

This can be used to facilitate different applications.
The main contributions of our work are given as follows. First,

a noise-tolerant MF is proposed that simultaneously combine
community label denoising, intracorrelation between communi-
ties, and deep semantic encoding. Second, a novel probabilistic
topic model is designed that effectively calculates the features of
aerial photos from different Google Maps communities, wherein
the overftting problem can be optimally addressed. Third, an
in-depth experimental evaluation on 2 M aerial photos cropped
from Google Maps is conducted to evaluate our method com-
prehensively.

The rest of this article is organized as follows. Section II
reviews the related work in the past decade. Section III elaborates
the three important modules in our retargeting framework: a
noise-refined deep MF algorithm for Google Maps communities
discovery; a regularized LTM for modeling the distribution of
aerial photos from multiple communities; and a probabilistic
model that maximizes the posterior probability of the retargeted
aerial photo. Experimental validations in Section VI verified
the advantage of our proposed framework. Finally, Section V
concludes this article.

II. RELATED WORK

Our retargeting model is motivated by two hot directions in
image processing and data engineering: content-aware photo
retargeting and community learning.
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A. Content-Aware Photo Retargeting

There are tens of retargeting algorithm in image processing
domain, where a few representative ones are reviewed as fol-
lows. Avidan et al. [3] formulated image retargeting as dynamic
programming-based seam detection, based on which a gradient
energy is utilized to indicate the pixels’ significance. Bubin-
stein et al. [34] proposed an energy optimization objective to
enhance Avidan et al.’s work. As an upgraded version of seam
carving, Pritch et al. [32] discretely abandoned the duplicated
visual patterns from each segmented regions. Wolf et al. [39]
proposed to optimally combine less important pixels to achieve
invisible visual distortion, which is propagated along the shrink-
ing direction. In [36], Sun et al. proposed a retargeting algorithm
that effectively produces thumbnails from input images. In [13],
Guo et al. designed a robust photo retargeting algorithm by
leveraging saliency-based mesh parametrization. Lin et al. [23]
proposed a patch-based retargeting by preserving the shapes
with both visually attractive regions and geometric structures.
By constructing a latent space combining a set of operators [35],
Rubinstein et al. proposed a retargeting scheme by optimiz-
ing the operation path in the latent space. Wang et al. [38]
proposed a video retargeting method by conducting cropping
and wrapping iteratively. The cropping removes the temporally
repeated contents while the warping leveraging homogeneous
regions to reduce deformations and maintain motional feature.
In [30], Panozzo et al. retargeted photos in the space constructed
by various deformation operations. Recently, Castillo et al. [7]
analyzed the influences of human gaze behavior on retargeting,
based on the comprehensive experimental evaluations on the
RetargetMe [33]. Noticeably, the aforementioned retargeting
models can only handle pictures captured by consumer cam-
eras. They may not successfully retarget aerial photos that are
captured by high precision optical sensors installed on satellites.

B. Learning Communities Technique

The objective of learning communities is to discover the inher-
ent sophisticated structures from massive-scale networks. The-
oretically, one community can be deemed as a cluster of densely
distributed vertices (each representing an aerial photo from
Google Maps in our context), which are loosely connected to
the other clusters. The communities discovery problem has been
studied deeply and extensively in machine learning. Subtopics
include mining multiple overlapping communities proposed by
Gregory [12] and Zhang et al. [44], community mining from
bipartite graphs [31], and jointly encoding side information and
network structure for communities discovery [41] work. Lanci-
chinetti et al. [21] theoretically and empirically compared two
communities discovery algorithms by employing a rich set of
baseline graphs. In [22], the authors pointed out that deriving the
underlying communities structure from massive-scale networks
is extremely challenging, since many networks with compli-
cated structures are optimized locally. Yoshida [42] proposed to
mine communities based on Internet-scale social networks by
taking advantage of the complicated graph geometry. In [10],
the authors proposed to categorize Boolean vectorial feature
into multiple communities, i.e., the vertices’ features are labeled

by multiple communities. By representing vertex memberships
from overlapping communities, Yang and Leskovec [40] formu-
lated an objective function to search overlapping communities
from multiple networks. We notice that the aforementioned tech-
niques cannot well handle the possibly contaminated community
labels in the model training stage. Even worse, the inherent
characteristics among multiple communities is not explored.

