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Abstract—Brain-inspired algorithms have become a new trend in
next-generation artificial intelligence. Through research on brain
science, the intelligence of remote sensing algorithms can be effec-
tively improved. This article summarizes and analyzes the essential
properties of brain cognize learning and the recent advance of
remote sensing interpretation. First, this article introduces the
structural composition and the properties of the brain. Then, five
represent brain-inspired algorithms are studied, including multi-
scale geometry analysis, compressed sensing, attention mechanism,
reinforcement learning, and transfer learning. Next, this article
summarizes the data types of remote sensing, the development
of typical applications of remote sensing interpretation, and the
implementations of remote sensing, including datasets, software,
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and hardware. Finally, the top ten open problems and the fu-
ture direction of brain-inspired remote sensing interpretation are
discussed. This work aims to comprehensively review the brain
mechanisms and the development of remote sensing and to motivate
future research on brain-inspired remote sensing interpretation.

Index Terms—Brain modeling, deep learning, image processing,
remote sensing.

I. INTRODUCTION

R EMOTE sensing is a technology that observes and detects
the objects on the Earth by the sensors equipped on aircraft

or satellites [1], [2]. It is a noncontact, long-distance detection
technology that began in the 1960s [3]. It uses visible light,
infrared, and electromagnetic waves radiated or the reflection
by the target itself to perceive and identify the target at a long
distance. The remote sensing data obtained by remote sensing
technology enhances the ability of human beings to research
the Earth [4]. At the same time, remote sensing applications
involve many fields. It is widely used in various military and
civilian areas, such as satellite surveillance, land and resources
survey, land use and land cover, urban dynamic change mon-
itoring, meteorological monitoring, environmental assessment
and monitoring, and disaster investigation and evaluation. This
dramatically expands the critical impact of remote sensing on
human production and life [5].

Nowadays, we face many challenges in remote sensing in-
terpretation. First, due to the quickening growth of unmanned
aerial vehicles (UAV) and satellite technology in recent years,
the amount of data has increased dramatically [6]. The spectral,
spatial, and temporal dimensionalities of the data require more
computing resources [7]. In addition, large, labeled datasets in
remote sensing are not easily obtained. This restricts the use of
larger models to improve the accuracy of the algorithms. Last
but not least, the interpretability of algorithms is necessary for
remote sensing interpretation [8].

In recent years, artificial intelligence technology has improved
the accuracy and efficiency of remote sensing interpretation.
Faced with massive, complex, and diverse remote sensing data,
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Fig. 1. Organizational framework of this review.

artificial intelligence has realized automatic feature extraction,
parameter learning, and classification.

Artificial intelligence aims to study and develop computer
algorithms that can handle tasks requiring human intelligence.
Its development is closely related to brain science [9]. Brain
science is to study the structure, function, and operation mecha-
nism of the biological brain and further understand how the brain
processes information, mines knowledge, and makes decisions.
Artificial intelligence draws inspiration from brain science and
designs intelligent algorithms.

In 1943, neuroscientist W.S. McCilloch and mathematician
W. Pitts established the MP model, an abstract and simplified
model constructed according to the structure and working prin-
ciple of biological neurons. The so-called “simulated brain”
was born [10]. In 1949, Hebbian learning was proposed. This
algorithm is inspired by the dynamics of biological nervous
systems. According to the study, a synapse between two neurons
is strengthened when the neurons on either side of the synapse
(input and output) have highly correlated outputs. Hebbian learn-
ing learns from this property and improves the weight between
two highly correlated neurons during the learning process [11].
In 1958, perceptron was proposed to model the way information
is stored and organized in the brain [12]. In 1983, physicist John
Hopfield proposed a neural network for Associative Memory
called the Hopfield network [13]. In 2006, Geoffrey Hinton
proposed a multilayer neural network for data reduction, which
opened the curtain of deep learning research [14].

The research on artificial intelligence is closely related to the
brain. These algorithms, inspired by the structure and charac-
teristics of the brain, continue to promote the development of
artificial intelligence. Artificial intelligence is also constantly
looking for new inspiration from biological brains.

A. Motivation

In recent years, as more and more diverse neural networks
have been proposed, people have paid more attention to the
design of brain-inspired algorithms, and many reviews of brain-
inspired algorithms have been proposed. Hassabis et al. [15]
analyzed the historical interaction between artificial intelligence
and neuroscience fields, providing new perspectives to develop

artificial intelligence. Yang et al. [16] provided a comprehensive
review of the research of brain-inspired artificial intelligence
and its related engineering technique. Strisciuglio and Petkov
[17] focused on the relationship between research in neuro-
science and advances in computer vision. Simeone et al. [18]
organized a special section to introduce machine learning (ML)
and signal processing algorithms for brain-inspired computing.
Fan et al. [9] researched new brain imaging techniques to
explore the secrets of brain science and built brain dynamic
connectivity maps. Jiao et al. [19] discussed the main problems
and applications of bio-inspired computation and recognition,
introducing algorithm implementation, model simulation, and
practical application of parameter setting. Tianyuan et al. [20]
introduced the relationship between artificial intelligence and
neuroscience, the research status of brain-inspired intelligence,
and the profound influence of artificial intelligence in other
fields.

The characteristics of the brain and brain-inspired algorithms
are worth discussing. The brain-inspired algorithms are devel-
oped according to the research on the latest brain characteristics
and improve performance, efficiency, and interpretability. This
will provide a new perspective for remote sensing interpreta-
tion. In this review, we mainly investigate the features of the
brain and introduce the related brain-inspired algorithms. In
addition, the interpretation (data types and main applications of
remote sensing) and implementation (public datasets, software,
and hardware) are presented. We attempt to summarize the
characteristics of the brain and discuss remote sensing tasks to
provide readers with new perspectives on remote sensing data
analysis and promote the design of brain-inspired algorithms.
The main contributions of the present review can be summarized
as follows.

1) We provide a comprehensive survey of brain structure and
summarize the brain properties as sparsity, learning mech-
anism, selectivity, directionality, plasticity, and diversity.

2) This survey investigates five essential applications in re-
mote sensing data interpretation, including object classifi-
cation, target detection, change detection, video tracking,
and 3-D reconstruction. These methods cover image tasks
in remote sensing, as well as video and point cloud data
developed in recent years.
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Fig. 2. Four major functional areas of the cerebral cortex.

3) The public datasets and an overview of related software
and hardware are summarized.

4) Current challenges and future research directions are pre-
sented.

The rest of this article is organized is as follows (as shown
in Fig. 1). The basic structure and characteristics of the brain
and the brain-inspired algorithms are presented in Sections II
and III. In Section IV, the data types, such as optical images,
radar images, airborne light detection and ranging (LiDAR),
and remote sensing videos, are summarized. In addition, the
latest advances in the five applications of remote sensing are
presented. In Section V, the public datasets, software platforms,
and hardware resources required to implement the algorithms
are discussed. We discuss the future challenges and directions
of combining brain mechanisms with remote sensing inter-
pretation in Section VI. Finally, Section VII concludes this
article.

II. THEORY OF THE BRAIN

A. Biological Structure of the Brain

The brain is the principal organ in the central nervous sys-
tem. It is mainly composed of the cerebral cortex, cerebel-
lum, diencephalon, and brainstem. Among them, the cerebral
cortex is the most advanced part of conscious thinking and
sensory processing, and it is also the main part of the brain.
It has the ability to recognize, represent and learn. It contains
four functional areas: temporal lobe, occipital lobe, frontal
lobe, and parietal lobe [21]. The specific division is shown
in Fig. 2.

1) Occipital lobe: It is the visual processing center of the
brain, including low-level visuospatial processing (posi-
tion, spatial frequency), color discrimination, and motion
perception.

2) Temporal lobe: It is responsible for processing sensory
input using visual memory, language, and emotional con-
nections to derive higher level information.

3) Parietal lobe: It can process various sensory information,
including touch, smell, taste, etc. It is also related to
language and memory.

4) Frontal lobe: It is the most advanced part of brain devel-
opment and has advanced cognitive functions. It is mainly
responsible for the processes of movement, cognition, and

Fig. 3. Microstructure of neurons and neurites in the brain. It indicates a degree
of sparsity in the cerebral cortex. (Image from [22]).

thinking. It is capable of tasks, such as attention, judgment,
thinking, analysis, calculation, and planning, and is related
to human needs and emotions.

The cerebral cortex facilitates the development and com-
putation of neural networks. Brain perception and cognition
are the biological basis, providing new ideas for the efficient
and accurate realization of artificial intelligence perception and
understanding. Unfortunately, these natural biological proper-
ties are not fully considered in current neural network designs.
Therefore, brain-inspired modeling and algorithm research is
significant and can further promote the development of a new
generation of artificial intelligence.

B. Biological Properties of the Brain

The research on the biological properties of the brain
has opened a new window for brain-inspired remote sensing.
Analyzing the biological properties of the human learning mech-
anism can help us establish a variety of algorithms to simulate the
brain. Understanding the brain mechanism has recently been a
significant new development trend in the international academic
community. For the perception and cognition of knowledge, the
brain mainly has biological properties, such as sparsity, learning
mechanism, selectivity, directionality, plasticity, and diversity.

1) Sparsity: The biological brain, especially the human
brain, is a hierarchical, sparse, and periodic structure [22], as
shown in Fig. 3. Sparsity plays an important role in biological
brains. Olshausen and Field [23] presented the neuron sparse
coding theory. In 2007, Huber et al. [24] and Houweling and
Brecht [25] tested the hypothesis of “sparse coding” of neurons
with rat experiments. The processing of scene information by
the biological retina is sparse, which makes learning more
efficient. In the brain’s primary visual cortex (V1), researchers
in computational neuroscience believe that sparse coding is the
main way of image representation in the visual system. The
neurons in the V1 are also sparse in the dynamic processing and
computation of information. Simultaneously, the neurons in the
V4 area realize the representation of visual information through
sparse coding. The higher the level, the larger the receptive field,
that is, the information processing is from a local to a larger area.
When the level is low, the area processed by the receptive field
is smaller, and the sparsity is stronger, and vice versa.

2) Learning Mechanism: The human brain is good at rapid
cross-task learning and generalized cognition. In 2011, Tenen-
baum et al. [26] pointed out that the brain has a strong ability
for abstract representation and can learn generalized knowledge
from a small amount of data. In the brain, the region responsible
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for cognition and learning is mainly the hippocampus. Cells
in the hippocampus are interconnected into networks, each of
which is defined by a more abstract grid of cells. Based on these
abstract templates for expressing relationships and symbols, it is
easy for the brain to directly apply the existing abstract templates
and recombine them to understand new things when receiving
external environmental stimuli or tasks.

The human brain stores a vast amount of knowledge about
the world that underlies language, thought, and reasoning. There
are two kinds of knowledge representation in the human brain,
sensory and language derived. The ability to form memories is a
key to learning and knowledge accumulation. In 2020, Josselyn
and Tonegawa [27] explored evidence of engram cells as the
basis of memory (especially in rodents), investigating how new
information is integrated into existing knowledge memory.

3) Selectivity: Roelfsema [28] pointed out that the brain has
the ability to pay attention to special things and autonomously
control the attention area in a new environment.

Selective attention modulates neuronal activity in nearly all
brain structures responsible for visual processing, including
ventral pathways (from V1 through extrastriatal cortex (V2–V4)
to inferotemporal cortex), dorsal pathways (from V1 to V2
to the middle and medial temporal lobes and parietal lobes
responsible for motor information processing), prefrontal lobes,
subcutaneous structural nuclei, such as lateral geniculate body,
superior colliculus, occipital nucleus, dorsomedial thalamus,
and reticular nucleus of thalamus, striatum, and substantia nigra
reticularis.

At the same time, the brain receives a large amount of informa-
tion. However, it cannot process all the information entering the
system with the same degree of priority. Only some information
can be filtered and processed through selective attention and
enter consciousness. For example, the primary visual cortex can
generate visual saliency maps in the very early stages of visual
information processing to guide the distribution of spatial selec-
tive attention, regulate sensory input, and improve people’s per-
ception and behavior. In addition, selective attention has various
regulatory effects on the neural representation of target stimuli,
such as enhancing neuronal firing and firing synchronization,
enhancing neuronal selectivity, enhancing neuronal signal-to-
noise ratio, and moving and reducing neuronal receptive fields.
Therefore, selective attention is a deeply sophisticated cognitive
process that always coordinates the brain’s cognitive processing.

4) Directionality: In 1971, O’Keefe discovered in the course
of experiments that there are “place cells” in the hippocampus
that can record location information, which can be selectively
activated to give specific locations a special identity. In the
mid-1980s and early 1990s, the “head orientation cells” were
discovered that determine the orientation of the head, marking
orientation with selective excitation. At the same time, the
“grid cell” that can delineate a plane coordinate system was
also discovered, which can record all the position information
generated during the movement, etc. These cells cooperate with
each other to create a 2-D map of the brain, the material basis
for cognitive maps. In 2015, Finkelstein et al. [29] pointed out
that there are azimuthal and oblique angle cells in the brain that
can perceive direction and position information.

5) Plasticity: The brain will change the internal neural mech-
anism due to the needs of the external environment, that is to
say, the brain is constantly assimilation and accommodating, so
the brain has plasticity [30]. Brain plasticity refers to the ability
of the brain to be modified by environment and experience. It
can be divided into structural plasticity and functional plasticity.
The structural plasticity of the brain means that the connections
between synapses and neurons within the brain can establish
new connections due to the influence of learning and experi-
ence, thereby affecting the behavior of individuals. It includes
neuronal plasticity and synaptic plasticity. Functional plasticity
can be understood in that through learning and training, the
function of a representative area of the brain can be replaced
by adjacent brain areas, and it is also manifested in the recovery
of brain function in patients with brain injury to a certain extent
after learning and training. Brain plasticity is closely related to
learning and memory.

6) Diversity: The diversity of neurons is the basis for the
complex and delicate functions of the brain. In 2021, Berg
et al. [31] used techniques, such as patch clamp, to reveal the
richness of neuronal types in the cortex. In 2021, Yao et al. [32]
constructed the mouse primary motor cortex, characterized more
than 56 neuron types, and analyzed the developmental mecha-
nism of the diversity of interneurons in the human brain. He also
discovered the interneuron precursor cell types that exist specif-
ically in the human brain and revealed the richness and diversity
of human brain interneurons compared with other species.

III. THEORY OF THE BRAIN-INSPIRED ALGORITHMS

In this section, we discuss related brain heuristic theories
from the perspective of brain properties. First, multiscale ge-
ometric analysis and compressed sensing (CS) have been ex-
tensively studied due to sparsity in the brain. The attention
characteristics inspired the combination of attention mechanism
and deep neural network to create SENet [33], nonlocal [34],
transformer [35], and other networks. The training of artificial
intelligence algorithms is enriched by reinforcement learning
and transfer learning, which draw on the brain’s natural learning
process. This section starts from the abovementioned brain-
inspired algorithms. It combines algorithms in remote sensing
to provide readers with new ideas for combining brain-inspired
algorithms and remote sensing.

A. Compressed Sensing

CS is a breakthrough theory for information acquisition.
When the sampling rate is substantially lower than the “Nyquist”
sampling rate, CS can still accurately reconstruct sparse signals
with high probability. It gets discrete samples of the signal
with random sampling and reconstructs them using a nonlinear
reconstruction technique. Its core idea is mainly based on the
sparse structure of the signal and the uncorrelated characteristics
of the signal [36], [37], [38].

The sampling method of CS is a simple operation correlating
a signal with a particular set of waveforms. These waveforms
are independent in the sparse space. The CS method can directly
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Fig. 4. Signal sampling and reconstruction processes of CS.

obtain compressed samples through the time domain transforma-
tion of the signal, which reduces the redundant information in the
signal sampling process. The optimization algorithm is required
to recover the original signal from the compressed samples. It
is an underdetermined linear inverse problem where the signal
is known to be sparse. Therefore, the prerequisite for realizing
CS is that the signal is sparse in the frequency domain, and a
random subsampling mechanism is adopted.

CS has two important operations to satisfy the above condi-
tions: sparse representation and compressed observation. Sparse
representation is the representation of complex signals as uncor-
related sparse signals. Compressed observation is to achieve ran-
dom subsampling. Finally, sparse representation, compressed
observation, and signal reconstruction constitute the three parts
of the CS framework. To realize the CS, the sparseness of signals
is the premise. The basis of CS is the compressed observation
theory. The main components of CS are the reconstruction
models and techniques [19].

