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Composite Analysis-Based Machine Learning for
Prediction of Tropical Cyclone-Induced Sea

Surface Height Anomaly
Hongxing Cui , Danling Tang , Huizeng Liu , Yi Sui, and Xiaowei Gu

Abstract—Sea surface height anomaly (SSHA) induced by trop-
ical cyclones (TCs) is closely associated with oscillations and is a
crucial proxy for thermocline structure and ocean heat content in
the upper ocean. The prediction of TC-induced SSHA, however,
has been rarely investigated. This study presents a new composite
analysis-based random forest (RF) approach to predict daily TC
wind pump induced SSHA. The proposed method utilizes TC’s
characteristics and prestorm upper oceanic parameters as input
features to predict TC-induced SSHA up to 30 days after TC
passage. Simulation results suggest that the proposed method is
skillful at inferring both the amplitude and temporal evolution
of SSHA induced by TCs of different intensity groups. Using a
TC-centered 5° × 5° box, the proposed method achieves highly
accurate prediction of TC-induced SSHA over the Western North
Pacific with root mean square error of 0.024 m, outperforming
alternative machine learning methods and the numerical model.
Moreover, the proposed method also demonstrated good predic-
tion performance in different geographical regions, i.e., the South
China Sea and the Western North Pacific subtropical ocean. The
study provides insight into the application of machine learning in
improving the prediction of SSHA influenced by extreme weather
conditions. Accurate prediction of TC-induced SSHA allows for
better preparedness and response, reducing the impact of extreme
events (e.g., storm surge) on people and property.

Index Terms—Composite analysis, machine learning, random
forest, sea surface height anomaly, tropical cyclones.
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I. INTRODUCTION

TROPICAL cyclone (TC) has strongly positive wind stress
curl over the sea surface, which is an intensive forcing

[1], [2]. The passage of the TC generates oscillation in the
upper ocean, including mainly both baroclinic and barotropic
modes [3], [4]. The isopycnal displacements involved in the
thermocline, and the triggering of near-inertial oscillations in
one spreading three-dimensional pattern, are related to the baro-
clinic mode [2]. The barotropic mode has a cyclonically rotating
current field and is connected to the geostrophic sea surface de-
pression of 20–30 cm [5]. Gradients presented in the TC-induced
sea surface height (SSH) produce a time-dependent barotropic
response [3]. Moreover, TC wind pump generated SSH anoma-
lies (SSHAs) have a considerable effect on the ocean’s dy-
namic and thermodynamic structure, as well as on regulating
ocean–atmosphere interaction at various spatial-temporal scales
[6], [7]. The temporal evolution of the SSHA after the TC
passage can be used to infer the changes in the thermocline
and upper ocean heat content [8], which is a proxy to reveal
propagations of planetary Kelvin and Ross waves [9], [10], [11].
Furthermore, TC-induced SSHA plays a vital role in explaining
the mechanisms of marine ecology driven by TC wind pump
[12], [13]. Despite of the importance, the accurate prediction
of TC-induced SSHA remains a highly challenging task to be
further explored.

A few studies on SSHA prediction and TC observations
have been carried out in recent years. For SSHA predictions,
methods can be generally classified into physical-based and
data-driven approaches. Physical-based approaches combine
related physical and dynamical equations to calculate sea-level
changes. For example, an Earth system model with a dynamic
three-dimensional ocean was developed by Sriver et al. [14]
to quantify the effect of observational constraints on ther-
mosteric sea-level rise. A hydrological model was proposed
by Chen et al. [15] to forecast the global mean sea level.
A key issue associated with physical-based approaches lies
in providing the initial conditions on the particular oceanic
characteristics.

On the other hand, data-driven approaches use the sea sur-
face height records to model the latent relationship between
the SSHA and environmental variables. For example, in the
Eastern Equatorial Pacific, a polynomial-harmonic model with
the least-squares method was proposed to predict the gridded
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SSHA [16]. Along the mid-Atlantic, based on the empirical
model decomposition, in the North Atlantic, a multivariate au-
toregressive method was proposed to predict the seasonal SSHA
variability [17]. Data-driven approaches can predict the SSHA
very well with a lower demand of prior knowledge.