III. OUR METHOD

A. MF Under a Deep Framework

Practically, each aerial photo is associated with one or mul-
tiple communities, as exemplified in Fig. 1. It is significant to
exploit the community information during aerial photo retarget-
ing. Herein, for label matrix containing the community labels
C ∈ RC×N , where N counts the aerial photos and C counts the
unique labels, our proposed MF framework seeks to characterize
it using the product of two factor matrices P ∈ RH×C and
Q ∈ RH×N , i.e.,

min
P,Q

1

2
||C−PTQ||2F +

τ1
2
||P||2F +

τ2
2
||Q||2F (1)

where the overfitting problem can be well handled by the pair-
wise regularizers; τ1 and τ2 are pairwise positive parameters
between zero and one; factor matrices P and Q, respectively,
denote the basis matrix and hidden community matrix calculated
by N aerial photos.

Noticeably, the traditional MF simply discover the clues from
communities. This cannot optimally avoid the negative effects
from the noisy community labels. At the same time, the com-
plicated relationships between Google Maps communities fail
to be captured. Furthermore, semantically modeling the hidden
structure of an unknown aerial photo is also difficult. To solve
these problems, an enhanced matrix factorization is developed.

1) Denoising: The labels of aerial photos are annotated by
humans typically, which is usually noisy and even incomplete.
In our work, a novel label denoising component Φ(C,Y) is
proposed. The label noise refinement module is directly incor-
porated into the previous community matrix. This is conducted
by calculating the relevant community labels that transfer in-
formation between multiple aerial photos and their labels. In
machine learning domain, it is apparently that the l1 norm can
produce a high tolerance to label noises [18]. In this way, a novel
l1 norm is applied here

Φ(C,Y) = α||C−Y||1 (2)

Herein, Y ∈ RC×N denotes the matrix capturing the annotated
labels obtained from a rich set of aerial photos.

2) Correlation Encoding: For our proposed MF that can
robustly handle label noises, it is necessary to optimally en-
code the inherent relationships between a set of Google Maps
communities. This is because the underlying hidden distribu-
tion of Google Maps communities is an informative feature
for exploiting these communities. Herein, we characterize the
underlying correlations by leveraging the operation of inner
product. Formally speaking, such inner product operation can
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Fig. 3. Illustration of our designed deep community encoding model.

be represented as

Γ =
β

2
||S−QTQ||2F (3)

where S ∈ RC×C denotes a matrix that is symmetric. It can
encode the differences between C Google Maps communities.
In detail, the ijth each element can be computed via

Sij = exp

(
−dJS(θi||θj)

2τ2

)
(4)

where θi represents the feature distribution of deep convolu-
tional neural network (CNNs) [20] calculated from the entire
aerial photos coming from the each community. Simultaneously,
dJS(·, ·) denotes the JS divergence [11].

3) Deep Community Encoding: In order to embed an unseen
aerial photo, W ∈ RH×R is deployed to convert aerial photos’
deep features into the H-dimensional hidden community fea-
tures capturing the styles of different aerial photos, i.e., Q =
WX. Herein, matrix X ∈ RR×N represents the R-dimensional
deep features extracted by leveraging the N aerial photos.

Noticeably, simply mapping the extracted deep features into
the underlying hidden community space might be imperfect ow-
ing to the insurmountable semantic gap. Thanks to the excellent
performance of hierarchical features [14], [20], an hierarchial
learning framework is designed to calculate the underlying
hidden community representation (as elaborated in Fig. 3). Such
component can be optimally integrated into the aforementioned
MF architecture for Google Maps communities mining. More-
over, a deep CNN is designed that includes convolutions as well
as pooling functions that end-to-end calculate deep features from
aerial photo regions. For the CNN having L layers, each layer
fl(xi)’s output can be obtained in the following way:

fl(xi) = φ(Wlfl−1(xi) + εl), l = 1, . . . , L (5)

where φ(·) describes the function that activates; and Wl capture
the weight matrix from the ith layer, which maps deep feature xi

to the corresponding deep representation yi. Notably, we assume
a linear projection between the input and output in each layer of
our deep model. fl(·) and εl, respectively, means the deep feature
from the lth layer and the bias. Herein, our designed deep model
is pretrained by leveraging the well-known ImageNet [20].
Specifically, the output from the first layer WfL(X) represents
the hidden community features extracted from N aerial photos.
In our implementation, following [20], we set L = 7.