The sampling and reconstruction processes of CS are shown in
Fig. 4. In general, a complex signal can be represented as sparse
coefficients, which satisfies the prerequisite of CS. Then, the
observation signal is obtained by sampling with an observation
matrix. During the reconstruction process, the observation signal
and sensing matrix are known. A reconstruction algorithm is
adopted to reconstruct the sparse coefficients. Finally, the com-
plex signal can be recovered from the sparse coefficients.

1) Sparse Representation: The concept of sparse represen-
tation was first proposed in 1959 by Hubel and Wiesel [39]
in their study of cellular receptive fields in the visual stripe
cortex of cats. The experimental results established a prece-
dent for sparse representation by showing that the receptive
fields of cells in the “primary visual cortex” may provide a
sparse response to visual perception information. In 1969, a
sparse representation model based on Hebbian local learn-
ing principles was proposed [40]. The construction of the
associative mechanism in the network structure benefits from the
sparse representation’s ability to maximize memory capacity.
Houweling and Brecht et al. [25] conducted biological visual

neurophysiological experiments that effectively supported the
hypothesis of sparse neural coding.

According to the type of sparse matrix, the sparse representa-
tion methods of signals can be divided into the following three
types: orthogonal transform basis method, multiscale geometric
analysis method, and overcomplete dictionary method. To cover
more signal types, the concept of the dictionary is proposed.
Compared with the complete dictionary, the representation of
the signal under the overcomplete dictionary is more sparse. The
study of dictionary learning has grown in popularity in signal
processing. There are two main ways to construct overcom-
plete dictionaries: using predefined analysis dictionaries (Heav-
iside, Gabor, Dirac, Fourier, and Wavelet dictionaries) or using
dictionary learning algorithms (K-means, K-SVD algorithm,
maximum likelihood estimation, and shift-invariant dictionary
learning) [41].

2) Compression Measurement Matrix: The research focus of
compressed observation theory is using a few nonadaptive obser-
vations to obtain enough signal information for reconstruction.
Commonly used Gaussian random matrices and Bernoulli ma-
trices belong to the category of random measurement matrices.
Such matrices have high reconstruction accuracy but require
large storage space and time complexity. Deterministic mea-
surement matrices not only save storage space compared with
random measurement matrices, but also are relatively easy to
confirm whether they meet the Restricted Isometry Property cri-
teria [42]. In addition, some deterministic measurement matrices
can be obtained by applying a special structure. Corresponding
fast algorithms can be designed to enhance the effectiveness of
reconstruction. Partial Fourier matrices, structured measurement
matrices, and partial Hadamard matrices are commonly used as
deterministic matrices.

3) Sparse Reconstruction: Sparse reconstruction is an es-
sential part of recovering the signal in CS. It needs to obtain
the original signal through the compressed observation of the
signal. Greedy, relaxation, and natural calculation methods are
commonly used to solve the reconstruction problem.

The greedy method, also known as an iterative method, is
an essential algorithm in solving sparse signal reconstruction
problems. It uses an iterative method to approach the final
solution gradually.

The convex relaxation reconstruction method is a kind of
reconstruction method that has been widely studied and applied.
It uses the l1 norm to approximate the l0 norm and simplifies
the nonconvex optimization problem to the convex optimization
problem. The convex optimization problem is easy to solve the
reconstruction models.

Evolutionary algorithms have self-organization, self-
adaptation, and self-learning capabilities. It can solve various
complex problems that are difficult to solve in traditional
computing methods without requiring complex reasoning
calculations.

In the CS theory, signal sampling and compression can be
performed simultaneously, discarding many redundant data dur-
ing high-speed sampling. It dramatically reduces the sampling
rate and computational cost of the sensor. As the key to CS
theory, signal reconstruction is essential to solving NP-hard
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problems. The evolutionary algorithm can be used to learn the
optimal atomic combination in the dictionary direction, and
the optimal atomic combination can be used to reconstruct
the image. Meanwhile, the original optimization problem of
CS is nonconvex and a combinatorial optimization problem.
This solves the problem with the advantages of evolutionary
algorithms and increases the flexibility and adaptability of the
compressive sensing reconstruction algorithm.

CS is adopted to compress data usually in remote sensing.
For example, hyperspectral images (HSIs) have high spectral
resolution bringing a great challenge to the data storage and
transmission [43]. Wang et al. [43] proposed a CS algorithm
based on spectral unmixing. It samples the HSIs both spatially
and spectrally and jointly optimizes the endmember extraction
and abundance estimation. Xue et al. [44] designed a nonlocal
tensor sparse and low-rank regularization approach for HSIs
compressive sensing reconstruction. A subspace-based nonlocal
tensor ring decomposition method is proposed for HSIs com-
pressive sensing reconstruction [45]. Furthermore, Ghahremani
et al. [46] leveraged the compressive sensing to pan-sharpen the
low-resolution multispectral data with high-resolution panchro-
matic data.

B. Multiscale Geometry Analysis

Neuroscientists have shown that the receptive field of the
mammalian visual cortex has local, directional, and band-pass
characteristics [47]. The critical details in natural situations are
only partially captured by neurons. Multiscale geometry uses the
base functions to capture the partial detail of the signal. The base
functions are rectangles, which can approximate the singular
curve with the fewest coefficients and fully exploit the original
function’s geometric regularity. At the same time, the support
interval’s direction of base functions manifests the directionality
of multiscale geometric analysis.

Multiscale geometry originated from wavelet analysis, be-
yond the wavelet analysis [48]. Wavelet analysis has achieved
great success in various applications. The wavelet analysis can
represent 1-D signals more sparsely than the Fourier analysis.
However, in the case of 2-D or high-dimensional, wavelet anal-
ysis can only be formed into separable wavelets with limited
directions, so it cannot achieve the optimal representation of
high-dimensional signals. Multiscale geometric analysis is de-
signed to solve this problem [49]. As shown in Fig. 5, a com-
parison of the contour representation with the wavelet analysis
and multiscale geometric analysis is presented. The multiscale
geometry analysis uses a more sparse representation to capture
the 2-D contour.

Adaptive and nonadaptive are the categories under which the
multiscale geometric analysis of pictures falls. The adaptive
approach often starts with edge detection and uses the edge infor-
mation to approximate the original function accurately. In fact,
it is a combination of edge detection and image representation,
such as Bandelet [51] and Wedgelet [52]. Nonadaptive methods
do not use the geometric features of the image as a priori but
directly decompose the image on a set of fixed base functions,
eliminating the need for dependence on the image’s structure.

Fig. 5. Toy example of the contour representations to compare the difference
between wavelet analysis and multiscale geometric analysis. The box in different
colors presents a coefficient of the analysis on a specific scale. (a) Wavelet
analysis. (b) Multiscale geometric analysis.

The represent algorithms are Ridgelet [53], Curvelet [54], and
Contourlet [55].

The effort of fusing multiscale geometric analysis with neural
networks is also growing with the emergence of deep learning.
Contourlet CNN [56] is proposed to extract sparse and efficient
representations of images. The contourlet transform (CT) is first
used to extract the spectral features of the image and then fused
with the spatial features extracted by the CNN network. Chen
et al. [57] proposed ContourletNet to implement rain removal. It
utilizes the multiscale, multidirectional, and hierarchical charac-
teristics of CT to design a hierarchical multidirectional network,
extracting multiple directional subbands and semantic subbands
of different scales. The neural contourlet network [58] utilizes
the CT to capture the geometric information of the spatial
domain in the scene for depth estimation.

In remote sensing data analysis, the multiscale geometric
analysis also plays an important role. For unsupervised change
detection in SAR images, Zhang et al. [59] proposed adaptive
contourlet fusion clustering. Aiming at the characteristics of
polarimetric SAR, Li et al. [60] proposed a complex contourlet-
CNN for PolSAR image classification. The method uses CT to
help complex CNN capture abstract features of specific direc-
tions and frequency bands and can retrieve the region and direc-
tion information corresponding to the extracted features. Gao
et al. [61] proposed a multiscale curvelet scattering network to
improve the multiscale directional information of the scattering
process.

C. Attention Mechanism

Selectivity in the brain is the core mechanism. Humans can
quickly eliminate distractions and capture important informa-
tion. Drawing on this mechanism, attention has become a sig-
nificant component of neural network architecture. It has several
uses in computer vision, statistical learning, speech recognition,
and natural language processing.

The reason why the attention mechanism has received
widespread attention is that, on the one hand, it stimulates the
mechanism of the human brain. On the other hand, we can
partially explain the neural network’s performance and enhance
the model’s efficacy by visualizing the attention maps.

The recurrent neural network (RNN) structure was the first
neural network to employ the attention mechanism as part of
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Fig. 6. Illustration of the spatial attention and channel attention. (a) Spatial
attention proposed in [50]. (b) Channel attention proposed in [33].

the encoder–decoder framework of RNN to encode long input
sentences [62]. It has steadily gotten into the field of computer
vision in recent years with an increase in attention mechanism
variations. Deep learning and visual attention techniques have
been successfully combined in several studies. The main goal
of the attention mechanism in computer vision is to train the
model to concentrate on significant details while dismissing
irrelevant ones. Current attention methods can be divided into
spatial attention and channel attention (as shown in Fig. 6).

The fundamental idea behind the attention mechanism in the
spatial domain is to apply the appropriate spatial transformation
to the spatial domain information. It helps the neural network
extract important information from the images. Each layer of
a convolutional neural network will output a feature map. For
convolutional neural networks to perform spatial attention, a
weight matrix must be learned for each pixel in the feature
map [63]. The weight matrix will be multiplied by the feature
map to balance the influence of each pixel.

The fundamental concept of channel-based attention is to
suppress the invalid or small effect features and highlight the
effective features to improve performance. This is done by
learning the feature weights on the channel domain through
the network [33]. In particular, it automatically determines the
relevance of each feature channel through learning and then
increases beneficial features and suppresses features that are
not useful for the present job. Usually, pure channel-based
attention has the same weight in the spatial dimension. That
is, the information in each channel is directly global average
pooled, and the local information in the channel is ignored.

The attention mechanism can efficiently improve the target
features in various remote sensing applications while simul-
taneously resolving the issue of redundant features in remote
sensing data. In HSI classification, it is difficult for traditional
convolutional neural networks to extract local features of HSIs.
In order to strengthen the learning of local key features in the
spatial domain and spectral domain of HSIs, the Resnet [64]

introduces a HSI feature extraction method based on spatial-
spectral attention on the basis of a convolutional network and
uses a calculation to obtain the mask and identifies the fea-
tures required for classification and improves the representa-
tion ability of hyperspectral. In remote sensing image instance
segmentation, Zhang et al. [65] proposed a semantic attention
module; using additional segmentation supervision for attention,
the activation values of instances under complex remote sensing
noise background are significantly improved.

D. Reinforcement Learning

The process of human learning knowledge is affected by the
environment and historical experience. This learning process is
the plasticity of the brain. In order to simulate this property,
the learning process of reinforcement learning is designed as an
interaction between the agent and the environment. The agent
can learn by performing different actions and obtaining different
rewards in the simulated environment [67]. Deep reinforcement
learning integrates the powerful understanding ability of deep
learning in perception problems, such as vision and the decision-
making ability of reinforcement learning, and realizes end-to-
end learning. The emergence of deep reinforcement learning has
made reinforcement learning technology truly practical and can
solve complex problems in real-world scenarios [68], [69].

Different from the goals of supervised and unsupervised
learning, the problem to be solved by the algorithm is how the
agent performs actions in the environment to obtain the maxi-
mum cumulative reward.<A,S,R, P > is the classic quadruple
in reinforcement learning. A represents all the agent’s actions.
S is the state of the world that the agent can perceive. R is a
real value representing reward or punishment. P is the world
the agent interacts with, known as the model. Specifically, the
strategy refers to the choice of actions the agent will make
when it is in state S. The reward signal defines the goal of
the agent’s learning. The value function is defined to judge
whether the reward in interaction is good or bad. The model is a
simulation of the natural world, and it models the environment’s
reaction after the agent samples it. In reinforcement learning,
an agent observes where actions and rewards interact with the
environment to complete a task.

In remote sensing, reinforcement learning determines sequen-
tial actions by maximizing cumulative feature rewards through
interaction with the environment. Especially, when only a few
labeled pixels are available, reinforcement learning can achieve
relatively high accuracy without using any labeled training
dataset. This is well suited for remote sensing tasks with fewer
data, such as in SPRL [66]. As shown in Fig. 7, SPRL adopts re-
inforcement learning-based methods for polarimetric synthetic
aperture radar (PolSAR) data classification. The pixels are set
to “state” and “work” according to reinforcement learning, and
their “action” is modified by interacting with the “environment.”
Design a spatially polarized “reward” function from the local
neighborhood to explore spatial and polarized information for
more accurate classification. This results in a self-evolving and
model-free classifier with a simple principle robust to speckle
noise in the data. By interacting with the environment, SPRL
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Fig. 7. Example flowchart of PolSAR classification with reinforcement learn-
ing. Image from [66].

networks can achieve high classification accuracy when only a
few labeled pixels are available.

Similarly, for few-shot remote sensing data, an enhanced deep
Q-network technique for classifying PolSAR images was put
forth. It can provide valuable data by interacting with agents in
a greedy manner [70]. Multilayer feature images and classifi-
cation actions are correspondingly referred to in the network
as environment states and agent actions. Certain conditions
reward model predictions. Give the agent feedback by using
an annotated sample set of data.

To detect the dense ships from the complex background,
Fu et al. [71] proposed a ship rotation detection model based
on feature fusion pyramid network-based deep reinforcement
learning (FFPN-RL), which applies deep reinforcement learning
to the tilted ship detection task. Angle prediction is made through
three actions of the action set. Using different rotation angles
in the action set makes it possible to achieve higher prediction
accuracy and reduce the number of decision-making actions. The
reward function encourages or penalizes angle-predicting agents
with selected actions. The agent accumulates experience with
the abovementioned rewards, learns from them, and ultimately
chooses the appropriate action in each decision. As a result, the
detecting network can produce inclined rectangular boxes for
ships more efficiently.

E. Transfer Learning

As an essential ML method, transfer learning has been widely
studied. It can simulate the human’s learning ability of “inferring
others” and transfer the knowledge learned in the past to new
tasks, and speed up the cost of learning new tasks [72]. On the
other hand, transfer learning can train ML methods of supervised
learning using part of the labeled data, reducing dependence
on a large amount of labeled data [73]. The primary trend in
current transfer learning development is to use a large amount
of labelled classification data to pretrain a benchmark network

Fig. 8. Learning process of transfer learning.

and then use a small amount of labeled data to fine-tune the
network for different tasks.

As shown in Fig. 8, the core idea of transfer learning is apply-
ing knowledge gained from one problem to another, a different
but related problem. When performing transfer learning, the
constraints of the pretrained model and setting an appropriate
learning rate are important. Using pretrained networks may limit
the architectures used with new datasets.

A lower learning rate is usually used for the weights of
the convolutional network being fine-tuned compared with the
randomly initialized one. It is possible to train a good classifier
using the source domain data. However, the source domain
model cannot classify the target domain data well due to subtle
differences between the source and target domain data. A com-
monly used method is to align the feature distributions of the
target domain and the source domain data. The target domain
data can be classified using the model trained with the source
domain data.

Domain adaptation [74] is a unique type of transfer learning
that occurs when the data distributions in the source and target
domains vary, but the two objectives are the same. Domain
adaptation is currently a significant research hotspot in transfer
learning. Its task is to learn a mapping that can simultaneously
map the source and target domains to a common feature space
so that the composite mapping can be simulated. Combine
mappings learned only in the source domain and very close to
mappings learned only in the target domain.

