
2728 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Multi-Scale Fast Fourier Transform Based Attention
Network for Remote-Sensing Image

Super-Resolution
Zheng Wang, Yanwei Zhao, and Jiacheng Chen

Abstract—Recently, with the rise and progress of convolutional
neural networks (CNNs), CNN-based remote-sensing image super-
resolution (RSSR) methods have gained considerable advancement
and showed great power for image reconstruction tasks. However,
most of these methods cannot handle well the enormous number of
objects with different scales contained in remote-sensing images
and thus limits super-resolution performance. To address these
issues, we propose a multiscale fast Fourier transform (FFT) based
attention network (MSFFTAN), which employs a multiinput U-
shape structure as backbone for accurate RSSR. Specifically, we
carefully design an FFT-based residual block consisting of an image
domain branch and a Fourier domain branch to extract local details
and global structures simultaneously. In addition, a local–global
channel attention block is developed to further enhance the recon-
struction ability of small targets. Finally, we present a branch gated
selective block to adaptively explore and aggregate features from
multiple scales and depths. Extensive experiments on two public
datasets have demonstrated the superiority of MSFFTAN over the
state-of-the-art (SOAT) approaches in aspects of both quantitative
metrics and visual quality. The peak signal-to-noise ratio of our
network is 1.5 dB higher than the SOAT method on the UCMerced
LandUse with downscaling factor 2.

Index Terms—Attention mechanism, fast Fourier transform
(FFT), multiinput mechanism, remote-sensing image, super-
resolution.

I. INTRODUCTION

S INGLE-image super-resolution (SISR) technique aims to
generate natural and realistic textures in a high-resolution

(HR) image by only utilizing its deteriorated low-resolution
(LR) counterpart. SISR has been a hotspot for study in aca-
demics and industries thanks to its many applications, including
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remote-sensing imaging [1], [2], [3], [4], medical imaging [5],
[6], [7], and face recognition [8]. SISR is a classic ill-posed
problem since numerous distinct HR images can be mapped
to the same LR image, which poses a significant challenge to
restoration task. In recent years, with the rapid development and
popularization of aerospace technology, remote sensing vision
has attracted an increasing number of researchers’ attention. In
the field of remote sensing, the long distance of the imaging
device from target objects leads to a small resolution of target
objects, which affects performance of subsequent high-level
tasks (object detection [9], [10], classification [1], [11], and
change detection [12], [13]). The most straightforward solution
to this problem is to upgrade the physical equipment to get a
HR and clearer image, but this is often unrealistic and requires a
significant price. Therefore, the utilization of hardware-agnostic
image super-resolution techniques (SISR) for enhancing the
resolution of remote sensing images has become the current
preferred approach.

To improve the resolution of image, researchers have pro-
posed a variety of approaches, ranging from interpolation-based
methods, reconstruction-based methods to example-based meth-
ods. Interpolation-based method uses a pixel around an un-
known pixel to predict the unknown pixel, which is prone to
produce blurred images with artifacts. To solve these prob-
lems, reconstruction-based methods often introduce various
prior knowledge (sparse prior [14], low-rank prior [15], nonlocal
prior [16], and edge prior [12]) to constrain the solution space in
pursuit of a better reconstruction. Nevertheless, once the intro-
duced prior knowledge conflicts with the fact, reconstruction
performance drops dramatically. In addition, reconstruction-
based methods often require long optimization times. Exampled-
based methods establish a direct mapping from LR to HR using
hand-designed features, but the poor generalization performance
of hand-designed features limits its practical application.

Recently, SISR methods based on convolutional neural
networks (CNNs) have substantially outperformed traditional
method due to the powerful feature extraction capability of deep
neural networks. Dong et al. [17] pioneered the introduction of a
CNN into an SISR task with unprecedented success. Since then,
various kinds of super-resolution networks based on CNN have
emerged. Kim et al. [18] constructed a deep network with 20
layers by introducing residual learning. Deeper and larger net-
works are becoming increasingly frequent in the search of better
reconstruction results. Lim et al. [19] constructed a deep network
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with 50 convolution layers by discarding batch normalization
[20] and won the NTIRE 2017 challenge. Thanks to the booming
development of natural image super-resolution, deep learning-
based algorithms for remote-sensing image super-resolution
(RSSR) have made great progress. Despite the impressive results
obtained by these approaches, the majority of them recover
characteristics at a single scale, making it difficult for networks
to efficiently extract multiscale information. Therefore, it is
important to investigate multiscale feature extraction.