We integrate these noise reduction, correlation, and deep
community features into the traditional MF, based on which the

Fig. 4. Illustration of our proposed GMM-LTM.

following objective function can be obtained:

min
C,P,W,Θ

1

2
||C−PTWfL(X)||2F + α||C−Y||1 + β

2
||S

−fT
L(X)WTWfL(X)||2F +R(Θ,W,P), s.t.,C∈ {0, 1}C×N

(6)

where Θ contains the parameters of the deep model; and R(·)
denotes the regularization term toward all the inherent parame-
ters.

The aforementioned objective function is nonconvex toward
all the parameters. Thus, we propose to solve it by an iterative
algorithm as detailed in drive.2

B. Regularized LTM

After labeling the communities to the million-scale aerial
photos, we then characterize the distribution by discovering the
hidden topics by exploiting a rich set of communities. The latent
topics are informative clues for retargeting since some Google
Maps communities are closely correlated in semantics (e.g.,
“rooftop,” and “house”). Therefore, it is significant to combine
these highly correlated communities.

In our implementation, a Gaussian latent topic model is de-
signed and can be mathematically described in Fig. 4. For a deep
feature calculated using aerial photo d associated with Google
Maps community tag z as well as the corresponding Gaussian
component v, the overall distribution is given as

p(F|Υ) =

M∏
d=1

N∏
i=1

K∑
z=1

V∑
v=1

p(fd,i|μv,Σv)p(zd,i|θd)p(vd,i|ϕz)

(7)
where p(fd,iμd,z,Σd,z) denotes the multivariate distribution
wherein μ and Σ, respectively, denote the mean and variance
of the Gaussian components; p(zd,i|θd) and p(vd,i|ϕz) denote
pairwise multinomial distributions; and Υ = {μ,Σ, θ, ϕ}.

Practically, the numbers of aerial photos within different com-
munities are also different. A few Google Maps communities
contain very few aerial photos. Thus, the overfitting will be
generated when training the model. Therefore, a regularizer

2https://drive.google.com/file/d/1PMJWmsWDRPvlM6WqmsYXMqA1j0
NQ6YFn/view?usp=sharing

https://drive.google.com/file/d/1PMJWmsWDRPvlM6WqmsYXMqA1j0NQ6YFn/view?usp=sharing
https://drive.google.com/file/d/1PMJWmsWDRPvlM6WqmsYXMqA1j0NQ6YFn/view?usp=sharing
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is designed to upgrade our designed Gaussian LTM. Herein,
the inherent parameters are optimized by maximizing the below
objective function, that is,

q(Υ|Υt,Υt
g) � p(F|Υ) + p(F|Υt) + ρ ∗ p(F|Υt,Υt

g) (8)

where ρ is a positive weight reflecting the regularizer’s signifi-
cance. p(F|Υt) and p(F|Υt,Υt

g) are calculated as follows:

p(F|Υt)=

M∏
d=1

N∏
i=1

K∑
z=1

V∑
v=1

p(z, v|Φt) ∗ log
p(fd,i, z, v|Υ)

p(fd,i, z, v|Υt)

(9)

p(F|Υt,Υt
g)=

M∏
d=1

N∏
i=1

K∑
z=1

V∑
v=1

p(z, v|Φt
g) ∗log

p(fd,i, z, v|Υ)

p(fd,i, z, v|Υt
g)
.

(10)

Thereafter, our proposed regularized LTM is written as

p̂(F|Υ) = p(F|Υ) + ρ ∗ p(F|Υt,Υt
g). (11)

Optimization: Formally, (8) is represented as

q(Υ|Υt,Υt
g) ∝ Epr(z,v|F,Υt,Υt

g)
∗ logp(F, z, v|Υ) (12)

where pr(z, v|F,Υt,Υt
g) =

p(z,v|F,Υt)+ρ∗p(z,v|F,Υt
g)

1+ρ repre-
sents the inherent structure with respect to the parameters.