A number of novel TC observation approaches have also
been proposed. For example, Horstman et al. [18] presented
algorithms for retrieving high-resolution wind fields from syn-
thetic aperture radar (SAR) data in TC conditions. Wang et al.
[19] presented a brand-new scanning method, that uses three
downward-pointing and conically scanning beams for a future
spaceborne Doppler weather radar mission to capture 3-D wind
fields of TCs. One spaceborne version of the velocity-azimuth
display (VAD) method was proposed for wind field retrieval
[20]. However, there is still a lack of effective approaches to
predict SSHA after TC passage.

The change of SSHA is continuous in both time and space
domains. Previous aforementioned studies have successfully
predicted the smoothed SSHA, that is, this SSHA without con-
sidering specific extreme events, such as TCs. In other words, the
amplitude of smoothed SSHA is very weak, while the intensive
amplitude of SSHA is generated by the barotropic mode driven
by TCs [3], [4]. Strong TC leads to a strong signal-to-noise ratio
of SSHA after the TC passage [8], [21]. The signal-to-noise ratio
associated with TC intensity varies significantly, resulting in an
unbalanced distribution of TC-induced SSHA. Such unbalanced
distribution in data makes it difficult in predicting the nonlinear
relationship between SSHA and other environmental factors.
Moreover, there is a lack of spatial and temporal continuity in
data for TC occurrences from case to case, which makes pre-
dicting TC-induced SSHA more challenging. To the best of the
authors’ knowledge, this issue has rarely been investigated using
ML methods in studies before. As the SSHA is an important
parameter in the study of ocean dynamics and marine ecology
under the influence of TCs [6], [7], [8], [9], [10], [11], [12], it
is essential to develop a straightforward and robust method to
predict the TC-induced SSHA. Above all, accurate prediction
of TC-induced SSHA enables better response and preparation,
reducing the impact of extreme events (e.g., storm surge) on
people and property.

In order to accurately predict the daily TC-induced SSHA
and its temporal evolution, this study proposes a composite
analysis-based random forest (RF) method. The main reason for
employing the RF method is that it has been successfully applied
in fields related to the ocean and climate change [22], [23].
Composite analysis can effectively enhance the signal-to-noise
ratio by averaging values in a TC-centered box, which makes
it easier for the RF method to learn from oceanic and atmo-
spheric parameters. The performance of the proposed method
is systematically evaluated for temporal evolution and spatial
distribution of the area-averaged composite SSHA. The sensi-
tivity of TC-centered box size on the prediction accuracy of the
proposed method is also investigated. Then the proposed method
is evaluated in two distinct geographical regions, e.g., the South
China Sea (SCS) and the Western North Pacific subtropical
ocean (WNPSO). The study demonstrates the stable prediction
performance of the proposed method over these two regions.

Fig. 1. Density of TC centers, with colors representing the number of TC
centers at 6-h intervals from January 1998 to December 2018, and the spatial
resolution is 0.1° × 0.1°. The solid rectangle encloses the SCS; the dashed
rectangle encloses the WNPSO.

TABLE I
UPPER-OCEAN FACTORS AND THEIR UNITS, SENSORS, AND BANDS

Finally, the differences between the numerical model products
and ML-based predictions are also discussed.

II. DATA AND METHODS

A. Study Area

Tropical cyclones frequently occur in the Western North
Pacific (WNP). On average, more than a third of worldwide
TC occurs in the WNP, with some of the strongest TC occurring
in specific years. The study area, WNP, is defined as the area
between 0 and 40 °N, 100 and 160°E (see Fig. 1). To evaluate the
performance of the proposed method in different geographical
regions, we selected two regions where the most violent TCs
occur, i.e., the SCS and the WNPSO [24], [25]. The SCS and
the WNPSO are defined as the areas 10–25°N, 110–120°E, and
15–25°N, 125–160°E, respectively.