At present, there are many related studies combining transfer
learning with remote sensing data. Xie et al. [75] proposed
utilizing a transfer learning strategy to leverage nighttime light
intensity to train a fully convolutional CNN model to forecast
evening lights in daytime photos. The features learned are help-
ful for poverty prediction. Chen et al. [76] used a single deep
convolutional neural network and limited training samples to
perform transfer learning and improve the detection accuracy
of aircraft in remote sensing data. A change detection-driven
transfer learning method is proposed to leverage the time series
images updating the land cover maps [77]. The method aims to
leverage the existing knowledge of the source domain to define
a reliable training set for the target domain. This is achieved by
applying an unsupervised change detection method to the target
and source domains and initializing the target domain training
set by migrating the detected class labels of unchanged training
samples from the source domain to the target domain.
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Fig. 9. Illustration of various data types. The data types can be divided into
two categories: passive imaging and active imaging.

IV. INTERPRETATIONS OF REMOTE SENSING

A. Data Types of Remote Sensing

As artificial intelligence has advanced, it has increasingly
become used in more and more applications with impressive
results [78]. The field of remote sensing is no exception [79].
Intelligent interpretation of remote sensing is crucial to study
in many areas, including environmental monitoring, land re-
sources [80], crop monitoring [81] and yield estimation, forest
carbon sink estimation [82], and national defense security [83].
Intelligent remote sensing interpretation is also an important
requirement for national strategic development [8].

Remote sensing image refers to films or photos that record the
size of electromagnetic waves of various ground objects, mainly
divided into aerial photos [84] and satellite photos [85]. Remote
sensing imaging methods mainly include aerial photography,
aerial scanning, and microwave radar. Remote sensing images
can be broadly separated into active and passive remote sensing
based on various detecting techniques [86]. According to the
capture spectral range of the sensor, it is divided into ultraviolet
remote sensing, visible light remote sensing, infrared remote
sensing, microwave remote sensing, and multiband remote sens-
ing [87]. This section mainly summarizes the widely studied
optical remote sensing images and radar images in the existing
remote sensing data (as shown in Fig. 9), including optical
remote sensing images [88], radar images [89], LiDAR point
cloud data [90], and remote sensing videos [91].

1) Optical Images: Optical images are a kind of remote
sensing data that obtains target information on different spec-
tra by dividing the radiation of objects into several narrower
spectral bands. The same objects have similar spectral charac-
teristics [92]. The radiation energy of different objects in bands
is different.

According to the number of captured spectral bands and
the narrowness of the spectral bands, optical images can be
roughly classified into three types: panchromatic, multispec-
tral, and hyperspectral [93]. Generally, most satellites can take
panchromatic and multispectral images.

Panchromatic images: Panchromatic images have only one
grayscale image band, i.e., the brightness of a particular pixel is

proportional to the pixel value. The pixel value is related to the
intensity of solar radiation reflected by the target. Panchromatic
images generally have a high spatial resolution, but their images
have little spectral information [94].

Multispectral images: Multispectral imagery usually refers to
three to ten spectral bands expressed in pixels. Each band can
be acquired using a remote sensing radiometer [95]. An image
with both the high GSD and abundant spectral information can
be generated by properly fusing the panchromatic image with
the multispectral image.

HSIs: While hyperspectral data contain very narrow bands
(10–20 nm) [96], HSIs may have thousands of bands. For
each band of hyperspectral data, imaging spectrometers are
often required to acquire them. Compared with high-resolution,
multispectral images, HSIs have high spectral resolution and
abundant bands. It contains rich radiation, spatial and spectral
information [97], and is a comprehensive carrier of various
details. The areas of feature mapping and resource exploration
have made extensive use of HSIs [98]. Unlike standard RGB
images, HSIs are often multichannel images. Hyperspectral rich
band information often contains richer features. We can select
the band by the sensitivity of different ground objects to different
bands to highlight certain objects [99].

2) Radar Images: Radar is an active microwave remote sen-
sor that emits microwave radiation and receives electromagnetic
waves reflected from a target [100]. The radar imaging system
mainly includes five parts: a pulse generator, transmitter, radar
antenna, receiver, and recorder. The pulse generator generates a
high-power FM signal and repeatedly emits microwave pulses
of a specific wavelength at a particular time interval through the
transmitter. Commonly used radar images can be divided into
synthetic aperture radar (SAR) and PolSAR.

SAR: SAR [101] is an active microwave imaging device.
Its imaging principle forms the virtual antenna of the radar
through the movement of the flight carrier, thereby obtaining
high-azimuth resolution radar images. SAR can be divided into
airborne and spaceborne according to aircraft type. Both have
their advantages and uses. Airborne SAR has higher resolution,
whereas spaceborne SAR can observe a wider area for a long
time, has a global macroscopic effect, and is periodic. The cost
is also lower than the airborne, so spaceborne SAR has been
widely used. According to whether synthetic aperture processing
is performed, imaging radar can be divided into real aperture
radar (RAR) and SAR [102], [103] [as shown in Fig. 10(a)].

Real aperture imaging radar transmits a pulsed radio beam
with a very narrow width to the side of the radar antenna (called
the range direction) to the traveling direction of the aircraft
(called the azimuth direction). The beam irradiates a long narrow
ground strip perpendicular to the flight direction. Then, the
radar antenna is converted into the receiving working state and
receives the backscattered wave reflected from the target [104],
[105]. As the vehicle travels, the emitted beam scans the surface
in this continuous strip along the direction of flight. The radar
image is created line by line [106].

The resolution of radar images includes distance resolution
and azimuth resolution. Distance resolution refers to the res-
olution in the vertical flight direction. The azimuth resolution
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Fig. 10. (a) Imaging principles of SAR. (b) Polarization combinations of
PolSAR.

refers to the resolution along the flight direction [107]. The
distance resolution is mainly related to the pulse signal emitted
by the radar system. The shorter the pulse duration, the higher
the distance resolution. However, the transmission power will
decrease if the pulse width is too small. In addition, the signal-
to-noise ratio of the reflected pulse will also decrease, which is
contradictory [108].

The basic principle of SAR is to use a small antenna as
a single radiating unit to make it move continuously along a
straight line. The reflected pulse of the same target at different
positions performs related processing, which can obtain higher
image resolution [108]. SAR is the same as RAR in the distance
direction, using pulse compression to improve the resolution.
In the azimuth direction, the resolution is improved by the
principle of synthetic aperture [109]. While the position of the
radiating element is constantly changing, the received signals
can be recorded and processed to obtain the same effect as
the observation with a longer virtual antenna length (synthetic
aperture length) of the actual antenna.

By transmitting electromagnetic pulses and receiving target
echoes for coherent imaging, SAR can shoot multipolarization,
multiband, high-resolution images all day, all weather. It obtains
backscattering information of ground objects to realize the task

of Earth observation. Compared with optical and infrared remote
sensing technologies, SAR belongs to microwave remote sens-
ing [110]. It can not only obtain the Earth’s surface information,
such as topography and landforms, but also penetrate the surface
to obtain underground, concealed, and high-resolution ground
data in harsh environments.

PolSAR: PolSAR system [111] is developed based on the
single-channel SAR system, which can provide multidimen-
sional remote sensing information of targets. Compared with
traditional single-channel SAR, polarimetric SAR not only uti-
lizes the amplitude, phase, and frequency characteristics of target
scattered echoes but also utilizes its polarization characteris-
tics [112]. For example, the L-band with a longer wavelength
can penetrate forests and surface vegetation coverage. It can
be used in the military to discover hidden targets in jungles or
shallowly buried surfaces [113].

By sending and receiving electromagnetic waves with vari-
ous polarizations, PolSAR measures the polarization scattering
properties of ground objects and builds up the polarization
scattering matrix. The polarization of electromagnetic waves
is sensitive to the target’s physical characteristics, such as sur-
face roughness, dielectric constant, geometry, and orientation.
Thus, the polarization scattering matrix includes abundant target
information.

PolSAR obtains polarization scattering matrixes by mea-
suring the scattered echoes in each resolution unit on the
ground [114]. The amplitude and phase properties of the tar-
get scattered echoes can be completely described using these
polarization scattering matrices.

When the electric field of the electromagnetic wave is parallel
to the scattering surface, the electromagnetic wave is called a
horizontal (H) polarized wave. Similarly, the perpendicular one
is called vertical (V) polarized waves. Therefore, PolSAR can be
divided into four polarization modes based on the transmitting
and receiving antenna’s direction.

As shown in Fig. 10(b), there are four polarization combi-
nations: VV, HH, VH, and HV. For example, VV polarization,
namely vertical transmission/vertical reception, indicates that
the polarized SAR transmitting antenna transmits vertical elec-
tromagnetic waves, and the receiving antenna also accepts verti-
cal electromagnetic waves. By obtaining four basic polarization
combinations (HH, HV, VH, and VV polarizations) [115], the
received power value of the antenna in all possible polarization
states can be accurately calculated.

In recent decades, PolSAR technology has developed rapidly,
and its wide application has also received increasing atten-
tion [116]. At the same time, people’s demands for SAR are
growing, and they want to obtain images of the same target
in several frequency bands, polarizations, and viewpoints. In
addition, SAR miniaturization is also significant due to the
need for military unmanned reconnaissance aircraft. Nowadays,
PolSAR is one of the most sophisticated sensors used in remote
sensing. It has many practical applications and importance in
civil and military fields.

3) Airborne LiDAR: Airborne LiDAR [117] is a detection
technology integrating attitude determination, laser, and
high-precision GPS differential positioning technology.
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Fig. 11. Graphic depicting an airborne LiDAR system. Image from [118].

LiDAR determines the relative distance between the scanner and
the object by measuring the signal travel time [119]. Compared
with the data obtained by traditional photogrammetry, point
cloud data can reflect terrain information more accurately. The
data collected by airborne LiDAR are a series of discrete 3-D
points with irregular spatial distribution, called “point cloud.”

As shown in Fig. 11, airborne LiDAR systems mainly include
laser scanners, inertial navigation systems (INS) [120], and dy-
namic differential GPS receivers. The laser scanner measures the
distance from the launch point of the laser to the ground target.
The inertial navigation system uses the inertial measurement unit
(IMU) [121] to measure the attitude parameters of the aircraft’s
central optical axis scanning device. The dynamic differential
GPS receiver is used to determine the spatial location of the
launch point of the LiDAR.

After the airborne LiDAR system completes the laser scan-
ning, the data obtained include the position, orientation, and laser
scanning distance [122]. Among them, the position and orienta-
tion include differential GPS and IMU information. These data
record the information of each laser pulse, including position,
azimuth/angle, distance, time, intensity, echo, and other data
obtained by the system during flight. The X, Y, and Z coordinates
of the laser point in the WGS84 coordinate system can be
calculated. These discrete points with precise 3-D coordinates
are called the LiDAR point cloud [123].

The 3-D LiDAR point cloud data include information, such
as the spatial 3-D coordinates of the point, echo intensity, echo
times, and scanning angle [124]. In practical applications, the
information frequently employed is the point cloud geometry,
laser intensity, and laser echo data returned by emitted laser
pulses. The laser echo signal is produced when a laser pulse
is fired from a laser scanner and is then reflected or scattered
by a ground point. The airborne LiDAR system may offer not
only the 3-D coordinates of the target point but also intensity
information of the laser echo signal [125]. Due to the different
reflection characteristics of each material to the laser signal, the
point cloud data can easily distinguish the boundaries of different
objects for object classification.

4) Remote Sensing Videos: Remote sensing video [126] is
usually divided into satellite video and UAV video according
to the platform that carries the sensor. Satellite video is a kind

Fig. 12. Illustration of remote sensing videos. (a) Satellite videos. (b) UAV
videos.

of onboard video. It generally refers to the video obtained by
satellites in the fields related to research and exploration of space.
UAV video is the videos captured by UAV. The illustration of
remote sensing videos is shown in Fig. 12.

Satellite Videos: Satellite imagery refers to a satellite platform
that carries an image payload and can obtain images of ground
target areas.

Satellite videos [127] can continuously image the target area
for a long time, providing dynamic information and realiz-
ing long-term dynamic real-time monitoring. The camera is
mounted on a microsatellite platform and consists of a tele-
scopic objective lens, an area array focal plane detector, and
an electronic processing circuit [128]. The telescopic objective
lens images the ground scene within the 2-D field of view
on the image plane, and after photoelectric conversion and
electronic circuit processing of the area array detector located
at the image plane, the remote sensing image of the ground
scene is obtained. When the shutter that controls the exposure
is opened, the light emitted by the ground scene is transmitted
through the atmosphere and reaches the camera’s entrance pupil.
The telescopic objective focuses on the area array focal plane
detector to obtain a frame of video of the target. As the satellite
platform flies in orbit, there is relative movement between the
camera and the ground scene. When the shutter is opened again,
another frame of the target is obtained. This cycle continues
to form a frame push process. In the process of frame push
imaging, the exposure time is often more significant than the
integration time corresponding to a single pixel. The captured
image is prone to displacement in the direction along the track,
that is, image movement and the image easily becomes blurred.
The image movement compensation device, such as a reaction
wheel or gyroscope, can be used to adjust the camera attitude
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to eliminate or reduce the impact of image movement. After
multiframe image compression, frame alignment algorithm, and
other software processing, a continuous dynamic video is finally
formed.

As a new method of acquiring image data for Earth obser-
vation, satellite remote sensing video can be applied to large-
scale dynamic target change monitoring and its instantaneous
characteristic analysis [129]. It reduces the time interval be-
tween adjacent image frames by adopting the “image recording”
method for a specific area, which not only achieves large-scale
coverage but also makes up for the limitation of the reentry pe-
riod of traditional satellites. Compared with conventional remote
sensing satellites, the target observation area of satellite remote
sensing video is small, but the timeliness is good [130]. It can
realize fixed-point and fixed-range remote sensing monitoring in
small areas, which makes it have unique application advantages
in some major engineering fields. For example, it can keep
abreast of the progress and construction of major projects and
provide real-time video information support for the impact on
the surrounding ecological environment.

Compared with traditional video surveillance image data,
satellite remote sensing image data have the following chal-
lenges [131].

1) In the process of satellite remote sensing image imaging,
the slow movement of the sensor causes the displacement
of buildings, trees, and other targets to change, resulting in
many false moving targets, making the background more
complicated.

2) Due to the limitation of the spatial resolution of satellite
remote sensing imaging, the target is only a few to a
dozen pixels in size in the image, and the contrast with
the background is low, so it is impossible to obtain more
detailed information of the target.

3) In the satellite videos, factors, such as illumination change,
shadow movement, and others, lead to the dynamic
changes in the background. Due to the low resolution,
these dynamic changes are more likely regarded as the
moving target causing false alarms. We directly apply
traditional moving target detection methods in satellite
videos resulting in false detection.

UAV Videos: UAV [132] is a kind of unmanned aerial vehicle.
With the improvement of hardware performance and the devel-
opment of image processing algorithms, the research on UAV
vision has become a hotspot. Due to geographical restrictions,
the advantages of large-scale, multiangle, high-resolution data
can be obtained. It plays an increasingly important role in
target tracking, image stitching, power line inspection, island
monitoring, coastline inspection, postdisaster monitoring, and
river flood season monitoring [132].

In addition to takeoff and landing, the flight state of the
UAV can be roughly divided into the hovering state and the
cruising state, and the videos obtained in these two states have
different characteristics. The drone can shoot stable video in the
hovering state. Still, the rotation of the wing and the influence
of the external wind will cause the picture to shake, resulting
in irregular motion of the video background. The UAV cruising
state refers to the translational flight state of the UAV in forward

and backward flight. In the video shot, the image has a large
offset in a short period. In addition to the moving target, the
background also has much movement.

Compared with satellite videos, UAV-borne image data has
the following advantages.

1) Make up for the lack of timeliness of satellite remote
sensing and ordinary aerial remote sensing, lack of ma-
neuverability, and the lack of regional information due to
limitations, such as weather conditions and time [133].

2) The drone images have high resolution and can obtain
high-resolution panoramic images of the flight area. How-
ever, due to the long distance of satellite shooting, the
resolution and accuracy of the image cannot be satisfied.

3) The UAV system has a low cost of use and simple main-
tenance and operation [134].

4) The UAV system can quickly acquire visible light and
infrared imaging at medium and low altitudes, conduct
fast and real-time ground inspection and monitoring,
and record the current image status objectively and di-
rectly [135].

Compared with other relatively stable camera equipment,
such as surveillance cameras on roads and shopping malls, the
high mobility of drones can make data collection not limited by
geographical areas. It has unique advantages in resource and
environmental monitoring, forest fire monitoring, and rescue
command in areas where vehicles and people cannot reach and
has become more flexible. The image data obtained by aerial
cameras, satellites, etc., carried by airships at high altitudes,
using UAVs for moving target detection are more challenging.
Table I lists the characteristics of UAV videos compared with
satellite videos.