Thereafter, we propose an updated EM to iteratively derive
the weights in (12). During the E-step, according to the exist-
ing parameters, the posterior provability can be computed as
follows:

lz,v = pr(z, v|F,Υt,Υt
g). (13)

During M-step, we integrate the Lagrange multipliers. Accord-
ingly, we calculate the parameters by optimizing the following
objective function:

Υt+1 = argmax
Υ

q(Υ|Υt,Υt
g) + γ1

M∑
d=1

(
1−

K∑
z=1

θd,z

)

+ γ2

K∑
z=1

(
1−

V∑
v=1

φz,v

)
. (14)

By solving the objective function (14), we can obtain

θt+1
z,v =

∑V
v=1 lz,v∑K

z=1

∑V
v=1 lz,v

(15)

ϕt+1
z,v =

∑M
d=1 l

d
z,v∑K

z=1

∑V
v=1 l

d
z,v

(16)

θt+1
g =

exp
(∑M

d=1

∑K
z=1 logθt+1

d,z /MK
)

exp
(∑M

d=1

∑K
z∗=1 logθt+1

d,z∗/MK
) . (17)

According to (13), (15), (16), and (17), our designed EM is
carried out iteratively.

C. Probabilistic Model for Retargeting

In computer vision community, aerial photo visual percep-
tion is subjective, different photographers might have different

Fig. 5. Illustration of our aerial photo retargeting by grid shrinking.

opinions toward the same aerial photo. To handle this problem
during the retargeting process, we attempt the encode the visual
perception experiences of Google Maps users from the test
aerial photo’s community. Specifically, we model the styles of
aerial photos in the various Google Maps communities mined
by us. In our implementation, we adopt the aforementioned
regularized LTM to characterize the distribution of deep features
[calculated by (5)] from aerial photos inside multiple Google
Maps communities.

Apparently, the retargeted aerial photo should be similarly
perceived to the training aerial photos from multiple communi-
ties. For a new aerial photo, we obtain its deep feature, based
on which the probability of each grid is calculated. During
shrinking, to alleviate using triangle mesh, which inevitably pro-
duces distortions in triangle orientations, grid-guided shrinking
scheme is utilized. More specifically, the test aerial photo is
evenly divided into equal-sized grids. Based on this, we calculate
the horizontal weight of grid φ as

wh(φ) = max
f

p̂(f |Υ). (18)

It is noticeable that, the shrinking process is conducted one-by-
one (from left to right as displayed in Fig. 5). For each shrinking
step, a temporary retargeted aerial photo is produced. In (18), f
is the deep feature corresponding to the current test aerial photo
during shrinking, and probability p̂(f |Υ) follows the proposed
regularized LTM as detailed in (11).

After calculating each grid’s horizontal weight, a normaliza-
tion is conducted as follows:

w̄h(φi) =
wh(φi)∑
i wh(φi)

. (19)

Assuming that the retargeted aerial photo has a size of
W ×H , the horizontal and vertical dimensions of the ith grid
is squeezed to [W · w̄h(φi)] and [H · w̄v(φi)], respectively.
Herein, [·] rounds a real number. As exemplified in Fig. 5, the
foreground aircrafts are visually/semantically salient. And thus
they are kept in the retargeted aerial photo without shrinkage.
Comparatively, the backgrounds are less semantically important.
In this way, they will be compressed both horizontally and
vertically.

Based on the descriptions in this section, an overview of our
aerial photo retargeting is presented in Algorithm 1.
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Algorithm 1: Community-Aware Aerial Photo Retargeting
using Deep Noise-refined MF.

input: Million-scale aerial photos with community labels,
parameters α, β, τ1, τ2 ρ, C and a test aerial photo;

output: Matrices W, C, and the retargeted aerial photo;

1) Use our deep noise-robust MF to discover a series of
Google Maps communities, and calculate the deep feature
for each aeiral photo;

2) Use the regularized probabilistic model to calculate the
distribution of aerial photos in each of the C communities;

3) Grid-based aerial photo shrinking based on the posterior
probability calculated from the probabilistic model, and
output the retargeted aerial photo.

IV. EXPERIMENTAL EVALUATION

Herein, we validate the performance of our method by lever-
aging three experiments. The first experiment compares our
method with a series of popular photo retargeting algorithms.
Subsequently, we carefully test each module in our proposed
aerial photo retargeting pipeline: deep noise-refined MF; the
regularized LTM; and the probabilistic model for retargeting.
Third, we show the influence of important parameters on retar-
geting.