B. Data

The study period runs from 1998 to 2018. Three main datasets
were used, and six upper-ocean parameters were extracted
(Table I):

1) Observational data: Daily altimeter satellite gridded sea
level anomalies, with a spatial resolution of 0.25°× 0.25°,
are estimated by Optimal Interpolation and merging the
measurements from multiple altimeter missions available
(e.g., Jason-1, Jason-2, Jason-3, Sentinel-3A, and HY-2B).
The SSH data can be retrieved from the EU Copernicus
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TABLE II
INPUT FEATURES ABBREVIATION AND THEIR EXPLANATIONS

Marine Environment Monitoring Service (CMEMS).
The Optimally Interpolated daily SST products, using
the microwave data (MW) [26], with a spatial resolution
of 0.25° × 0.25°, are available from Remote Sensing
Systems. Cloudy conditions have little effect on this study
because the microwave has an advantage in penetrating
clouds.

2) Reanalysis data: Daily global reanalysis multiensemble
product GREP provides mixed layer depth (MLD), poten-
tial temperature, eastward current speed (U), and north-
ward current speed (V). The reanalysis dataset has 75
levels in its vertical grid (from 0 to 5500 m). The spatial
resolution of each layer is 0.25° × 0.25°. The reanalysis
data used in this study can be available from the CMEMS,
which is widely used in ocean studies [27].

3) Best TC-track data: The TC Best-track data were produced
by the Japan Meteorological Agency (JMA) and obtained
from the International Best Track Archive for Climate
Stewardship (IBTrACS) archive [28]. The best-track data
include TC’s intensity, translation speed, the shortest ra-
dius of 30kt winds or greater, and TC-centered locations
measured at a 6-h interval.

C. Data Preprocessing and Composite Analysis

The TC-induced SSHA is highly related to atmospheric and
oceanic variables. A total of nine variables, associated with
TC characteristics and prestorm upper-ocean conditions, were
considered as input features (see Table II). The first three vari-
ables related to TC are intensity (V max), translation speed
of storms (V trans), and radius (R30). The translation speed,
i.e., V trans, for each TC was then calculated as the distance
between neighboring TC-centered positions divided by 6 h. To
follow the Saffir–Simpson hurricane wind scale, the JMA data
are converted from 10-min mean values to 1-min mean values
by utilizing the Koba table [29]. The maximum 1-min sustained
surface wind speed is represented by V max.

The mean values of six predictors of the upper ocean from
prestorm 0 to 4 days are the other six input variables, denoted by
MLDA, SSHA, SSTA, T100, UgResA, and V gResA. The
variable with an overline indicates the average of each variable
over the five days before the TC. Among them, theMLDA is the

MLD anomaly averaged within five days. Likewise, the SSHA
and SSTA are SSH anomaly and the sea surface temperature
anomaly (SSTA) averaged over the same days, respectively. The
T100A is the potential temperature anomaly at 100 m below the
water.UgResA and V gResA are vertical shear of zonal current
speed anomaly and vertical shear of meridional current speed
anomaly, respectively.

For the first time, Hart et al. [30] used the composite analysis to
examine the SST response averaged based on a TC-centered 5°×
5° box during the TC passage. The signal-to-noise ratio is im-
proved by the composite analysis, which reduces the fluctuation
related to the mesoscale and submesoscale [21], [31]. This study
uses composite analysis to derive the average characteristics for
each variable response in the upper ocean. For each upper-ocean
variable, the climatological seasonal cycles were subtracted on
each grid to obtain an anomaly.

Regarding the response variables, the daily SSHA values from
the 1st to the 30th days after the TC passage were considered.
The climatological seasonal cycles on each grid were subtracted
to produce the temporal evolution of the 30-day SSHA values.
The area-mean value of each oceanic variable was also averaged
over the TC-centered 5° × 5° box following the same approach
described by [30]. If land exists in the TC-centered box, the
invalid values were removed before determining the area-mean
value of oceanic variables.