In general, video data contain richer information than individ-
ual images in terms of content or time [136]. In particular, satel-
lites gradually begin to develop video functions, significantly
expanding the source of video data.

B. Applications of Remote Sensing

Brain-inspired remote sensing interpretation is applied to all
aspects of remote sensing data processing, effectively processing
the replicated and diverse data of remote sensing. In this section,
we summarize the development during recent years of five ap-
plications, including land-cover classification, change detection,
target detection, object tracking, and 3-D reconstruction.

1) Land-Cover Classification: Land-cover classification,
which is also known as semantic segmentation in nature image
processing, is one of the most basic image analysis tasks in
remote sensing. It classifies each pixel in the image and assigns
a category to each pixel, achieving an understanding of the image
content.

In 2015, Long et al. [137] first proposed fully convolu-
tional networks (FCN) for semantic segmentation tasks. The
FCN network replaces all the fully connected layers in the
neural network with convolutional layers, realizing a network
composed of all convolutional layers. Since the FCN net-
work fails to make good use of multiscale features, in 2015,
Ronneberger et al. [138] proposed the U-Net network. The
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TABLE I
COMPARISON OF UAV VIDEOS AND SATELLITE VIDEOS

U-Net network utilizes the skip connection operation to make
full use of the multiscale features generated during the downsam-
pling process and then obtains excellent segmentation results.
Moreover, in 2017, Badrinarayanan et al. [139] proposed the
SegNet network based on the U-Net network. The network
performs nonlinear upsampling in the decoder using the pooling
indices computed in the max-pooling step of the correspond-
ing encoder. In the same year, Gao Huang et al. proposed
DenseNet [140]. The convolutional layer of the DenseNet net-
work connects each layer with each layer in a feedforward
manner so that the layers close to the input and the output
contain shorter connections to recover information lost during
convolution, since both UNet and SegNet fail to fully utilize
the local neighborhood information around pixels. Also, Chen
et al. [141] proposed the DeepLabV3+ network. The DeepLab
network utilizes atrous spatial pyramid pooling (SPP). Multi-
scale local receptive fields of pixels are fused while reducing
resolution.

Compared with natural images, remote sensing images have
the following characteristics.

1) The size of the same class objects varies widely, and the
problem of size change needs to be solved.

2) Due to the fact that satellites shoot the ground at high
altitudes, the obtained images are very wide in scope.
The object occupies very few pixels, which generates the
problem of sample imbalance.

3) When shooting in a large area, the same class of objects
show a variety of different appearance because of weather,
light, and other natural conditions.

4) Large-scale shooting is usually accompanied by low reso-
lution, which makes each semantic region lacks morpho-
logical contour information.

These characteristics of remote sensing images impose higher
requirements for land-cover classification.

Land-cover classification can be roughly divided into object-
based and pixel-based methods. The object-based method di-
vides the image into regions and classifies the regions according
to the feature of the whole region. While the pixel-based method
does not need region division and directly uses the characteristics
of the pixels to classify directly. Due to the heterogeneity of
medium- and low-resolution remote sensing images [as shown
in Fig. 13(a) and 13(b)], each pixel is considered to be mixed
and may contain more than one semantic category. Therefore,
pixel-based classification methods are usually ineffective for
medium-resolution and low-resolution remote sensing images,
whereas object-based methods can achieve coarse image seg-
mentation by classifying regions. There is less category mixing
in high-resolution images, as shown in Fig. 13(c), where each
pixel represents the characteristics of this area. Compared with
the region-based method, the pixel-based method can give full

Fig. 13. (a) Low resolution: The pixels are significantly larger than the object.
(b) Medium resolution: The pixel and the object are the same sizes. (c) High
resolution: Pixels are significantly smaller than objects.

Fig. 14. (a) Object-based classification. (b) Pixel-based classification.

play to the characteristics of the pixel itself and perform the
segmentation task more successfully.

Object-based classification: The core to be processed of the
object-based classification method is the segment (segments),
that is, the grouping of multiple pixels with the same attribute
into an object. Unlike pixel-based classification methods, object-
based methods divide remote sensing images into separate re-
gions and evaluate their characteristics by spatial and spectral
features. Object-based methods are also more similar to the
human visual understanding process, understanding semantic
information by considering the different properties and spatial
arrangements of these objects and then intuitively identifying
objects from images rather than individual pixels. Currently,
object-based classification of features is also used in archaeol-
ogy, exploration of glacial landforms, wetland mapping, and
other applications. Object-based methods usually consist of
three main parts: image segmentation, object feature extraction,
and object classification, as shown in Fig. 14(a). The image seg-
mentation part, the first step of the object-based method, divides
the remote sensing image into multiple homogeneous segments
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with segmentation algorithms, such as edge-based segmentation
and region-based segmentation. The object feature extraction
part makes up for the shortcomings of pixel-based methods,
including features, such as shape, texture, and spectrum, are
extracted. Finally, in the object classification part, different
objects are classified by the classifier in their feature space.

In recent years, how to integrate deep learning and object-
based land-cover classification has attracted the attention of
many scholars. Zhang [142] proposed an object-based convo-
lutional neural network (OCNN) method for land use classi-
fication. OCNN first segmented remote sensing images into
linear-based objects and general objects and then sent them into
the neural network for analysis. Timilsina et al. [143] presented
a new method combining the object-based postclassification
refinement method and CNNs, which takes optical and SAR
data as input and uses the CNN network to obtain coarse
results, which are extracted with the help of OBIA. Spatial,
texture, and context features refine the coarse results. Zhang
et al. [144] proposed a multilevel context-guided classification
method (MLCG-OCNN) for high-resolution remote sensing im-
ages. Instead of using object and context blocks as input, MLCG-
OCNN accurately identifies objects using high-level features
learned from spectral patterns, geometric features, and object-
level contextual information. The classification results for each
object are then improved with pixel-level contextual guidance.
Papadomanolaki et al. [145] introduced a novel object-based
deep learning system that incorporates anisotropic diffusion data
preprocessing and an extra loss to integrate object-based priors.

Pixel-based classification: Pixel-based approaches employ
image pixels as the basic unit of analysis, and individual pixels
are labeled as a single semantic category, such as vegetation,
buildings, vehicles, or roads [as shown in Fig. 14(b)]. Early
methods based on pixel-by-pixel classification mainly adopted
k-means, support vector machines, neural networks, and other
methods. With the improvement of remote sensing imaging tech-
nology, the resolution of remote sensing images has been greatly
improved. The pixel-based method completes the segmentation
task by clustering the pixels with similar features into the same
category and assigning a category through the pixels’ features.

Peng et al. [146] proposed cross fusion net (CFNet) based
on UNet. The CFNet network fuses and predicts the multiscale
features in a concatenated manner. In addition, the network
designs a channel attention refinement module to select informa-
tive features and a cross fusion module to expand the low-level
feature map of the receptive field to improve the segmentation
accuracy of small-scale objects. Heidler et al. [147] proposed
the HED-UNet network, which exploits the multiscale features
generated in the decoding process to provide features for both
semantic prediction and boundary prediction tasks.

Liu et al. [148] constructed an atrous convolution module
based on atrous convolution in the DeepLabv3+ network, which
can arbitrarily control the depth, width, group, and step of the
module with different dilation rates to make full use of local
features. Peng et al. [149] used a multiscale convolution kernel
parallel method to make full use of the local information of
the pixel. Dense skip connections are adopted to mitigate the
consequences of the loss of high-level features in the image

due to the nature of convolutional low-pass filtering. Shang
et al. [150] proposed atrous convolution with different expansion
rates, the global information, and self-information for extracting
multiscale contextual information to solve the problem of object
size discrepancy in remote sensing images. Wang et al. [151] pro-
posed a dual-channel spectral-spatial fusion capsule generative
adversarial network (DcCapsGAN) for HSI classification. Dc-
CapsGAN utilizes a capsule and generative adversarial network
structure to overcome the limitation of training size with high-
dimensional features and the effectiveness of spectral-spatial
exploitation.

A novel spectral spatial transformer-M that assembles spatial
attention and extracts spectral features is proposed to improve
performance for the class pixels located on the land-cover
category boundary area [152]. Wang et al. [153] proposed an
UNetFormer to model both global and local information for
efficient semantic segmentation achieving up to 322.4 FPS with
a 512× 512 input. Inspired by multiscale vision transformer,
He et al. [154] proposed a cross-spectral vision transformer to
extract pixelwise multiscale features and enhance local details
between neighboring spectral bands for HSI classification.

2) Change Detection: Remote sensing change detection
(RSCD) refers to extracting and identifying different informa-
tion between multitemporal images from the identical geograph-
ical area [155], [156]. As shown in Fig. 15, RSCD methods
typically consist of the processes of remote sensing images
preprocessing (alignment, correction, noise reduction, etc.), se-
lection of suitable change detection method, and evaluating the
results. Weismiller et al. [157] first performed change detection
for coastal environments and since then a large number of studies
have been conducted on RSCD. Nowadays, RSCD takes an
active part in a variety of applications, including urbanization
monitoring [158], damage assessment [159], and environmental
monitoring [160]. According to the analysis units, the existing
RS CD methods are classified into pixel-based, object-based,
and scene-based, each of which has its own advantages and
shortcomings [161]. In recent years, new approaches have also
been developed to combine these analysis units in the process
of change detection to better extract change information.

Pixel-based change detection: Since pixel represents the most
basic unit of remote sensing image, early methods of RSCD
mainly employed algebraic methods to evaluate every pixel of
the given remote sensing images, such as the image difference
method [162] and regression analysis method [163], [164].
Furthermore, RSCD can also be undertaken by means of pixel
transformation, such as principal component analysis [165] and
change vector analysis [164]. In pixel transformation methods,
remote sensing images are transformed and combined with
spatial projections and converted into different mathematical
spaces for analysis in order to optimize various features further.
Due to the unpredictability of high-frequency components in the
high-resolution remote sensing image and errors of geometric
alignment and radiometric correction in preprocessing, tradi-
tional pixel-based methods are hardly capable of modeling to
apply to high-resolution remote sensing images [166]. There-
fore, traditional pixel-based methods are typically adopted for
low- and medium-resolution images [167], [168].
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Fig. 15. General diagram of the RSCD process, including remote sensing image preprocessing, selection of suitable change detection methods, and results
evaluation.

In addition, the pixel classification change detection method
is another pixel-based change detection method that obtains the
change matrix of an image by comparing two postclassifica-
tion images, which reflect the change information in the study
area [164]. Such methods include postclassification comparison,
unsupervised change detection methods, and artificial neural
network-based methods [167]. However, supervised approaches
suffer from the difficulty of selecting high-quality datasets,
whereas unsupervised approaches encounter difficulties in rec-
ognizing and labeling change objects and in selecting numbers
of clusters [156], [164].

In recent years, the rise of deep learning has led to a large
number of deep learning-based semantic segmentation methods
being applied in pixel-based change detection and greatly eased
the abovementioned difficulties. For example, Wang et al. [169]
introduced a hybrid affinity matrix with fused subpixel represen-
tation and proposed a convolutional neural network framework
for RSCD. Daudt et al. [170] used a FCN to perform change
detection on multitemporal images on Earth observation images.
As it has been proven that obtaining contextual information
in multitemporal images and combining multiscale features of
change regions provides an effective prediction of fine changes
and improves the accuracy of change detection [171], research
works combining multiscale features have been proposed. For
example, Chen et al. [172] designed a multiscale feature con-
volution unit combined with deep siamese convolutional net-
works for supervised and unsupervised change detection. More-
over, aiming at further feature and information fusion. Zheng
et al. [171] designed a cross-layer convolutional neural network
(CLNet), which aggregates multilevel contextual information
and multiscale features through two parallel branches.

Since CNN-based methods are not skilled in acquiring re-
mote information in space, the transformer has also been intro-
duced to remote sensing change detection. Chen et al. [173]
proposed the dual-temporal image transformer (BIT), which
expresses dual-temporal images as several labeled tokens, and

Fig. 16. ContourletFusion clustering (CFC) framework for change detection
in SAR images. Image from [59].

the context is modeled in a compact token-based space–time
with a transformer-based converter encoder. The learned global
context-rich tokens are then fed back into the pixel space to en-
hance the original pixel-level features by the transformer-based
decoder. A pure transformer network with a siamese U-shaped
structure is also proposed to solve CD problems [174]. In addi-
tion, some scholars have also introduced graph convolutional
networks [155], GANs, and DBNs, into pixel-based change
detection [156].

Apart from RSCD based on active imaging, change detection
in SAR images has also received attention from scholars. During
SAR image change detection, since local pixels are coherent, it is
critical to reduce the image of scattering noise while preserving
the image details as local pixels are coherent. To address the chal-
lenges above, as shown in Fig. 16, Zhang et al. [59] presented the
adaptive contourlet fusion clustering algorithm as well as a new
FGFCM-based fast nonlocal clustering algorithm (FNLC) for
SAR change detection, which leverages the change and invari-
ant information from ratio difference images. Specifically, the
contourlet fusion method of image fusion first decomposes two
input ratio images by the CT, which in turn yields multiresolution
and multidirectional decomposition coefficients. Then, different
fusion rules are employed to fuse the low- and high-frequency
coefficients of the input image, respectively. Finally, the fused
coefficients were subjected to the contourlet inversion transform
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to acquire the fusion image. In addition, the proposed FNLC
method classifies the changed and unchanged areas in the fusion
image, enhancing the performance of SAR images in terms of
noise suppression.

Object-based change detection (OBCD): Similar to object-
based classification, the analysis unit for OBCD is the object in
images. Chen et al. [176] defined OBCD as a process of applying
object-based analysis to identify variances in geographic objects
at different times. Typically, it consists of the following steps:
creating homogeneous regions (i.e., image objects) on the ba-
sis of image segmentation, extracting change information, and
identifying change areas. The OBCD method is highly sensitive
to the segmentation algorithm adopted and tends to disregard
semantic information, as well as interobject information [177].
Also, the selection of the scale parameter (SP) used to control the
object size is a fundamental step in OBCD. Traditional object
generation methods based on mathematical approaches fail to
solve these difficulties. Meanwhile, based on the accelerated
growth of deep learning, OBCD methods have solved these
difficulties to some extent.

In the process of object segmentation, both insufficient and ex-
cessive segmentation leads to the appearance of features that fail
to reflect the real world and may produce useless objects, which
may degrade performance [164]. The emergence of deep learn-
ing has made it possible to further fuse spatial features. Wang
et al. [178] presented a method for change detection combining
multiple feature integration methods, showing that multiple
objects features yield higher accuracy in object-based methods
with different segmentation scales and classifiers. In addition,
superpixel segmentation methods are widely utilized to extract
objects. Zhang et al. [177] proposed a superpixel enhanced
CD network (ESCNet) for very-high-resolution (VHR) images
to extract object information with a superpixel segmentation
network. To further exploit the contextual information among
objects, Zhan et al. [179] presented an unsupervised scale-driven
network for VHR images with a multiscale decision fusion
strategy. The network identifies change regions by fusing change
detection results achieved by various scales from SVM-based
classification. It also makes full use of the spatial contextual
information of image objects. Zhang et al. [180] introduced the
GCN model to remote sensing OBCD and constructed graph
neural networks for objects to obtain contextual information
between neighboring objects, enhancing performance and com-
putational efficiency.

Bounding box selection is another object-based approach.
Among such methods, object detection algorithms, such as
Faster R-CNN backbone, are widely utilized, which consider
the “changed regions” in the image as detection objects and the
“unchanged regions” as background [161]. Zhang et al. [181]
proposed a single-stage change detection model with a dual
correlated attention-guided detector to enhance robustness. The
input images are sent to a weight-sharing backbone to extract
features at different scales. A constructed dual correlated at-
tention module is following to refine the change-related features
from the channel and spatial aspects and inhibit the uncorrelated
features. Han et al. [182] proposed dual regions of interest net-
works, consisting of three functional blocks: a feature extraction

Fig. 17. Change detection framework built on a combination of pixel level
and object level, where the building extraction network leverages the object-
based Mask R-CNN and the pixel-based multiscale FCN, respectively (image
from [175]).

network, a change proposal network, and a different judgment
network, to improve feature representation and achieve better
change discrimination. Priyanto et al. [183] applied faster R-
CNN as a feature extractor to detect and monitor the number of
changing floating net cages in fisheries and marine areas.