The entire aerial photos for experimentation are collected
from Google Maps. The entire aerial photo set involves more
than 2 M samples cropped from multiple well-known Google
Maps communities. There are approximately 90 000 ∼ 120 000
photos crawled from different continents throughout the world
in each community. Herein, we randomly select 50% aerial
photos from each community, in order to learn our enhanced
MF framework. Based on this, we employ 80 aerial photos as
well as the standard RetargetMe [33] to evaluate the retargeting
performance.

A. Comparative Study and Analysis

1) Retargeting Performance: We evaluate our designed re-
targeting model by comparing with many baseline methods, that
is, seam carving (SC) and its enhanced version (ISC) [3], opti-
mized scale-and-sketch (OSS) [37], and saliency-based mesh
parametrization (SMP) [13]. We first report the aerial photo
retargeting performance in Fig. 6. As can be seen, the follow-
ing observations are obtained. First, our pro- posed retargeting
model nicely encodes those semantically significant targets in-
side different aerial photos, like the faces and the architecture.
This observation reflects that our probabilistic retageting model
can obtain the spatial layouts of well-composed images. As
shown, the foreground prominent objects are salient in each
image. In contrast, the baseline models sometime strongly shrink
the key objects and produce observable visual distortion. Next,
the key objects as well as the surroundings are nicely arranged
in the generated photos. As an example, the intersection, the
gymnasium, and the surroundings are harmonically distributed.
The pairwise barrels and palette, and their complicated spatial
configurations, can be optimally kept. Last but not least, the boat

Fig. 6. Aerial photos retargeted by different algorithms.

and the architectures are the key to the retargeted picture. These
objects are perfectly preserved.

Additionally, we compare the retargeting performance on
generic photos from RetargetMe [33]. As can be seen from
Fig. 7, our method retargets aerial photos more aestheti-
cally pleasing. The central visually/semantically salient ob-
jects are well preserved with less shrinkage. Moreover, our
method produces retargeted photos with least perceptual visual
distortions.

Afterward, a comprehensive user study is conducted to make
a comparison toward a series of retargeting algorithms. Among
these, 40 volunteers recruited from our Computer Sciences
Department are participated. For each volunteer, the retargeted
as well as the reference aerial photos, and solely the retargeted
aerial photo not including the reference one. We follow the setup
in [33], wherein the agreement coefficient [19] is calculated in
order to quantify volunteers’ opinions on aerial photos retargeted
by various techniques. Herein, a relatively low score quantifies
the difficulty in making a decision. Meanwhile, the calculated
agreement coefficients over all the experimental aerial photos are
reported in Fig. 8. It is noticeable that, in Fig. 8(a), the agreement
parameter decreases sharply since there is no reference aerial
photo displayed. As shown, volunteers made strong agreements
on attributes like “face/people” and “symmetry.” This is because
that human face is visually important in visual perception and
symmetry is an implicitly perceptual attribute. As can be seen
from Fig. 8(b), users hold the opinion that our approach signif-
icantly outperforms its counterparts on attributes “face/people”
and “texture.” Comparatively, for the rest attributes, our method
slightly surpasses its counterparts.
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Fig. 7. RetargetMet [33] photos retargeted by different algorithms.

Fig. 8. Quantitative analysis of the five baseline retargeting algorithms.

2) Visual Perception Encoding: To further validate the com-
petitiveness of our retargeting model, we testify the visual
perceptual descriptiveness of our approach. We generate nearly
1000 candidate subregions by tuning the central translation [43]
with a 10-pixel interval. Herein, the aspect ratio is fixed to the
same as that of the previous aerial photo. Thereafter, p̂(F|Υ)
is utilized to quantify the perception of each sub region in
an aerial photo. Afterward, the highest scoring one is calcu-
lated. Accordingly, ten testing aerial photos combined with their
highest/lowest quality subregions in Fig. 9. We also create a
perceptual map by calculating the perceptual quality toward all
the patches corresponding to the largest score of the subregions
inside it. As can be seen from Fig. 9, the subregions with
different quality attributes are apparently different, based on the
calculated saliency map. Overall, the following conclusions can
be obtained.