D. Proposed Method

RF is one of the best-known ensemble learning algorithms that
combines a set of decision trees (DTs) to construct a stronger
predictor by exploiting the idea of bootstrap aggregation [32]. By
training multiple DTs with randomly sampled subsets of training
data with repetition, RF can effectively reduce the noise within
the training data and achieve greater generalization ability. RF
is popular due to its good performance and less hyperparameter
tuning. Moreover, the RF method has been successfully used
in oceanic and atmospheric fields [22], [33]. Thus, the RF was
chosen to predict the TC-induced SSHA, and TC characteristics
and prestorm oceanic conditions were used as the input features
(i.e., V max, V trans, R30, MLDA, SSHA, SSTA, T100A,
UgResA, and V gResA). The diagram of the data processing
flow is given in Fig. 2.

The collected data (17 773 points in total) were divided into
two groups, with two-third of them for training and the remaining
one-third for testing. The data that were used for training the
model by dividing into two subgroups: 60% for training and
40% for validation. To avoid overfitting, a grid search method of
five-fold cross-validation was employed in order to determine
the major parameters of the RF model. The test set provides
an unbiased evaluation of the model’s performance because
it is not used during the training stage. Then the RF model
was implemented to simulate the temporal evolution of SSHA
influenced by TCs.

E. Model Evaluations

To evaluate the effectiveness of the RF method, we compared
it with the following three mainstream approaches, namely,
linear regression (LR) [34], multilayer perceptron (MLP) [35],
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Fig. 2. Schematic diagram of data processing workflow. The subscript, i.e., t1,
t2, …, t30, represent the 1st, 2nd, 3rd, …, 30th days after TC passage, respec-
tively. SSHAt1, SSHAt2, SSHAt3, …, and SSHAt30 represent the TC-induced
SSHA from the 1st, 2nd, 3rd, …, 30th days after TC passage, respectively.

and eXtreme Gradient Boosting (XGBoost) [36]. The perfor-
mance of these machine learning methods was evaluated using
the mean absolute error (MAE), the root of mean squared error
(RMSE), and the coefficient of determination (R2) on the inde-
pendent test set. The error formulation and performance metric
were calculated as follows:

R2 = 1−
∑N

i = 1 (Oi − Pi)
2

∑N
i = 1

(
Oi − Ō

)2 (1)

RMSE =

√
1

N

∑N

i = 1
(Oi − Pi)

2 (2)

MAE =
1

N

N∑
i = 1

|Oi − Pi| (3)

where Oi is the value of an observed sample, Pi is the value of
in a predicted sample, Ō is the mean by calculating the sum of
observations by dividing the number of samples, P̄ is the mean
by calculating the sum of predictions by dividing the number of
samples,N is the total number of samples, and i = 1, 2, . . . , N .

Here, the smaller the MAE and RMSE the better performance
predicted, while R2 is the opposite.

III. RESULTS

A. Model Performance on Prediction of TC-Induced SSHA

Fig. 3 displays the scatterplots of observed and predicted
SSHA for different days using the RF method, and Table III sum-
marizes the metrics for the daily prediction of different machine

Fig. 3. Scatterplots of observed and predicted TC-induced SSHA for different
days using the RF method. (a), (b), (c), and (d) are the 1st, 9th, 17th, and 25th
days after the TC passage, respectively. The color represents the density of the
number of samples.

TABLE III
DAILY PREDICTION RESULTS (MAE, RMSE, AND R2) USING DIFFERENT

MACHINE LEARNING METHODS

learning methods. The results show that MLP, XGBoost, and RF
offer comparable performances in predicting the SSHA of the
1st day after TC passage. On the 9th day after TC passage, the
results of XGBoost and RF become very close and are better than
LR and MLP. Starting from the 17th day, the predicted SSHA
by RF becomes more accurate than LR, MLP, and XGBoost.
Its R2, i.e., 0.81 and 0.74 for poststorm the 17th and 25th days
are greater than that of LR, MLP, and XGBoost. Table III also
shows that the long-term prediction stability of the RF method
is better than that of the LR, MLP, and XGBoost. Thus, the RF
is better suited to capturing this nonlinear relationship between
TC-induced SSHA and predictors.