Furthermore, since both pixel-based and object-based meth-
ods hold their respective advantages, many scholars have com-
bined them to achieve better performance. Lu et al. [184] pro-
posed an unsupervised algorithm-level change detection fusion
scheme that applies OBCD to improve the accuracy of the tra-
ditional pixel-based change detection algorithms. Ji et al. [175]
employed mask R-CNN and MS-FCN to extract building fea-
tures. As shown in Fig. 17, the building extraction network
outputs object- and pixel-level building change maps, and feeds
them to a self-trained building change detection network to
compute building change maps. Han et al. [185] suggested a
weighted Dempster–Shafer theory fusion method that generates
OBCD by combining multiple pixel-based change detection
results.

Scene-based change detection: Remote sensing scene level
change detection (SLSCD) intends to analyze and identify land
use changes in a given multitemporal remote sensing image of
the same area from a semantic perspective [161]. Rather than
pixel- and OBCD methods, SLSCD assigns land use/cover labels
to image scenes, e.g., for industrial and residential areas. SLSCD
is mainly deployed in the analysis of change at the semantic level,
i.e., the shift in ground cover type, and is no longer focused
solely on the question of whether the ground state has changed.
A number of approaches have been proposed, which are broadly
classified into traditional-based methods as well as deep learning
methods.

Before the surge of deep learning, approaches utilizing hand-
crafted features were proposed successively, such as scale-
invariant feature transformation and a bag of visual words
(BOVW) models. Wu et al. [186] presented an SLSCD frame-
work based on the BOVW model and a classification-based
approach to extraction semantic change information, in which
scene images are represented by the word frequencies of three
kinds of multitemporal learned dictionaries. To further exploit
the time-scale information and compensate for the weakness of
manual features, some scholars introduced unsupervised meth-
ods to SLSCD. Wu et al. [187] proposed a method that combines
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kernel slow feature analysis (KSFA), an unsupervised learning
algorithm based on the fusion of KSFA and postclassification
fusion, combining independent scene classification with change
probability to identify scene changes and recognize transition
types. Du et al. [188] proposed a latent Dirichlet allocation and
multivariate alteration detection method for unsupervised scene
change detection.

As a large number of remote sensing scene data samples
with annotations are acquired, the traditional methods above-
mentioned show low robustness for large-scale datasets, and the
whole scheme of some traditional methods fails to perform joint
optimization [189]. Following the growth of deep learning, a
number of researchers have introduced deep learning to SLSCD
to break through these difficulties. Wang et al. [190] proposed a
scene change detection network named DCCANet. DCCANet
extracts convolutional features through a CNN and uses deep
typical correlation analysis (DCCA) to learn the nonlinear
transformation of two view data, which enhances the temporal
correlation of multitemporal correlation of the temporal images
and obtains highly correlated features.

3) Target Detection: The research of remote sensing image
target detection has a broad application perspective. It can mon-
itor the traffic conditions of important areas [191], roads, ports,
and airports, and then coordinate the detection of aircraft in
airports [192], vehicles on roads [193], and ships in ports [194].
However, owing to the complex information of remote sensing
images and the small size of targets, detection methods based on
natural images cannot achieve good results on remote sensing
images. Therefore, a large number of methods have been pro-
posed for object detection tasks in remote sensing image inter-
pretation. Object detection focuses on whether there are object
instances from a defined class given the input information, and
if so, returns the spatial location, extent, and class of each object
through a bounding box [195]. With the development of deep
learning, thanks to the powerful semantic representation ability
of deep features extracted by neural networks, the performance
of target detection has been rapidly improved. Generally, deep
learning-based object detection methods are mainly divided into
two categories: two-stage detection frameworks and one-stage
detection frameworks [196]. The difference between them is
shown in Fig. 18.

Two-stage detection frameworks: The two-stage detector first
generates region proposals and then classifies the candidate
boxes. For object detection in remote sensing images, besides
the limitation of training samples, the biggest challenge is how
to effectively deal with the change of object rotation [5]. Li
et al. [197] constructed a region proposal network including
additional multiangle anchors and a local contextual feature
fusion network to better extract the rotation and appearance
blur features of spatial objects in remote sensing images. In
addition to extending directly on classic two-stage detectors,
such as R-CNN and faster R-CNN, many scholars have also
proposed other two-stage methods according to the characteris-
tics of remote sensing images. Zou et al. [199] designed SVDNet
based on a singular value decomposition algorithm, and adopted
feature pooling operation and linear SVM classifier for ship
verification. Bai et al. [198] proposed an object detection method

Fig. 18. One-stage and two-stage structures comparison. (a) One stage, (b)
Two stage.

Fig. 19. Framework of the proposed method. (Image from [198]).

based on time–frequency analysis for large-scale remote sens-
ing images with complex backgrounds. They utilized wavelet
decomposition for time–frequency transformation, which was
then combined with deep learning for feature optimization.
A feature optimization method based on deep reinforcement
learning is proposed to select the main time–frequency channels.
In addition, a discrete wavelet multiscale attention mechanism
is designed to enable the detector to focus on object regions
instead of the background, effectively extracting multiscale and
multidirectional features from remote sensing images (as shown
in Fig. 19).

Object detection has come a long way recently. However, the
widely adopted horizontal bounding box representation is not
suitable for omnipresent directional objects, such as those in
aerial images and scene text. Xu et al. [200] proposed a simple
and effective framework to detect multidirectional objects (as
shown in Fig. 20). Instead of directly regressing the four vertices,
it slides the vertices of the horizontal bounding box on each
corresponding edge to accurately describe a multidirectional
object. Zhou et al. [201] proposed a correlation learning detector
based on transformer. It fully leverages the position information
and correlation among objects, predicting the rotated bounding
boxes for dense objects in remote sensing images.
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Fig. 20. Pipeline of the proposed method. (Image from [200]).

One-stage detection frameworks: The one-stage detection
framework does not generate region proposals and obtains pre-
diction results directly from the input information. Liu et al.
[202] adopted the YOLOv2 architecture as the basic network
for ship detection and proposed a remote sensing image ship
detection framework for any direction. Based on RetinaNet,
Yang et al. [203] proposed the R3det detector for the detection
of rotating objects. The strategy combines the advantages of the
high recall rate of horizontal anchors and the adaptability of
rotating anchors to dense scenes and achieves feature alignment
using a designed feature refinement module. Wu et al. [204]
proposed the optical remote sensing imagery detector (ORSIm
detector) with strong robustness using spatial frequency channel
features, fast feature channel scaling, and other methods to make
it capable of handling complex object deformation behavior in
images.

Drawing on the idea of SSD [205], Ma et al. [206] presented an
end-to-end scale-aware target detection framework for multicat-
egory target detection tasks, such as large differences in the size
of geospatial objects and dense distribution of geospatial objects
in the same complex scene. The framework consists of a feature
separation and remerging module, an offset error correction
module, and a target saliency enhancement module. The feature
separation and remerging module aim to eliminate the salient
information of larger sized objects in the shallow feature map and
highlight the features of small objects. Then, the effective detail
features of larger sized targets are passed to the deep feature
map to alleviate the problem of easy feature confusion between
multiscale targets. The offset error correction module corrects
the inconsistency of feature space layout between multilayer
feature maps through the proposed offset loss function. The
target saliency enhancement module enhances the target features
of interest and suppresses background information through the
proposed membership function. Finally, the multiscale feature
maps containing fine target features are detected to obtain better
detection performance (as shown in Fig. 21).

To address the challenge of complex background in remote
sensing image target detection, Zhang et al. [207] proposed a

foreground-aware remote sensing image target detection model,
which enhanced the foreground awareness of the detector from
the perspectives of feature relationship learning and network
optimization. The method enhanced the discriminative ability
of foreground regions in feature maps by building a foreground
relation learning module and introducing a foreground anchor
loss function to enable the network to focus on the optimization
of foreground anchors. A dual network structure based on the
transformer architecture is proposed to hierarchically embed the
local features into global representations for object detection in
remote sensing [208].

4) Object Tracking: Video object tracking is a fundamental
prerequisite for scene content analysis and understanding of
high-level vision tasks. As shown in Fig. 22, it detects and tracks
objects in image sequences. Object tracking is the process of
detecting and tracking objects in an image sequence, during
which the object is specified in the first frame and further
detected and tracked in the next frame of the video [209], [210].
The main purpose of object tracking in the field of remote
sensing is to track objects of interest in optical satellite video,
aerial video, and UAV video. Remote sensing object tracking is
used in intelligent traffic flow monitoring [211], environmental
monitoring [212], UAV detection [213], etc. In this section,
we focus on discussing the recently emerging object tracking
algorithms on satellite videos. Object tracking in satellite video
is far different from the natural video. First, satellites have a
wide range, usually covering several thousand square kilometers
in a single video. Taking Jilin-1 as an example, its resolution is
about 1m, so a video has a video size of several thousand by
several thousand. In remote sensing videos, objects of interest
are often a dozen pixels in size with few appearance features,
and it is difficult to distinguish objects by appearance features in
complex scenes accurately. Therefore, when designing remote
sensing object tracking networks, it is necessary to compensate
for the scarce appearance features through perspectives, such as
motion models.

Single-object tracking: Generally, generative methods and
discriminative methods are the two mainstream single-object
tracking frameworks.

1) Generative models: Generative tracking methods typically
learn a model representing an object in the current frame.
In the next frame, a candidate object that is most similar
to the object is selected as the tracking result. The model
maximizes the similarity or minimizes the corresponding
reconstruction error [214], [215]. The object models of
early generative algorithms include the Gaussian mix-
ture model, Bayesian network model, Markov model, etc.
Wang et al. [216] proposed a high-resolution ship track-
ing method from coarse to fine. A constrained template
matching method was introduced in this method. Frost
and Tapamo [217] presented a ship tracking model with
shape priors, using level set segmentation to improve the
detection performance. Although generative techniques
are effective in the majority of the aforementioned sce-
narios, most of the current approaches only pay attention
to the characteristics of the object itself and ignore its
correlation characteristics with the environment or other
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Fig. 21. Framework of split erg enhancement network (SME-Net). (Image from [206]).

Fig. 22. (a) Single object tracking. The green box is the initial target bounding box to initial the tracker. Yellow boxes are the tracking results. (b) Multiple object
tracking can divide into two steps: detection and association. The red boxes are the detection results. The trajectories in difference color represent individual objects.

nonobjects. As a result, since 2010, academics have given
discriminative-based approaches more attention.

2) Discriminative models: Discriminant tracking methods
usually treat tracking as a binary classification problem
of distinguishing the object from the background, thereby
selecting the object [215]. Currently, discriminative meth-
ods represented by the correlation filter and deep learning
have achieved satisfactory results and are widely used. The
tracker based on the correlation filter extracts the object
features according to the object position of the first frame
of the video and performs training and learning to obtain

the correlation filter, and the extracted features are sub-
jected to Fourier transform, multiplied with the correlation
filter, and then inverse Fourier transform, which improves
the computational efficiency [218]. Du et al. [219] used the
kernelized correlation filter (KCF) tracker [220], a classi-
cal algorithm in correlation filtering, for remote sensing
video object tracking. According to the characteristics of
remote sensing images, KCF is combined with the three-
frame difference method to obtain more accurate tracking
results. Shao et al. [221] combined KCF and optical flow to
propose a VCF tracker for satellite video object tracking.
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Since the object lacks appearance features, VCF uses the
optical flow map as the object’s velocity feature map
and uses KCF to track the object on the velocity feature.
Also, the inertial mechanism is designed to prevent model
tracking drift adaptively by adopting the characteristics of
object motion. A correlation filter-based dual-flow tracker
is proposed to explore the spatial-spectral feature fusion
and motion model for small object tracking [222].

Fu et al. [223] proposed a DRCF tracker based on a double
regularization strategy to solve the detrimental boundary effect
in DCF-based visual object tracking and enhance the discrimi-
native power of the filter. Xuan et al. [224] introduced a rotation
adaptive correlation filter tracking algorithm to address the
tracking stability problem caused by the rotation of the object by
estimating the rotation angle of the object. From the perspective
of features, Liu et al. added deep VGG features on the basis
of manual features to extract object features, and expanded the
correlation filtering and tracking method of satellite video. An
occlusion judgment index is proposed, and the motion trajectory
is used to compensate for the occlusion.

However, the algorithms of correlation filter-based trackers
tend to use handcrafted features, which often face challenges
when the object size is small and the background is complex.
Deep learning techniques provide a new research trend. The
object tracking algorithm framework based on deep learning
obtains the region of interest extracted features from the pre-
dicted position of the previous frame rate, and then establishes
a deep network-based discriminant model to obtain the tracking
result of the current frame of the object.

Compared with the fixed object positioning method of correla-
tion filtering, the deep learning network acquires the positioning
ability of object tracking through learning, which makes the
algorithm more flexible. The most straightforward implementa-
tion of deep learning is to apply the pretrained model directly
to remote sensing video tracking. For example, Hu et al. [202]
proposed a CRAM network that combines deep learning and
optical flow method. Appearance features and motion features
are extracted from optical images and optical flow images to
alleviate the tracking drift problem. Feng et al. [225] combined
the classical algorithm SiamRPN++ of the Siamese network with
the frame difference method based on clustering and put forward
CDF-SiamRPN++. In CDF-SiamRPN++, the difference map
between adjacent frames is divided by the clustering method,
which effectively suppresses the interference of environmen-
tal noise and retains effective motion information. Shao et al.
[226] presented the HRSiam tracker, which combines the high-
resolution feature extraction step by HRNet with the SiamRPN
tracker. Since HRNet is capable of performing feature extraction
and multiscale feature fusion while maintaining high resolution
in parallel, applying the extracted high-resolution features to
SiamRPN for object tracking leads to a powerful small-object
tracking capability.

Song et al. [227] also proposed a tracker based on
SiamRPN++. The tracker integrates spatial and channels atten-
tion to improve tracking accuracy. Li et al. [91] raised a CRFPF
module to establish parallel branches to extract multiscale
features, and a collaborative attention learning mechanism is

Fig. 23. Tracking process of MBLT.

designed to learn the relevant information enhancing the saliency
of the objects. Also, an MBLT tracker is proposed to learn
the motion and background of the object [228]. The tracking
process of MBIT is shown in Fig. 23. First, the DCF tracker
generates raw tracking results. Then, a prediction network based
on FCN is proposed to estimate the location probability. Third,
a feasible region is segmented by FLICM. Finally, the results
of the abovementioned three modules are combined to predict
the tracking results. To exploit the learning ability of the neural
network, deep reinforcement learning is also introduced to track
objects in satellite videos. Cui et al. [218] proposed an action
decision–occlusion handling network to leverage the occlusion
information and drive actions under occlusion.

Multiobject tracking: Compared with single-object tracking,
multiobject tracking in remote sensing video has greater appli-
cation prospects. Multiobject tracking in remote sensing video
allows continuously monitor suspicious objects in the military
and obtain enemy intelligence; for civilian use, it can monitor
traffic flow for statistical analysis, and provide data support
for urban management. In remote sensing video, multiobject
tracking is divided into three categories: aircraft, ships, and
vehicles. Because of the large object size of aircraft and the
sparse and less obscured ships moving on the sea surface, few
papers have performed multiobject tracking for these two types
of objects. He et al. [229] designed algorithms for two types
of objects, ships and aircraft in satellite video. This algorithm
models multiobject tracking from a multitask learning perspec-
tive as a graph information inference process. Through the
spatiotemporal relationship module of the graph, the algorithm
can mine the potential higher order relationships in the graph.

Compared with the tracking of aircraft and ships, the mul-
tiobject tracking of vehicles has received extensive attention.
Xiao et al. [230] considered the tracking problem a relational
graph matching framework. A joint probability relational graph
method is proposed to integrate the road map and the motion
of the vehicle to obtain high detection and tracking accuracy in
wide-area videos. Zhang et al. [231] proposed a two-step global
data association algorithm: First, the local object trajectory of
the vehicle is generated, and then, the local trajectory is merged
into the global trajectory. The trajectory association model de-
fines a trajectory transition matrix based on Kalman filtering to
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Fig. 24. 3-D reconstruction in remote sensing, including different source data-based remote sensing reconstruction and the stereo matching algorithms.

link trajectories with larger time intervals. At the same time,
through the double-layer k shortest path optimization method,
the approximate optimal solution to the association problem is
obtained.