Fig. 9. Perceptual quality evaluation (the differently colored windows respec-
tively denote subregions with the different quality attributes.).

1) The top salient regions predicted by our model usually
describe those foreground semantic objects, e.g., the hu-
mans and mosque. It shows that maintaining the the central
semantically important objects is the key for visual com-
position. When observing the highest/lowest perceptual
quality subregion in Fig. 9, it is noticeable that the highest
ranking subregions cover those foreground objects. In
contrast, the lowest scoring subregions typically contain
foreground objects incompletely, that is, the face and
yacht.

2) The designed method not only well reflects the seman-
tically important targets but also can effectively suggest
optimally composed subregion. For the highest scoring
subregions Fig. 9, the central key objects are typically
located near the diagonal line or surrounded by a set of
objects (like the mosque and trees).

3) Our designed method can nicely capture aerial photos
with a rich set of styles, such as portraits, landscape,
architecture, and even abstract painting. This is because
the proposed deep noise-fined MF learns a descriptive
compositional descriptor, and the regularized LTM can
optimally encode various image styles from multiple com-
munities.

B. Component-Wise Evaluation

Generally, there are two main parts in our proposed aerial
photo retargeting pipeline: the deep noise-refined MF and
regualized LTM. Herein, we carefully evaluate the usefulness
of these two modules.

For the first component, we compare it with multiple famous
communities discovery techniques. In particular, the multiple
benchmark techniques are as follows:

1) mixed membership stochastic block (MMSB) [2];
2) block-LDA [4];
3) K-means clustering (KC) [27];
4) hierarchical clustering (HC) [17];
5) link clustering (LC) [1];
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TABLE I
BER SCORES OF DIFFERENT GOOGLE MAPS COMMUNITIES DISCOVERY ALGORITHMS

TABLE II
COMPARATIVE STANDARD ERROR OF BER SCORES OF DIFFERENT GOOGLE MAPS COMMUNITIES DISCOVERY ALGORITHMS

6) clique percolation (CP) [29];
7) low-rank embedding (LRE) [42];
8) multiassignment clustering (MAC) [10].
Herein, three overlapping-guided communities discovery

techniques are adopted for empirical study. For these employed
techniques, we set the number of Google Maps communities
by following the well-known BIC criterion. Furthermore, the
integrate complete likelihood technique [5] is leveraged for
evaluating the performance of our proposed technique. The
entire data possibility is built upon the parameters learned from
the expectation maximization (EM).

Following the comparative study [16], the BER [9] and F1

scores [28] are calculated in our experiment. As shown in
Tables I–IV, we can obtain the following conclusions.

1) For the entire 20 Google Maps clusters, in 18 Google Maps
circles, the best performance is achieved by our method.
This is because the internal BER and F1 scores reach the
top. The results show that the advantage of our method
in handling noisy aerial photo labels, by employing the l1

norm to simultaneously tackle contaminated aerial photo
visual/semantic tags and the cluster tags. Nevertheless, the
other cluster discovery techniques cannot well handle the
noisy community tags effectively.

2) For Google Maps clusters reflecting detailed concepts,
they are likely to be observed highly probably. Compar-
atively, for clusters capturing the abstract concepts, it is
noticeable the all the communities discovery techniques
are ineffective. This is because, aerial photos with abstract
meanings usually are with a fixed appearance. In this way,
the produced visual descriptors cannot well capture them.

To evaluate the performance of probabilistic model, two
different setups are utilized. In the first place, our designed
probabilistic model is replaced by the traditional Gaussian mix-
ture model, the PGLSA [15], and the LDA [6], respectively.
Also, we make a comparison with the LSTM by leveraging the
categorization EM [8]. Afterward, the regularizer encoded in
proposed LTM is abandoned by us. To validate the usefulness
of these probabilistic topic models, the ground-truth distribution
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TABLE III
COMPARATIVE F1 SCORES OF DIFFERENT GOOGLE MAPS COMMUNITIES DISCOVERY ALGORITHMS

TABLE IV
STANDARD ERROR OF F1 SCORES OF DIFFERENT GOOGLE MAPS COMMUNITIES DISCOVERY ALGORITHMS

of each Google Maps cluster is calculated by learning a GMM
from the entire aerial photos. Next, inside different clusters, the
well-known KL-divergence measure is deployed to calculate
the difference among different distributions probabilistically
learned. As can be seen from Table V, either the GMM, or the
PLSA, or the LDA preforms worse than our designed probabilis-
tic model. This is because that our proposed probabilistic model
combines the superiorities of both the GMM and PLSA. Fur-
thermore, by removing the regularization term, the communities
discovery accuracy decreases sharply, particularly for Google
Maps communities including users with few photos.