To evaluate the RF model’s performance on SSHA induced
by TCs of different categories, we quantified these metrics (i.e.,
MAE, RMSE, and R2) of predicted SSHA for TCs of different
intensities (see Fig. 4). In this study, the categories of TCs are
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Fig. 4. Assessment of predicted composite area-mean SSHA considering TCs
of different categories: TS (blue), H1-H2 (yellow), H3-H5 (green), H1-H5 (red),
and all storms (purple). (a), (b), and (c) represent the MAE, RMSE, and R2 for
a TC-centered 5° × 5° box, respectively. Abbreviations: TS, tropical storm;
H1-H2, category 1-2 hurricane; H3-H5, category 3-5 hurricane; and H1-H5,
category 1-5 hurricane; all storms, all tropical storms and hurricanes.

Fig. 5. (a) Temporal evolution of composite area-mean SSHA for a TC-
centered 5° × 5° box in association with passage of TCs based on the ob-
servations used in the testing stage. Error width are calculated as the standard
deviation divided by the square root of the number of observations of the test set
(i.e., standard error of the mean) and are shown by the width of the blue shading
and green shading for TS and H3-H5 TCs, respectively. (b) As in (a), but from
the predictions.

classified by the Saffir–Simpson scale, i.e., TS: tropical storm
(17.5 m/s < the maximum sustained wind speed V max <
33 m/s), H1: category-1 hurricane, …, H5: category-5 hurri-
cane, H1-H2: category-1–2 hurricane (33 m/s≤ V max < 50
m/s), H3-H5: category-3–5 hurricane (V max≥50 m/s), H1-H5:
category-1–5 hurricane. It should be noted that the term “all
storms” refers to all tropical storms and hurricanes.

It can be seen from Fig. 4 that the RF method always performs
better in predicting the near-future TC-induced SSHA values
than the far-future values, regardless of the categories of TCs.
Within ten days after the TC passage, for TCs of different inten-
sities, the accuracy of the predictions made by RF is comparable.
However, between 10 and 30 days, the accuracy of predictions
made by the RF on TCs of various intensities begins to diverge.
Based on the MAE and RMSE, the prediction accuracy tends
to decrease as the TC intensity increases. For TCs of H3-H5,
the MAE and RMSE are the highest. This may be because
as the TC intensity increases, the amplitude of TC-induced
SSHA is more prominent. The temporal evolution of composite
area-mean SSHA for observations and predictions is consistent
with previous research (Fig. 5) [8].

B. Sensitivity Analysis for Various TC-Centered Box Sizes

In composite analysis, TC-centered box size may affect the
value of area-mean SSHA. To examine the sensitivity of the

Fig. 6. Evaluation for the test set based on different TC-centered box sizes.
(a), (b), and (c) represent MAE, RMSE, and R2, respectively. The solid lines
with circles of different colors represent different TC-centered box sizes, i.e.,
2° × 2°, 3° × 3°, 4° × 4°, 5° × 5°, 6° × 6°, 7° × 7°, 8° × 8°, 9° × 9°, and
10° × 10°.

Fig. 7. (a), (d), (g) As in Fig. 4(a), and (b), (e), (h) as in Fig. 4(b), and (c), (f),
(i) as in Fig. 4(c), but for different TC-centered box sizes, i.e., 2° × 2°, 3° × 3°,
4° × 4°.

RF method with respect to the various box sizes, we replaced
the TC-centered 5° × 5° box to other sizes, including 2° ×
2°, 3° × 3°, 4° × 4°, 6° × 6°, …, 10° × 10°, and reran the
RF model. Then, RF model performance was evaluated with
these TC-centered boxes. Independent of the metrics used, the
model performance varies in similar patterns as a function of
time relative to TC passage for all box sizes [see Fig. 6(a)–(c)].
Another interesting finding from Fig. 6 is that for a fixed TC-
centered box size, the MAE and RMSE of the far-future SSHA
predictions are always greater than the near-future predictions,
while R2 is always lower. This is because the correlation between
the near-future SSHA and input features is higher than that of
the far-future SSHA.