Ahmadi et al. [232] applied background subtraction to de-
tect moving vehicles and estimate the trajectory, speed, and
other information of the vehicle. Zhang et al. [233] also used
background subtraction to detect moving vehicles and apply dy-
namic association methods to match the objects. Ao et al. [234]
established a local noise model to distinguish vehicle objects
through an exponential probability distribution. Jie et al. [235]
proposed a cross-frame keypoint detection network (CKDNet)
and a spatiotemporal motion information guided tracking net-
work. CKDNet assists the detection of keypoints by collect-
ing complementary information between frames and efficiently
tracks densely arranged vehicles by building a two-branch long
short-term memory. Wu et al. [236] presented slow feature
and motion feature to guide the multiobject tracking, in which
bounding box proposal-guided NMS modules based on SFs
enhance the detection of regions of interest.

5) 3-D Reconstruction in Remote Sensing: 3-D reconstruc-
tion is a fundamental challenge in the wide remote sensing
applications [237]. In this section, remote sensing 3-D recon-
struction is mainly investigated according to data sources and
stereo matching algorithms, as shown in Fig. 24.

Different source data-based remote sensing reconstruction:
According to the data source, the existing remote sensing 3-D
reconstruction can be divided into the optical satellite-based,
LiDAR-based, and UAV aerial photography-based reconstruc-
tion methods [238], [239], [240].

The digital surface model and 3-D reconstruction based on
optical satellite technology are also called visual stereo mapping.
It mainly uses optical remote sensing satellites to perform high-
precision ground stereoscopic observations to obtain ground
models. Similar to optical satellite imagery, the ground imagery
acquired by the UAV aerial photography method is also visual.
It has been demonstrated as an efficient and reliable tool to gen-
erate high-precision reconstructions and models of topographic
and historical landscape structures [241]. Langhammer et al.
[241] used drones to obtain images of abandoned landscapes
built for wood flow, and then performs 3-D reconstruction, which
is of great significance for water resource management.

For the 3-D reconstruction of optical images, some self-
supervised techniques can minimize the distance between the
2-D projection of the reconstruction result and the input image.
Some unsupervised methods are based on generative adversarial
networks to reconstruct 3-D shapes. By contrast, remote sensing
images based on LiDAR scanning have high resolution and
strong reliability. The seamless and accurate elevation data it
obtains have many applications in the Earth sciences. The data
obtained by the LiDAR point cloud device are point cloud data.
Each point contains 3-D coordinate information and sometimes
includes color information, reflection intensity information,
echo frequency information, etc. In short, the digital elevation
model, digital surface model,and digital orthophoto that can
be generated by LiDAR are used in various aspects, such as
urban 3-D modeling, natural disaster assessment, and resource
survey.

In addition, the interferometric SAR tomography technology
is also used to invert the scattering intensity of ground objects
at different heights on the vertical ground, so as to perform
3-D radar imaging. Tomography technology makes it possible
to reconstruct the vertical elevation and direction structure of
ground objects and has great application potential in terrain
mapping, forest parameter estimation, 3-D modeling of urban
buildings, and imaging of historical relics.

Stereo matching: Stereo matching has specific research signif-
icance in 3-D reconstruction and has certain universality, so it has
become a research hotspot of 3-D reconstruction. The general
process of stereo matching is as follows. After the image is
preprocessed, the idea of the global method (the path on the right
in the abovementioned figure) is to use the global information to
perform disparity optimization (disparity optimization). It seeks
to find the optimal disparity result for each pixel so that the
international and overall matching cost is minimized [242]. The
disparity calculation in the local stereo matching algorithm is
generally relatively simple, and the WTA winner-take-all theory
is used to search for the disparity directly. Both methods need
to perform parallax postprocessing after calculating the parallax
drawing. After the disparity map is initially obtained, the results
of the disparity map are judged, and possible matching errors are
found and corrected. Common disparity postprocessing methods
include left–right consistency detection, occlusion filling, and
weighted median filtering.
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Fig. 25. General process of the stereo matching.

Stereo matching has certain research significance in 3-D
reconstruction, and it has certain universality, so it has become
a research hotspot of 3-D reconstruction. The general process
of the stereo matching is shown as Fig. 25. After the image is
preprocessed, the classic idea of using global information for
parallax optimization is to find the optimal parallax result for
each pixel, so as to minimize the global and overall matching
cost [242]. This step is called disparity optimization. Disparity
calculation has become one of the research focuses in existing
stereo matching. Depth and disparity can be directly converted
to each other, so depth estimation has also become a research
hotspot of stereo matching.

Depth estimation: Depth estimation, using one or
only/multiple viewing angles of the RGB image, estimates
the distance of each pixel in the image relative to the shooting
source. It is a critical step in the task of scene reconstruction
and understanding and is part of the 3-D reconstruction. In
addition to the costly method of obtaining depth point clouds by
using LiDAR or the reflection of structured light on the object’s
surface, the most common traditional depth estimation methods
are monocular and binocular ranges. In contrast, the amount of
calculation of the monocular ranging method is complex, and
the accuracy is not as high as that of the binocular, and it is
often used when the conditions are challenging. Deep learning
has also continued to develop in depth estimation methods.

1) Monocular and binocular disparity estimation: There are
mainly monocular estimation and binocular estimation
methods. There are many common deep learning monoc-
ular ranging methods. For example, Facil et al. [243]
proposed CAM-Convs convolution, which can take the
camera parameters into account, so that the neural network
can learn to calibrate the perception mode. Wang et al.
[244] proposed a motion feature that considers one of the
most important features of the human visual system. It
employs an RNN to train with multi-view image reprojec-
tion techniques to improve monocular depth estimation.
Tosi et al. [333] proposed monoResMatch, which com-
bines features from different angles, keeps consistent with
the input image, and performs stereo matching between
two cues to infer from a single input image to the novel
deep learning framework. The overview in [245] investi-
gates deep learning binocular depth estimation methods
and gives a comparison of 16 deep learning depth estima-
tion methods, including the GANet [246], PSMNet [247],
and SegStereo [248] in 2018 and 2019. In recent years,
some relatively advanced methods have also appeared,
such as PlaneMVS [249], Nerfingmvs [250], and in [251]
and [252]. The architecture overview of PSMNet is shown

Fig. 26. Architecture overview of classical PSMNet.

in Fig. 26. It is a typical model for binocular disparity
estimation. The left and right images are the model’s input.
CNN is taken as the feature extraction module along with
the SPP module for feature harvesting. Then, the extracted
features are concatenated together as the input of the cost
volume module. Finally, a 3-D CNN with unsampling
and regression module is designed for the cost volume
regularization and disparity regression.
As for the disparity estimation in remote sensing [253],
[254], [255]. Among them, Yu et al. [253] mainly uses 2-D
discrete wavelet transform to enhance the local invariant
features of the existing weighted α-shape (W α SH). It is
used in remote sensing images with less affine distortion
and less noise. Experiments perform that it can effectively
alleviate the image matching problems of geometric dis-
tortion and radiation distortion in stereo remote sensing
images. In addition, a novel edge-aware bidirectional pyra-
mid stereo matching network is suggested in [254] to en-
hance performance in textureless regions while preserving
the primary structure. It can effectively solve the problem
of poor disparity estimation accuracy caused by occlusion
areas of high-rise buildings and textureless areas. Jia et al.
[255] tried to use CNN to match remote sensing stereo
images of featureless areas, such as the lunar surface.

2) Single-view and multiview 3-D reconstruction: From the
perspective of view, existing related algorithms can be
divided into single-view and multiview 3-D reconstruction
methods. Single-view 3-D reconstruction refers to the
realization of 3-D reconstruction of an image or target
given a single image. The majority of single-view 3-D
understanding techniques currently in use employ an
encoder–decoder structure, where the encoder converts the
input image into a latent representation and the decoder
must engage in complex analysis of the 3-D structure of
the output space [256].
Although single-view 3-D reconstruction can generate
different 3-D results (such as point clouds or meshes), it
can also handle many disordered images. Remote sensing
image reconstruction in three dimensions is essential for
tracking changes to the Earth’s surface. In [257] and [258],
the authors orderly predict depth from a given image and
estimate a single-view spherical map from depth under
the same view. However, single-view 3-D reconstruction
results usually lack completeness and accuracy, especially
when there are obstacles or occluded areas.
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TABLE II
SUMMARY OF PUBLIC DATASETS FOR VARIOUS REMOTE SENSING APPLICATIONS

Multiview 3-D reconstruction alleviates and solves the above-
mentioned problems to a certain extent. There are two main types
of multiview reconstruction: one is to reconstruct stationary
objects from images of two or more views, and the other is to
reconstruct 3-D shapes of moving objects from video or multiple
frames [259]. Multiview reconstruction is flexible and scalable,
which can be adapted to large-scale scenarios. Of course, there
are still numerous obstacles to overcome in order to accurately
rebuild multiview depth maps in urban landscapes, such as
the presence of repeating textures and texture-poor places. To
address the aforementioned issues, Hu et al. [260] proposed a
multiview 3-D reconstruction (IMGTR) method based on image
triangles. Rupnik et al. [261] proposed to generate high-quality
digital surface models by combining many depth maps that were
calculated using a dense image matching method. It performs
well at reconstructing surface discontinuities, repeating patterns,
and nontextured surfaces.

V. IMPLEMENTATION OF REMOTE SENSING

A. Public Datasets

Deep learning algorithms have demonstrated excellent per-
formance in various fields. This is inseparable from using large
amounts of finely labelled data for neural network training.
Researchers need to use labeled data to develop algorithms
to meet different applications. Commonly used remote sensing

datasets are summarized in Table II and categorized according
to the tasks for which they are mainly applied.

B. Software Platforms

In recent years, Earth observation technology has devel-
oped tremendously, and large-scale remote sensing data are
stored, recorded, and developed for free use by society and
researchers [262], [263], [264]. However, traditional remote
sensing interpretation methods require users to download and
process data on local computers. For example, image processing
platforms, such as the Environment for Visualizing Images
(ENVI), can perform image enhancement, orthorectification,
data fusion and transformation, knowledge-based decision tree
classification, and other functions on the image after the user
obtains the data. This platform is an offline software installed
on a single machine that assists people in data preprocessing and
simple image recognition tasks [265]. With the increased data,
the computing power to store and interpret data locally is facing
enormous challenges.

Platforms for remote sensing applications have started to
move toward the cloud as the Internet has grown [266], [267].
The remote sensing platform deployed in the cloud has the
following characteristics.

1) The cloud platform can provide abundant storage and com-
puting resources. Users can efficiently process large-scale
remote sensing data;
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2) Computation-intensive tasks are performed through cloud
servers, reducing the computing power requirements of
the user’s computer and lowering the threshold for
software use.

3) Users can access the platform by any device which can
access the Internet and perform tasks, such as remote
sensing image processing and analysis anytime, anywhere.

4) Accessing the platform through web pages, users can
obtain the latest data and update functions of platforms
at any time and use the latest algorithms to process the
latest data and improve work efficiency.

The abovementioned advantages are not available in tradi-
tional image processing tools. Therefore, various research insti-
tutes and companies have invested in constructing remote sens-
ing cloud platforms. This platform can perform interpretation
services in the cloud without downloading the data locally. These
platforms integrate various tools and applications to provide
users with a complete data acquisition and processing solution.
From the perspective of usage, the mainstream platforms can be
classified into two types: one is the remote sensing data cloud
platform for professional users with programming tools. This
platform requires users to use the provided application program-
ming interfaces (API) for data manipulation and processing,
such as Google Earth Engine (GEE). Through various flexible
APIs, professionals can customize functions and algorithms for
their own needs to achieve different functions. The other type is
the remote sensing data cloud platform for ordinary users. This
type of platform further encapsulates data and algorithms. Users
only need to select or upload data in the corresponding format
and select the task to be interpreted. The platform will be able
to realize automatic algorithm processing and visualization of
data and results, such as Remote Sensing Data Intelligent Inter-
pretation Platform, SenseEarth, and so on. Through simple and
convenient operation, ordinary practitioners can also interpret
remote sensing data, which benefits the civilian promotion of
remote sensing technology. In this section, we select the GEE
platform and the Remote Sensing Data Intelligent Interpretation
Platform for introduction and show the specific characteristics
of these two types of platforms, respectively.

1) Google Earth Engine: GEE is a remote sensing interpre-
tation cloud platform launched by Google in 2010. This platform
is one of the most popular big data geographic information
processing platforms. The platform provides users free services
to discover, analyze, and visualize big geospatial data based on
Google’s computing infrastructure.

In GEE, different third-party network applications can be
implemented through the interfaces provided by the platform.
For researchers who use the GEE platform, it is essential to use
the API provided by the platform. GEE provides APIs in two
languages, JavaScript and Python, to meet the needs of most
programmers. Through different APIs, users can easily access
data, use various applications provided by GEE, and view the
running results in real time. The platform is divided into three
parts: Data catalog and Explorer, Code editor, and Timelapse.

Data catalog and explorer: The data catalog contains a signif-
icant amount of geospatial data, which collects numerous pub-
licly accessible satellite images, including the Landsat, MODIS,

Fig. 27. Data catalog of GEE.

Fig. 28. Code editing platform of GEE.

and Sentinel images, as well as numerous atmospheric, meteoro-
logical, and vector datasets. The datasets cover various satellite
and air systems for optical imagery, environmental variables,
weather and climate forecasting, land cover, and socioeconomic.

Fig. 27 is the data content page captured by the multispectral
instrument of the Sentinel-2 satellite in the data catalog. This
content page shows visual thumbnails of the data, the time when
the data are available, the dataset provider, the API used to access
the data, and a detailed description of the data. Users can browse
the data catalog, select the required dataset according to the
dataset description, and use the provided API to obtain the data.
The data can then be quickly visualized via explore, provided
by GEE.

Code editing platform: The code editing platform is GEE’s
main platform for data acquisition, processing, analysis, and
visualization. As shown in Fig. 28, the code editor is mainly
divided into four functional blocks: visualization area, script
manager, code editor, and information bar.

Below the page is the visual area of the code editing platform.
This is the main area for user interaction, data, and result
visualization. This area uses the world map as the base map
to provide basic geographic location information. The data and
code analysis results are displayed by stacking of multiple
layers. Users can drag and zoom the results in the visualization
area, mark the position by clicking, and so on. The location
information of the marker will be displayed on the Inspector
page of the information bar.
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Fig. 29. Framework of remote sensing data intelligent interpretation platform.

On the left-hand side of the page is the script manager, which
stores scripts edited by users and sample scripts provided by
the GEE platform. Through the manager, users can select or
delete their scripts. At the same time, the sample scripts provided
by GEE cover image acquisition, preprocessing, visualization,
drawing, etc., and provide demos, such as classification, climate
modeling, terrain visualization, etc., to provide users with com-
plete code usage demonstrations.

In the middle of the page is the code editor area through the
cloud platform infrastructure provided by Google. By editing
JavaScript and Python code, users do not need to consider the
problem of the code running environment. Someone can run the
code directly by clicking the “Run” button at the top of the page
after writing the code.

On the right-hand side of the page is the information window.
The info window includes Inspector, Console, etc. The Inspector
displays information about the user’s markers on the map. The
Console will display the output print of the code running.

Simple mathematical operations to sophisticated image
processing and ML functions are all available on the
platform.

By writing code, users can fully utilize the functions of the
GEE platform. The GEE platform provides rich data and API,
the focus of its widespread use. However, since it is free and
open to the public, computationally intensive tasks, such as
deep learning, cannot be widely supported. Users are limited
to varying degrees in training models, data acquisition, and
designing new methods and functions.

Timelapse: Based on nearly 40 years of data stored on the
GEE platform, the Timelapse project generates scalable video
worldwide. The project stitches together one image annually into
a video for each region, showing people the Earth’s changes in
time and space. In this project, we can record the most realistic
records of natural and human activities, such as glacial fusion,
bushfires, and urban development.