C. Parameter Analysis

As shown in Algorithm 1, we have multiple parameter sets
that is tunable, i.e.,

1) the weight of the denoising term α;
2) the weight of the correlation preservation β;
3) the weight of the MF regularizer τ1 and τ2;
4) the weight of the regularizer in LTM.

Fig. 10. (Left) BER and (right) F1 values by varying α.

To easily tune τ1 and τ2, we simply set τ1 = τ2.
In the first place, the BER and F1 values is verified by

changing α. This operation can determine the influences of
denoising on Google Maps community labels. This parameter
is tuned from 0 to 0.5 with a step of 0.05. We report the results
in Fig. 10. For both BER and F1 values, the highest accuracies
are received when α = 0.05. This result show that setting 0.05
to the denoising weight is an optimal choice.
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TABLE V
KL-DIVERGENCES UNDER DIFFERENT TOPIC MODELS (GM MEANS GOOGLE MAPS)

Fig. 11. (Left) BER and (right) F1 values by varying β.

Next, the accuracy of our Google Maps communities dis-
covery is validated by adjusting β. This parameter indicates
the importance of maintaining the intrinsic geometry among
communities. Meanwhile, we adjust it from 0 to 0.5 with a
step of 0.05. As displayed in Fig. 11, for both the BER and
F1, the calculated accuracy increases and subsequently peaks.
Thereafter, the accuracy decreases to a relatively low value. This
result shows that 0.05 is a good choice for β. At the same time,
it verifies that on the massive-scale aerial photo set from Google
Maps, communities’ underlying relationships is equally treated
as label denoising.

Third, we test our proposed method under various values
of τ1 and τ2. This can regularize our designed enhanced MF
framework. We adjust τ1 and τ2 from 0.01 to 0.1 with a step
of 0.01. As can be seen from Fig. 11, the highest accuracy is
obtained when τ1 = τ2 = 0.15. Last but not least, we report the
retargeting performance by tuning ρ, the weight of regularizer
of our proposed LTM. We notice that the optimal ρ is between
0.2 and 0.4 and depends on a specific aerial photo. As displayed
in Fig. 12, for the test aerial photo. The most visually attractive
retargeted aerial photo is produced when ρ = 0.3.

Actually, we cannot theoretically prove the convergence of
the objective function as shown in (11). In this work, we exper-
imentally evaluate the convergence of (11). More specifically,
we use 5e3, 5e4, 1e5, 5e5, and 1e6 samples for learning the

Fig. 12. Aerial photo retargeting results by tuning ρ.

Fig. 13. Value of objective function by varying the iteration number.

regularized LTM model. As shown in Fig. 13, the objective
function converges fast when the iteration number increases
from 1 to 100. When the iteration number exceeds 100, the
objective function value becomes stable.
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V. CONCLUSION

Aerial Photo retargeting is an indispensable algorithm in
remote sensing. This article designed a novel community-based
aerial photo retargeting algorithm by automatically discovering
multiple Google Maps communities hidden in million-scale
online aerial photos. A noise-tolerant deep MF model is pro-
posed, which robustly mines communities reflecting different
aerial photo styles. Afterward, a regularized latent topic model
is presented to describe the style feature of aerial photos from
a set of Google Maps communities. The overfitting issue can
be effectively tackled. Lastly, a novel topic model is utilized to
squeeze the test aerial photo by maximizing the posterior proba-
bility of the learned style distribution. Extensive experiments on
2 M aerial photos and the RetargetMe [33] have demonstrated
the superiority of our approach.

One shortcoming of our method is the difficulty to determine
the hidden community number. This is an open problem like
deciding the cluster number for K-means. In our experiment, we
tune the hidden community number until the best performance
is observed. In the future, we plan to develop an algorithm to
more intelligently determine the hidden community number.
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