Likewise, the temporal evolutions of these metrics are very
similar, independent of the TC-centered box size and TC inten-
sity groups (see Fig. 7). As expected, TC-induced SSHA ampli-
tude by intensive TCs is more significant for a fixed box size, and
the corresponding predicted accuracies are less. Moreover, the
amplitudes of SSHA generated by TCs of category-3-5 hurricane
intensity are the strongest, and that of SSHA produced by TCs
of tropical storm intensity is the weakest (see Fig. 8). This am-
plitude of TC-induced SSHA is more evident for a TC-centered
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Fig. 8. (a), (c), (e) As in Fig. 5(a), and (b), (d), (f) as in Fig. 5(b), but for
different TC-centered box sizes, i.e., 2° × 2°, 3° × 3°, 4° × 4°, respectively.

box size smaller than 5° × 5°. This is due to the fact that the
increase in the box size will lower the amplitude of TC-induced
SSHA as a larger TC-centered box covers greater regions that
may not be affected by the TC, leading to the area-mean value
being weaker. Despite the fact that the RF method fits better
on the relatively weak amplitude of TC-induced SSHA, a 5° ×
5° box size may be a suitable tradeoff to balance the model
performance and the amplitude of TC-induced SSHA.

C. Evaluation for Spatial Distribution of TC-Induced SSHA

To evaluate the spatial distribution of predictions, the same
metrics were quantified. To make the comparison of predictions
and observations clearer, resampling was implemented per 20
TC-centered points averaged along the latitudinal direction from
south to north. The p-values were calculated to show the signif-
icance level between predictions and observations by using a
Student’s t-test.

As one can see from Fig. 9, the performance of the proposed
method on the SSHA of the 1st day after TC passage in terms
of MEA, RMSE, and R2 are 0.002 m, 0.003 m, and 0.98,
respectively; the prediction performance on the SSHA of the 9th
day after TC passage are MAE = 0.004 m, RMSE = 0.005 m,
and R2 = 0.95; the prediction performance on the SSHA of the
17th day are MAE = 0.005 m, RMSE = 0.006 m, and R2 =
0.92; the prediction performance on the SSHA of the 25th day
after TC passage are MAE = 0.005 m, RMSE = 0.006 m, and
R2 = 0.89. The statistical analysis results show that for all four
time periods, the calculated p-values are less than 0.001. This

Fig. 9. Estimation of TC-induced SSHA for a TC-centered 5° × 5° box along
the latitudinal direction. Yellow solid lines denote observed TC-induced SSHA,
while the blue solid lines denote predicted TC-induced SSHA. (a), (b), (c), and
(d) are the 1st, 9th, 17th, and 25th days after the TC passage, respectively.

suggests a significant correlation exists between the predicted
values made by the RF method and observed values in the spatial
distribution.

The averaged amplitudes of observed SSHA in the study area
on the 1st, 9th, 17th, and 25th days after tropical cyclones are—
0.0194 m,−0.0269 m,−0.0221 m, and−0.0161 m, respectively.
For a specific day after TC passage, the RMSE is much lower
than the observed mean value of SSHA influenced by tropical
cyclones. In addition, the results show that the amplitude of
the TC-induced SSHA becomes weaker as time progresses.
Regarding the recovery of SSHA after the TC passage, both
observations and predictions show a consistent recovery trend
(see Fig. 9).

D. Model Performance for the SCS and the WNPSO

The performance of the proposed method is further evaluated
based on the data collected in the SCS and WNPSO areas.
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TABLE IV
DAILY PREDICTION RESULTS (MAE, RMSE, AND R2) FOR DIFFERENT REGIONS

Fig. 10. (a), (d), (g), (j) As in Fig. 4(a), and (b), (e), (h), (k) as in Fig. 4(b),
and (c), (f), (i), (l) as in Fig. 4(c), respectively, but for the SCS.

In this example, the performance was measured in terms of
MAE, RMSE, and R2 calculated based on the prediction results
on the 1st, 9th, 17th, and 25th days’ SSHA after TC passage (see
Table IV), with the TC-centered 5° × 5° box.