2) Remote Sensing Data Intelligent Interpretation Platform:
Different from Google Earth Engine in Section V-B1, “Remote
Sensing Data Intelligent Interpretation Platform” is designed to
meet practitioners’ need to interpret remote sensing data. By

encapsulating the relevant functional blocks, users can straight-
forwardly operate the platform. With the help of artificial in-
telligence algorithms, the platform integrates available blocks,
such as data interpretation, data management, and scene ap-
plication, which realizes algorithm processing automation and
data interpretation results visualization. The platform can per-
form real-time extraction and identification of target information
from full-modal remote sensing data, such as panchromatic,
visible, multispectral, hyperspectral, SAR images, and satel-
lite videos. Currently, the platform has opened four primary
functions, including land-cover classification, object detection
and recognition, element change detection, and intelligent video
interpretation, which offers practitioners technical assistance for
processing data from remote sensing.

As shown in Fig. 29, the system architecture of the “Re-
mote Sensing Data Intelligent Interpretation Platform” com-
prises three parts: data storage layer, platform service layer, and
platform operation layer.

The data storage layer mainly contains user, configuration,
and image data. User data record relevant information of users.
Configuration records relevant information of remote sensing
data. Image data include public datasets provided by the platform
and private datasets uploaded by users that are only visible to
owners. Image data are all stored in the cloud, which signifi-
cantly reduce the pressure of user data storage and can quickly
provide data support for interpretation tasks.

The platform service layer mainly includes three parts: data
management service, data interpretation service, and task man-
agement service. The data management service manages the
user data, image data, and interpretation results. It can operate
the data in the cloud with the help of the instructions of the
platform operation layer. The image interpretation service inte-
grates various artificial intelligence algorithms. It determines
the interpretation tasks through the platform operation layer
and then efficiently completes tasks, such as land-cover clas-
sification, target detection, change detection, and video target
tracking. The task management service is mainly responsible
for data retrieval, parameter transfer, and task scheduling. When
the user creates multiple tasks through the platform operation
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Fig. 30. Main page of big data intelligent interpretation platform.

layer, the layer needs to schedule the tasks and provide them
with the corresponding initialization parameters and image
data.

The platform operation layer mainly consists of user au-
thentication, user data, and task processing operations. User
authentication operations can use the user information stored in
the cloud for authentication and give users operation privileges.
User data operation can read and modify user data, image
data, and interpret results in the data storage layer. The task
processing layer is mainly responsible for assigning tasks to the
platform operation layer and providing feedback on exception
information and log information from the platform operation
layer.

Based on the abovementioned architecture, the platform con-
tains two critical systems: the User Interaction System (UIS)
and Data Interpretation System (DIS).

The client is mainly the interface between the user and the
platform. Users can access the client through a browser to
perform data uploading, browsing, interpretation task execution,
and analysis and display the result. The server is responsible for
data storage management and performing different interpreta-
tion tasks.

UIS: The UIS is the core system for users to interact with
the platform. Users can use the Internet to access web pages
at any time and enter the UIS to perform interpretation tasks
after logging in and authenticating. Fig. 30 shows the system
operation page after login. The system operation page is divided
into four areas: task module, data list, data display area, and
function module. In the task module, users can choose the type
of task they want to perform. In the data list, public datasets
and privately uploaded remote sensing images are displayed
in thumbnails; the data display area will display the remote
sensing images selected by the user and the corresponding
remote sensing images in real time. Interpret the result. Users can
drag and zoom in this area for data browsing. The function op-
tions provide users with functions, such as “image transparency
selection,” “visualization channel selection,” “image zooming,”
“interpretation result selection,” and so on.

DIS: As the core of the Remote Sensing Data Intelligent
Interpretation Platform, the DIS is mainly responsible for in-
telligently interpreting remote sensing images, efficiently and
accurately mining the adequate information of remote sensing

TABLE III
AVAILABLE TASKS IN BIG DATA INTELLIGENT INTERPRETATION PLATFORM

images, and providing users with real-time analysis services
of remote sensing data. The platform contains four primary
tasks: land-cover classification, object detection and recognition,
element change detection, and intelligent video interpretation.
Each task is divided into subtasks according to the target type
and data source, such as SAR, visible, multispectral, and hy-
perspectral. Land-cover classifications are divided into road
classification, water classification, building classification, and
land-cover classification. Object detection and identification are
divided into aircraft, bridge, and ship detection. Video intelligent
interpretations are divided into single target tracking, multitarget
tracking, and motion target detection. The available tasks are
given in Table III. Fig. 31 shows the interpretation results of some
tasks, such as change detection of SAR, ship detection of SAR,
water classification of HSI, object tracking, and multiaircraft
tracking.

C. Hardware Systems

In conventional research, researchers usually use multiple
graphics processing units (GPUs) or computer clusters for
algorithm research [302], [303], but they ignore the constraints
of energy consumption and computing resources. Although
many algorithms can achieve excellent results under GPU accel-
eration, there is still a long way to go from the requirements of
the actual industry. Many complex models cannot be deployed
on small devices or computed in real time, which are the main
problems confusing many engineers.

In applying remote sensing algorithms, the research and de-
velopment of hardware systems are more urgent. Currently, most
remote sensing algorithms are calculated at ground computing
stations, which significantly affects the application of remote
sensing technology and the complete mining of remote sensing
data. The main existing requirements are divided into three
points.

1) Real time: Real time can also be called nondelay, which
requires equipment to have a fixed processing time
when processing data to ensure stable processing of data
streams.

2) Data volume: The amount of data captured by remote
sensing satellites are significant, and not all data can
be sent to the ground for the processing. This requires
hardware devices that can be mounted on aircraft and
satellites for processing and only transmit essential data
to improve data utilization efficiency.
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Fig. 31. Interpretation results of some tasks in big data intelligent interpretation platform. (a) Change detection of SAR. (b) Ship detection of SAR. (c) Water
classification of MSI. (d) Landcover classification of HSI. (e) Object tracking. (f) Multiaircraft tracking.

3) Power consumption: Airborne and satellite-based devices
require low power consumption due to batteries and other
power supplies. Low power consumption can prolong
the use of electricity. Therefore, this chapter summarizes
the mainstream hardware platforms and selects field pro-
grammable gate array (FPGA) devices that are easy to
develop, computationally stable and low power for further
research.

1) Classification of Hardware Systems: All chips capable
of running AI algorithms, including CPUs, can be called AI
chips. In the traditional von Neumann structure, each instruction
executed by the CPU needs to read data from memory and
operate on the data according to that instruction [304]. From
this feature, the primary responsibility of the CPU is not only
data operations, but also executing commands, such as memory
reading, instruction analysis, and branching. However, most AI
algorithms, especially deep learning algorithms, usually require
a lot of data processing. When the CPU executes the algorithm,
the CPU is limited to serial execution, which will spend a lot
of time reading and analyzing data/instructions. This is why
algorithms cannot be suitable for parallel processing intensive
data and cannot fully utilize the chip’s potential. Therefore, the
computing framework is usually performed heterogeneously,
combining a CPU and a computing card. The CPU performs data
reading and other operations on the data, and the computing card
implements large-scale and intensive mathematical calculations.
Generally speaking, AI chips refer to chips that are different
from CPUs and are especially designed for acceleration accord-
ing to the characteristics of artificial intelligence algorithms.
According to the technical architecture, it can be divided into
GPU, application-specific integrated circuit (ASIC), FPGA, and
neuromorphic computing chip [305] (as shown in Fig. 32).

GPU: The GPU has a relatively straightforward architectural
design. As a result of the majority of transistors forming sev-
eral dedicated circuits and pipelines, the GPU outperforms the
CPU in terms of computation performance. The GPU also has

Fig. 32. Four mainstream hardware chips. GPU: Graphics processing unit.
ASIC: Application-specific integrated circuit. FPGA: Field programmable gate
array. NCC: Neuromorphic computing chip.

strong floating-point computing capabilities, which can help
deep learning algorithms overcome the computing pressure and
release the full potential of AI. GPU development has reached
a relatively mature stage at this time. GPUs are being used by
businesses, such as Google, Facebook, Microsoft, Twitter, and
Baidu, to analyze image, video, and audio assets to improve
search engines and image intelligence software. In addition,
GPU is appropriate for various industries, such as VR/AR
and unmanned driving. But GPUs also have some limitations.
Training and inference are the two phases of the deep learning
algorithmic process. The GPU platform is a productive platform
for training algorithms. However, when processing a single
input for inference, the benefits of parallel computing cannot
be completely realized. The GPU also consumes a lot of power
and cannot work independently. A CPU is required to schedule
it to work.

ASIC: The ASIC is a specialized customized chip designed
to meet a particular requirement. For high-performance, low-
power mobile applications, customized features benefit ASICs’
performance-to-power ratio and have advantages in terms of
reliability and integration. Google’s TPU, Cambrian Chips,
Horizon’s BPU, and Amazon’s Inferentia are all ASIC chips.
Artificial intelligence applications are ideal for ASIC devices.
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First, the fully customized circuit of ASIC can boost perfor-
mance. Google’s TPU is 30 to 80 times quicker than CPU
and GPU solutions while using less power and space. Second,
downstream demand encourages the specialization of artificial
intelligence chips. Due to the real-time requirements and the
privacy of training data, the computing of many application
scenarios cannot wholly rely on the cloud. The local software
and hardware must support it. However, the long design cycle of
ASIC cannot accommodate the advancement of the algorithms
that restrict its use.

FPGA: The full name of FPGA is “field programmable gate
array.” Two characteristics can be identified when comparing
FPGA and CPU. First, the FPGA does not have the storage
brought by memory and control. Thus the data reading is quicker.
Second, it uses less energy because the FPGA does not need a
reading command. At the same time, FPGA is different from
GPU. FPGA provides more pronounced efficiency improve-
ments in specific applications thanks to its parallel pipeline
and data parallel processing capabilities. FPGA is frequently
employed in the inference phase of deep learning algorithms
because it is ideal for data processing on the hardware pipeline
and has excellent operation performance. In addition, FPGA
provides the advantages of design flexibility and speed over
ASIC. The modification of the algorithms can be easily deployed
in the FPGA without redesigning the circuit. Because of its flex-
ibility and performance, it frequently replaces ASIC in various
industries.

Neuromorphic computing chip: A neuromorphic computing
chip is a circuit simulating the computing mechanism of the
brain from a structural perspective. This technology is still in the
development stage. Its research work can be further divided into
two levels. One is the neural network level, which corresponds
to the neuromorphic architecture and processor. Its memory,
CPU, and communication components are fully integrated, and
information processing is carried out locally, eliminating the
usual speed bottleneck between computer memory and CPU.
Neurons can readily and swiftly communicate with one another.
These neurons will activate simultaneously as long as they
receive other neurons’ pulses (action potentials). The Truenorth
chip from IBM and the Tianji chip from Tsinghua serve as
examples. The second is the level of neurons and synapses,
and the corresponding innovation is the level of components.
For instance, the world’s first artificial stochastic phase-change
neurons, capable of achieving high-speed unsupervised learn-
ing, were produced by IBM Zurich Research Center [306].
Although neuromorphic computing chips are not yet completely
developed and there is still some distance between large-scale
applications, it has the potential to revolutionize computer
architecture.

2) FPGA Structure and Advantages: As early as the 1960s,
Gerald Estrin proposed the concept of reconfigurable comput-
ing. But it was not until 1985 that Xilinx introduced the first
FPGA chips. Although the parallelism and power consumption
of the FPGA platform is excellent, the platform has not received
much attention due to its high reconfiguration cost and com-
plicated programming. Unlike GPUs and CPUs under the Von
Neumann-style architecture, although FPGAs are more difficult

to develop, they still have many advantages. The following is
discussed in five aspects [307].

1) Development time and difficulty: The development time
and difficulty of FPGA are between ASIC and GPU.
Usually, algorithms are developed directly on the GPU
using mature algorithm frameworks. After an algorithm
has been designed, the operators required by the algo-
rithm must be prepared first, and then, the algorithm can
be deployed on the FPGA. Modern deep networks are
usually stacked with a series of fixed operations (such
as convolution and pooling), so these commonly used
operators can be used directly. Companies, such as Xilinx,
provide corresponding deployment toolkits. Users can use
the toolkit to directly convert the programmed algorithms
of deep learning frameworks, such as TensorFlow, and
deploy them on the FPGA, significantly reducing the time
and difficulty of FPGA development.

2) Flexibility: FPGAs can provide a more flexible architec-
ture. Its flexibility is mainly reflected in programmable
computing resources and IO interfaces. The comput-
ing resources on the FPGA are programmable hard-
ware resources of a mixture of DPS and block random
access memory modules. Users can realize large-scale
parallel computing by configuring data channels, single
instruction multithreading, etc., to meet the needs of the
required workloads. At the same time, any programmable
IO connection allows the FPGA to connect to any device
(network or storage device) without the help of the CPU
to assist in data scheduling, dramatically improving the
FPGA’s flexibility in use.

3) Real time: The inside of the FPGA chip is realized by
hardware through millions of logic units. The hardware
connections between logical units represent the algorithm
flow. In this way, the FPGA avoids the operation of reading
the operation instruction. At the same time, through the
connection to the storage on the hardware, each logic
unit is directly configured with separate storage, which
avoids the need to apply for memory, arbitration, and other
operations in GPU computing, and further improves the
stability of the FPGA. Combining the abovementioned
two points, FPGA can ensure data reading and algorithms’
execution at the hardware level. The performance of all
algorithms can complete the calculation in a fixed clock
cycle, which can effectively meet the needs of most real-
time processing hardware systems.

3) Application of FPGA in Remote Sensing: According to
the parallel processing method (as shown in Fig. 33), it can
be divided into independent parallel processing of data blocks,
internal serial calculations;, overall data processing, parallel
internal calculations, and parallel processing of data blocks and
parallel internal calculations.

(1) Data parallel, calculation serial: It is suitable for the weak
correlation between each data block, which can be operated
independently, and there is causality between the operations
of each step. Remote sensing images can be used to observe
a certain area, usually with large image width and high data
volume. Remote sensing data can be used to examine a specific
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Fig. 33. Parallel processing types of FPGA. (a) Parallel processing of data blocks, serial internal calculations. (b) Overall data processing, parallel internal
calculations. (c) Parallel processing of data blocks and parallel internal calculations.

location, often with big image width and high data volume. Data
parallelism and computation serialization are popular parallel
technologies that are basic and easily scalable. Li et al. [308]
deployed the large-scale remote sensing real-time tree canopy
detection algorithm on the FPGA and divides the original large-
scale scene data into small blocks. It optimizes and adjusts the
original method based on a maximum local filter to reduce the
utilization of FPGA, reduce idle cycles, and achieve a balance of
different resource utilization. Ortiz et al. [309] proposed a paral-
lel endmember extraction method for on-orbit HSIs based on the
Fast UNmixing algorithm. This method divides the original HSI
into fixed-size subimages and iteratively extracts endmembers
from the subimages. This technique can be applied broadly in
various computer settings and is very scalable regarding varied
processing performance and energy efficiency. In addition, the
block-based partition scheme can provide higher fault tolerance,
which is suitable for remote sensing satellite environments
with high space radiation and vulnerable hardware. González
et al. [310] implemented the target detection method based on
the orthogonal projection operator ATGP-OSP on FPGA. This
article analyzes the orthogonal projection operator, in which
the operation of matrix inversion can be highly parallelized
by the Gauss–Jordan elimination method. A memory access
module is designed in the system, the delay of input and out-
put communication is reduced by prefetching technology, and
the operation efficiency is improved. Báscones et al. [311]
applied low complexity predictive lossy compression to HSI
compression. The image is processed in parallel in blocks, and
the iterative optimization process of each spectral channel is
highly streamlined. A large number of FIFOs are used, which
significantly reduces the use of DSP at the expense of slightly in-
creasing memory, compressing the HSI in real time that satisfies
several quality requirements.

(2) Data are processed as a whole, and the internal calcula-
tion is parallel: It applies to the relationship between each data
block, and each step operation can be performed independently.
González et al. [312] proposed a method to implement pixel
purity index PPI on FPGA. The calculation of endmember
string projection in the PPI method is independent and can

be executed simultaneously, so it is very suitable for parallel
processing. In addition, the calculation of the dot product in
the endmember string projection can also be performed on a
pixel-by-pixel basis. That is, data parallelism can be realized.
However, since this method requires additional computing re-
sources to process intermediate results, which makes the clock
cycle longer, only the process of each endmember string and
pixel dot product in the operation process is performed in
parallel.