For the 1st, 9th, and 17th days after the TC passage, R2 for the
WNPSO is 0.97, 0.88, and 0.77, respectively, better than for the
SCS is 0.95, 0.81, and 0.73. The MAE and RMSE in the SCS
are better than in the WNPSO. The MAE in the SCS achieves
0.007 m, 0.014 m, 0.017 m, and 0.17 m for the 1st, 9th, 17th,
and 25th days, respectively, and are better than in the WNPSO.
As expected, both RMSE and MAE gradually increase, and R2

decreases in the WNPSO. Interestingly, it is observed in the
SCS that MAE and RMSE begin to level off after the 9th day,
as confirmed in Fig. 10.

With different TC-centered boxes (i.e., 2° × 2°, 3° × 3°, 4° ×
4°, and 5° × 5°), we also calculated the metrics to quantify
the performance of the RF method in predicting the temporal
evolution of SSHA produced by TCs of different intensity over

Fig. 11. (a), (d), (g), (j) As in Fig. 4(a), and (b), (e), (h), (k) as in Fig. 4(b),
and (c), (f), (i), (l) as in Fig. 4(c), respectively, but for the WNPSO.

these two regions. For the SCS, the evolutions of MAE and
RMSE have a similar pattern, independent of the TC-centered
box size (see Fig. 10). Both the RMSE and MAE increase rapidly
from the 1st day to the 14th days after TC passage, followed by
both leveling off. The predictions for TCs of category H1-H2
have the highest RMSE and MAE, followed by TCs of category
H1-H5. The RF’s performance shows a modest dependence on
TC intensity in terms of R2.

In the WNPSO, the evolutions of these metrics exhibit a
consistent pattern, independent of the box size (see Fig. 11),
and are similar to that shown in Figs. 4 and 7. For a fixed box
size, predictions for TCs of category H1-H2 achieve the lowest
MAE, RMSE, and the lowest R2. Moreover, the metrics were
also improved by increasing the box size and are consistent with
that shown in Fig. 10. Furthermore, the highest RMSE and MAE
for the predictions in the SCS were observed to be from TCs of
category-1-2 hurricane, while the lowest of those in the WNPSO
were found.

IV. DISCUSSIONS

Experimental results presented in this section have shown that
the proposed method could precisely predict the amplitude of
TC-induced SSHA, with satisfactory robustness in both tem-
poral and spatial domains. In addition, a sensitivity analysis
showed that the performance of the RF method presents better
in a TC-centered larger box size. Furthermore, the proposed
method was evaluated in two different regions, i.e., the SCS
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and the WNPSO, and showed strong stability over both regions,
though slight variability in predictions of TC-induced SSHA
was observed for TCs of varying intensity groups. Finally, a
comparison between the numerical model and the RF method
showed that predictions are comparable and that the latter even
outperforms the former in the short-term predictions.

To understand the differences between machine learning-
based predictions and physical model-based simulations [37],
[38], [39], a comparison between a typically numerical product
and observed SSHA after the TC passage was performed. The
numerical data for sea surface height were produced from the
daily Global Reanalysis Multi-Ensemble Product GRE, with a
spatial resolution of 0.25° × 0.25°, which is available from the
CMEMS. With the TC-centered 5° × 5° box, the procedures
for generating the testing set of numerical data are the same as
producing the testing set of observed data. The Student’s t-test
also was also used to calculate the p-value in assessing whether
the differences between the observed values and numerical
values are statistically significant.

The results show that for the 1st day, the MAE = 0.009 m,
RMSE= 0.011 m, and R2 = 0.66; for the 9th, 17th, and 25th days
after TC passage, the MAE = 0.005 m, RMSE = 0.006 m, and
R2 = 0.91 (see Fig. 12). The statistical analysis shows that the p-
values are less than 0.001 for all four periods. This indicates that
numerical values are significantly correlated with the observed
values in the spatial distribution of the TC-induced SSHA. For
the 1st, 9th, and 17th days, the predictions of the RF method
outperform that of the numerical model. The predicted SSHA
for the RF method still is comparable to that for the numerical
models on the 25th day (see Fig. 9).

The performance of the numerical model is time-independent,
except for the 1st day. The RF methods’ performance is time-
dependent because the prestorm oceanic averaged variables are
used as input features. Previous studies have also demonstrated
that ML-based methods exhibit superior performance in short-
term predictions when compared to long-term predictions [40],
[41]. It can be observed that both types of approaches have
their own advantages in predicting the temporal evolution of
TC-induced SSHA in terms of the time scales.