(3) Data are divided into blocks, and operations are par-
allelized: This method can theoretically utilize computing re-
sources most efficiently. However, data distribution and inte-
gration costs must be considered in practical applications. Lei
et al. [313] further analyzed the ATGP method based on data
parallelism and proposed a vectorization method of operator
matrix. The operation of vector projection is calculated in par-
allel so that the update of the operator in a vector only needs to
be in one step. The computation time is significantly reduced.
The execution of convolutional neural networks exhibits a high
degree of parallelism. Pixels at different locations can be pro-
cessed in parallel, whereas standard convolutional layers contain
multiple filters. But due to hardware limitations, it is impossible
to utilize all parallel modes fully. Therefore, the authors in [314],
[315], and [316] divided the filters into multiple groups for
operation. When computed, the grouped filters are moved along
the channel dimension, and intermediate results are stored in
the accumulation buffer until the end of the channel gets the
convolution result at the current position.

Moreover, the channel convolution operation abovemen-
tioned is carried out simultaneously at the different pixels, and
the result is the feature map that the current convolution layer
has processed. Zhang et al. [317] proposed an independent
dual-channel DDR hierarchical storage scheme for storing and
reading weight parameters and feature data. The scheme uses
ping-pong buffering technology to avoid the conflict between
the storage of output feature maps of each layer and the access
of input feature maps.

The algorithm processing efficiency on hardware is improved
to solve the problem that FPGA storage and bandwidth are
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challenging to match in the parallel implementation of the CNN
network. It solves the problem of poorly matching FGPA stor-
age and processing bandwidth, which improves the efficiency
of arithmetic processing on the hardware. Zhang et al. [318]
proposed a three-level memory access architecture, including
off-chip memory, on-chip buffer, and local storage. The CNN’s
parameters are stored in off-chip memory. The convolution
processing engine receives picture data from the input buffer.
There is no way to set up enough hardware modules to calculate
the entire layer at once due to the limitations of hardware
logic and memory resources. Each convolutional layer often has
several convolution process engines, each with a local memory
for storing intermediate results.

VI. TOP TEN OPEN PROBLEMS

The application of deep neural networks in remote sensing
has become a major trend. However, modern deep learning still
has many unsolvable problems. Since humans can deal with all
kinds of complex tasks dynamically, brain-inspired algorithms
are new research paradigms. With the study of the idea of brain
properties, it can effectively make up for the current problems
of deep learning. By reviewing the brain properties and current
development of the remote sensing image interpretation, we
summarize ten future research directions and challenges.

A. How to Design Brain-Inspired Algorithms That Mimic
Brain Structure?

The structure of the human brain is hierarchical, sparse, and
periodic. At present, the algorithms designed in the field of re-
mote sensing follow a fixed structure. For example, convolution
is widely used in image processing tasks to extract features,
which realizes a simple simulation of the bottom layer of human
brain vision. In addition, the connection of neural networks are
dense. In the human brain, however, the underlying visual layers
are sparse. The design of a neural network can partly meet the
task requirements, but it is still far from the brain structure.

The spiking neural network [319] is a neural network that
further simulates the structure of the human brain. It accumulates
on neurons through information flow to achieve signal activa-
tion and inhibition. At the same time, this structure is closer
to the structure of the human brain, thereby realizing sparse
connections in information processing. Capsule network [320]
also models neurons, representing pose information of features
through vectors.

These algorithms that mimic brain structure have been ex-
tensively studied in natural data. However, due to the complex
characteristics of remote sensing data, brain-inspired algorithms
still need further exploration in of remote sensing.

B. Interpretability of Brain-Inspired Remote Sensing
Algorithms

Currently, using neural networks to improve the accuracy and
efficiency of algorithms is the mainstream method. However,
the inner mechanism of neural networks and the choice of
parameters have not been well studied. This leads to the fact

that the results of the algorithms are not completely credible and
reliable in the actual environment. Therefore, the core research
of brain-inspired remote sensing is to mimic the cognition,
perception, and other abilities related to the human brain to
propose the algorithms with high interpretability.

There are very little research works on the interpretability
of existing remote sensing algorithms. Hong et al. [321] dis-
cussed the development of interpretable hyperspectral artificial
intelligence algorithms from the perspective of nonconvex mod-
eling optimization. Many shallow algorithms can be explained
by combining them with knowledge of physics. However, the
interpretability research of deep algorithms is still a very dif-
ficult problem. Guo et al. [322] used the interpretable CNN
framework [323] to prune network. This class of methods adds
additional losses to the filters in the network to achieve inter-
pretable learning for different classes. In addition, the trans-
former leverages the attention to build the neural network. It also
shows the ability, such as our brains, to successfully handle a
disordered flow of information [324]. Furthermore, the attention
map is also shown interpretability.

These studies can improve the interpretability of the algorithm
to a certain extent. Future remote sensing algorithms still need
to combine remote sensing algorithms with brain properties and
physical knowledge to improve interpretability.

C. Constructing the Causal Reasoning Ability of
Brain-Inspired Remote Sensing Algorithms

The brain is a complex, intelligent structure using knowledge
and facts to reason and make conclusions. It makes inferences
about things based on perceptions acquired by different organs.
These abilities all boil down to causal reasoning. As an emerging
theory, causal inference has gradually formed its theoretical
system to guide the algorithm design of artificial intelligence.

Currently, in the interpretation of remote sensing data, there
are also many researchers trying to add the ability of reasoning
to the design of the algorithm. Mou et al. [325] designed a spa-
tial correlation module to construct long-range correlations of
objects in the scene. This module can provide relation-enhanced
feature representation to improve the accuracy of semantic
segmentation. Cao et al. [326] also tried to model and reason
about global relational information. This method improves the
performance of HSI denoising from the perspective of spatial
pixels and channels. The relational reasoning network [327]
was proposed in Salient Object Detection in optical remote
sensing image. These methods all focus on designing a net-
work structure, constructing the relationship between feature
channels, and realizing reasoning about the data. Therefore,
brain-inspired algorithms based on reasoning are still in the early
stage.

Now deep learning needs to move forward from data-based
to knowledge-based. As an essential way to utilize knowledge,
causal inference is the focus of brain-inspired algorithm re-
search. The causal inference has three important hierarchies:
association, intervention, and counterfactual. These theories
formulate the reasoning and decision of human brains. Com-
bining these theories with remote sensing data interpretation
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tasks will effectively promote the performance of remote sensing
interpretation tasks and improve the interpretability of remote
sensing algorithms.

D. Generalization Ability of Remote Sensing Algorithms

Remote sensing data have diverse and complex characteris-
tics, but current algorithms can only handle the task of a single
dataset. Even processing the same task, a model cannot be
applied to data captured at different ground sample distances
(GSD), spectral resolutions, and times. Therefore, it is a waste
of resources to train a model to adapt to different data repeatedly.
The human brain has strong learning and generalization capa-
bilities. By imitating the learning and memory capabilities of
the human brain, we can design dynamic networks for learning
and utilizing a variety of data and improve the migration ability
of the algorithm in a variety of data.

At the same time, remote sensing image interpretation in-
volves various tasks, such as classification, detection, tracking,
and so on. Most algorithms are designed to deal with a single
task. However, there is a certain correlation between each task.
The brain can use the knowledge of relevant tasks to assist the
interpretation of the current task, thereby improving accuracy
and speed. For example, the knowledge of the relationship be-
tween planes and airports can help us ignore the irrelevant area,
achieving rapid localization of the planes. The fusion of these
tasks requires a unified brain-inspired remote sensing to perform
joint learning of multiple tasks and simulate the mechanism of
human information utilization to realize the complementarity of
each task.

From another perspective, the remote sensing data collected
are always a small set compared with the entire Earth. In the
open world, the performance of algorithms is still difficult
to estimate and suffers. The human brain has the ability to
discriminate unknown types of objects. For unknown objects
or categories, it can give the uncertainty of the result so that
different strategies can be applied to the uncertain data. This
estimation of uncertainty is of great significance in the practical
use of remote sensing algorithms. In the natural field, there have
been many studies related to open-set data. Such algorithms
can identify unknown samples and separate them into unknown
classes [328], [329]. Therefore, the algorithm design of the open
set is also an important part of the design of brain-inspired
remote sensing. It requires the algorithms to face the data from
the open world outside the training set, with the ability of
self-adaptation, self-induction, self-learning, and the ability to
deal with uncertain results. Judgment can predict reasonable
results according to the geographical conditions of different
regions and regions.

E. How to Implement a Remote Sensing Algorithm With
Temporal Memory and Self-Learning?

The observation of remote sensing information is a continuous
process. The satellites capture the images in a certain period-
icity. By regularly capturing local areas, a series of temporal
observations are formed. Existing remote sensing algorithms

usually only consider the performance of interpretation in a
single image, or obtain the changed area through two images.
However, geographic information is in a time-series relationship
and continuous change. Only interpreting a single image does
not have the ability to predict future changes. Therefore, design-
ing memory capabilities and autonomous learning in the algo-
rithm is the exploration direction of future brain-inspired remote
sensing. Based on brain-inspired algorithms that memorize and
learn from continuous data, it is possible to predict future situ-
ations. According to the prediction results, we can dynamically
adjust the capturing frequency of satellites in different areas,
realize more intensive observation of high-risk areas, and im-
prove the ability of remote sensing algorithms for disaster early
warning.

F. How to Utilize Large-Scale Unlabeled Remote Sensing
Data?

We have acquired a large amount of remote sensing data
with the increasing number of satellites. However, modern deep
learning algorithms rely on massive amounts of labeled data
for supervised training. This requires a lot of manpower and
resources. In order to utilize a large amount of unlabeled data,
semisupervised and self-supervised learning has become a new
research trend.

Semisupervised learning combines supervised learning and
unsupervised learning. It uses a small amount of labeled data to
train a basic model to explore a large amount of unlabeled data.
Self-supervised learning is to use the consistency of multiple
views of data to train the network. It constructs multiple views
of a single target by random augmentation or other strategies
and brings considerable performance.

In the field of remote sensing, multisource data naturally con-
stitutes a multiview representation of a target, meeting the need
for unsupervised and self-supervised. While using unlabeled
data, the interference caused by natural factors, such as cloud
occlusion and multisource data matching errors, also needs to
be considered.

G. How to Integrate Multimodal Dynamic Data for
Interpretation?

In order to monitor the Earth comprehensively, satellites carry
sensors with various GSD and imaging methods. The diverse
data collected by these sensors bring great challenges to the
design of algorithms.

At present, it is mainly to use a data fusion algorithm to
improve the performance of the model by using multimodal
data, which has been widely studied. Grayscale and HSIs are
typical examples of data fusion. Grayscale images have high
GSD but only contain a single spectrum. HSIs has high spectral
resolution with low GSD. Therefore, these two kinds of data can
achieve better complementarity.

Data fusion can effectively improve the performance of the
algorithms. With the improvement of shooting technology, dy-
namic data, such as optical satellite videos and SAR remote
sensing videos, have also been developed. In the future, how to
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realize the fusion of dynamic multimodal data will be a problem
deserving of study.

H. Big Model of Remote Sensing

With the development of deep learning, Big Models have
demonstrated an unprecedented ability to understand and create,
breaking the limitation that traditional AI can only handle a
single task, bringing humans one step closer to the goal of
general artificial intelligence. In 2020, OpenAI released a pre-
training model GPT-3 [330] with 175 billion parameters. It can
not only write articles, answer questions, and translate, but also
have the ability to have multiple rounds of dialogue, coding,
and mathematical calculations. However, there are still many
technical difficulties in realizing the versatility of all modalities
and all tasks for Big Model. At the same time, due to the
limitation of computing resources, its training and application
are quite challenging.

There are less studies on Big Model of remote sensing. Using
the reasoning ability of Big Model, it is possible to fully mine
various remote sensing data and realize the connection of various
tasks. The goal of establishing a Big Model of remote sensing
is to solve the problem of fusion and utilization of remote
sensing data captured in different modalities, different GSD,
and at different times and has the ability to cover a series of
remote sensing applications, such as classification, detection,
and tracking.

The emergence of Big Model has broken our understanding
of algorithms. However, its expensive calculation is not practical
at this time. The way to use the Big Model is a crucial problem
for remote sensing. In the future, knowledge distillation, model
pruning and other technologies can be used to extract the learned
understanding ability of Big Model into a small model for
specific tasks, thereby improving the learning generalization
ability of special models.

I. Security of Remote Sensing Algorithm During Training and
Inference

Nowadays, we leverage more and more data to train a large
model. The security of remote sensing algorithms is also a wor-
thy issue. The security of remote sensing algorithms is mainly
divided into two aspects. On the one hand, it is necessary to
use a large number of remote sensing data in different regions
for training to improve the generalization ability of models.
Due to the particularity of remote sensing data, many remote
sensing data contain sensitive information related to countries
or companies. Many studies have proved that the network may
leak data during the training process [331]. Therefore, it is urgent
to study how to design and ensure the security of data during
training and realize the federated learning of multiparty training
of remote sensing data.

On the other hand, when forward inferring the model, the
ability to resist external attacks also needs to be paid attention
to. In natural scenarios, many neural network attack studies have
shown that fixed neural networks are prone to misjudgment due
to minor disturbances. The same situation also exists in remote
sensing algorithms. If this attack appears in remote sensing

algorithms that automate decision-making, it would have serious
implications. Small perturbations do not affect the human brain’s
judgment of objects. Therefore, remote sensing algorithms need
to simulate the memory and associative abilities of the human
brain to achieve robustness to attacks.

J. Brain-Inspired Remote Sensing Software and Hardware
Systems

As the commercial satellite industry has matured, remote
sensing data interpretation have become more than just a need
for professionals. Most of the existing remote sensing data
platform software requires professionals to design and operate
corresponding algorithms for different tasks and data. These
limitations restrict the widespread civilian use of remote sens-
ing algorithms. Therefore, remote sensing data interpretation
software requires algorithms to cover a variety of tasks, apply
to different data and put forward requirements for the ease of
use of the software. The remote sensing software system de-
signed based on the abovementioned requirements can provide a
comprehensive interpretation of data through simple operations.
Users can choose to view tasks, such as object classification,
target detection, and interpretation results, of any category ac-
cording to actual needs.

In terms of hardware systems, on-orbit processing of data can
more effectively improve data utilization and save data trans-
mission bandwidth. In this review, we introduce the FPGA and
its application in remote sensing. In order to run the algorithm
directly on the aircrafts or satellites, we can choose to deploy
the algorithms on the space-grade FPGA so as to ensure the
stability of the system in extreme environments. However, the
computing power and extremely low power consumption of the
neuromorphic computing chips are more worth looking forward.
For example, TianjicX [332] has realized the experiment of a
cat-and-mouse game under the condition of ultra-low power
consumption and low delay. The total dynamic power consump-
tion of the chip in the experiment is only 0.6 W. When the
remote sensing algorithm is used in the neuromorphic computing
chips, the on-orbit satellite can process data in real time with
ultra-low power consumption. Only the data with research value
will be transmitted back to the ground after preprocessing.
This improves the efficiency of data collection and analysis.
However, the research on neuromorphic computing chips is still
in its infancy, and remote sensing algorithms still need further
research to be deployed into neuromorphic computing chips.
The neuromorphic computing chips still need further research
to improve the stability of the chips in space so as to meet the
needs of on-orbit data analysis.

VII. CONCLUSION

In this survey, we systematically discussed the brain-inspired
algorithms in remote sensing. We first summarize the struc-
ture and properties of the brain. These properties include six
aspects: sparsity, learning, selectivity, directionality, plasticity,
and diversity, which can effectively guide readers to think about
brain-inspired remote sensing interpretation algorithms from
the characteristics. Further, we summarize the data types and
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development of five tasks in remote sensing, i.e., object clas-
sification, object detection, change detection, object tracking,
and 3-D reconstruction. At the same time, the public datasets,
the software platforms, and hardware systems are also discussed.
The development of brain-inspired algorithms in remote sensing
is still not fully explored, and it will help us overcome future
challenges.
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