The metrics (i.e., MAE, RMSE, and R2) evaluated on the
predicted TC-induced SSHA have shown that uncertainties are
more evident for strong TCs than for weak TCs. Furthermore,
residuals quantified between the observed and predicted values
show that observed SSHA is stronger than predicted SSHA for
TCs of TS intensity, while the SSHA generated by TCs of H1-H5
intensity is stronger in the predictions than the observations (see
Fig. 13). This suggests that the RF method underpredicted the
SSHA for TCs of tropical storm intensity and overpredicted it for
TCs of hurricane intensity, due to changes in the signal-to-noise
ratio [21].

This study found that the prediction uncertainties vary with
which region the model is applied. For example, TCs of
category-1-2 hurricane for the predictions of TC-induced SSHA
has the highest RMSE and MAE in the SCS, which have the
lowest RMSE and MAE in the WNPSO. On the other hand,
the evolutions of these metrics are inconsistent in these two
regions, whereas they coincide well in the WNPSO and the

Fig. 12. (a), (b), (c), and (d) As in Figs. 9(a), 9(b), 9(c), and 9(d), respectively,
but the red solid lines denote the numerical model.

whole study area. As the SCS is a marginal sea, the passage
of TCs is influenced by the topography of the area, which in
turn may change some TC characteristics (e.g., intensity and
translation speed). At the same time, changes in TC-induced
SSHA can be significant in nearshore regions. However, in
open sea (e.g., WNPSO), TC movement is not controlled by
such topography [12], [42], [43], [44]. These uncertainties in
ML-based predictions may therefore be potentially influenced
by the geographical location, in addition to being controlled by
TC characteristics and preexisting ocean factors.

Further improvements are still needed for the proposed
method. First, adding more training data of the extreme SSHA
values induced by some TC cases for model training might
further improve the model performance. Previous studies have
reported that such TC (Typhoon Damrey, 2005) can even trigger
an intensive amplitude of SSHA up to −0.25 m along the TC
track for the 1st day after the TC passage [12]. The low occur-
rence of such TC cases per year, with only a few samples, leads
to reduced generalization ability of the ML methods. Second,



2652 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 13. (a) Temporal evolution of composite area-mean SSHA for a TC-
centered 5°× 5° box in association with passage of TCs for TS intensity based on
predictions and observations used in the testing stage. Error width is calculated
as in Fig. 5(a) and are shown by the width of the blue shading and yellow
shading for observations and predictions, respectively. (b) As in (a), but for the
TCs of H1-H5 intensity. (c) Predicted residuals are calculated by subtracting
the predicted values from observed values. The yellow and blue represent the
predicted residuals for TS and H1-H5 intensities, respectively.

the reason for the underpredicted SSHA for weak TCs and the
overpredicted SSHA for strong TCs would be further explored.
Moreover, coupling the ML methods and numerical models to
improve TC-induced SSHA predictions would be a promising
attempt.

V. CONCLUSION

In this study, a composite analysis-based RF method is pro-
posed to infer the daily TC-induced SSHA field, and it is
evaluated in the WNP where TCs are the most active. In this pro-
posed method, a composite analysis is employed to capture the
amplitude of the TC wind pump induced SSHA. The proposed
method considers atmospheric and oceanic parameters as input
features to weigh the contributions of both TC characteristics
and prestorm ocean conditions to the TC-induced SSHA. The
results of the experiment demonstrate the effectiveness of the
proposed method in accurately predicting the amplitude of the
TC-induced SSHA. The method displays satisfactory robustness
in both the temporal and spatial domains. Moreover, the RF
method was found to be better to a larger TC-centered box.
Furthermore, the proposed method was examined in two dis-
tinct regions and displayed strong stability across both regions.
Eventually, a comparison between the numerical model and the
machine learning method revealed that the latter outperformed
the former in short-term predictions, with the two methods
producing comparable results in general. In short, the study
provides insight on the application of machine learning to im-
prove the prediction of SSHA influenced by extreme weather
conditions.
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