Some recent work has initiated efforts in this direction.
Residual aggregation and split attention fusion network [2] uses
a UNet-based encoder and decoder structure to extract both
shallow semantic information and high-level features. Although
this approach is capable of extracting multiscale features, it
leads to irreversible information loss through frequent up and
down sampling, which will eventually affect the reconstruction
results. To minimize this information loss, a dense feature fusion
approach is introduced. Specifically, not only the output of
the current layer’s encoder is taken into account, but also the
output of the previous and next layer’s encoders. In addition,
it is not enough to extract multiscale features only at feature
level. We introduce an auxiliary branch to extract features at
different scales directly on the picture domain. In this way, we
are able to exploit multiscale features in both the image and
feature domains. For a super-resolution task, both low-frequency
and high-frequency information are critical. Since the normal
residual block [21] lacks the ability to integrate high-frequency
features, a fast Fourier transform (FFT) is applied on the top
of residual block. It is worth noting that each feature value
in the frequency domain represents an abstraction of all the
values in the original image features, allowing us to easily
obtain global dependencies. Therefore, an FFT-based residual
block (FFT-RB) can utilize both global and local information.To
further strengthen the discriminative power of the network, a
novel attention mechanism is introduced called local–global
channel attention.

The main contributions of this article can be summarized as
follows:

1) For the accurate remote-sensing image super-resolution
(RSSR) task, we propose a novel SR approach named
multi scale FFT-based attention network (MSFFTAN).
MSFFTAN incorporates a multiinput encoder–decoder
structure that can capture objects at different sizes in
remote-sensing images.

2) To enable efficient extraction of high-frequency features,
the FFT is incorporated into the ResBlock. In this way,
high and low frequency can aggregate in a comprehensive
manner. This operation ensures that our model can ob-
tain rich features to recover texture and edge information
efficiently.

3) An effective local–global channel attention block
(LGCAB) is elaborately developed in MSFFTAN to en-
able the network focus on more useful information con-
sistent with a global branch and a local branch which is
beneficial to feature learning and model training.

The rest of this article is organized as follows. Section II dis-
cusses relevant RSSR research. The MSFFTAN network design

is described in full in Section III. In Section IV, the network
design and experiment results, including ablation analysis, are
presented. Finally, Section V concludes this article.

II. RELATED WORKS

In this section, we go through some of the most important ap-
proaches for our method, which include CNN-based nature im-
age super-resolution and RSSR. Since CNN-based approaches
have shown outstanding performance in recent years, we mainly
introduce CNN-based methods.

A. CNN-based Nature Image Super-Resolution

CNN-based techniques have dominated SISR in recent years,
thanks to the fast growth of deep convolutional neural networks.
Dong et al. [17] introduced the first SISR approach based
on CNN (SRCNN). Despite the fact that SRCNN only has
three convolutional layers, it outperformed earlier conventional
approaches. He et al. [21] used residual connection to build
a deep model VDSR [18] with 20 convolutional layers that
outperforms the SRCNN significantly. This meant that the higher
the network’s depth, the greater the performance. To get higher
performance, researchers seek to create deeper, wider, and more
complicated networks from then on. Following that, EDSR [19]
built a network of around 50 layers by eliminating the unneces-
sary components. Nevertheless, this method treats LR features
similarly and overlooks their long-range associations, resulting
in inefficient detail retrieval. Thus, several techniques have
recently been developed that include an attention mechanism
into a CNN-based Super-Resolution (SR) model to rebalance
the relevance of various elements. Zhang et al. [22] used residual
in a residual structure to build a network with over 400 layers
in terms of improving reconstruction performance. The context
reasoning attention network was developed by Zhang et al.
[23] to adjust the convolution kernel according to the global
context adaptively. Mei et al. [16] combined nonlocal operation
and sparse representation into an SISR task and proposed a
nonlocal sparse attention to alleviate the large computational
resources required for nonlocal operation. In addition, using a
coarse-to-fine approach, a two-stage attentive network [24] is
presented for accurate SISR.

B. Remote-Sensing Image Super-Resolution

Remote-sensing picture SR has recently gained significant
attention. Deep learning-based algorithms [25] have recently
exceeded these early classical methods considerably. LGCNet
[26] is the first CNN-based model for super-resolution in remote-
sensing images, using both local and global representations to
learn the reconstructed SR image. Dong et al. proposed SMSR
[27], which aggregates diverse multiscale characteristics utiliz-
ing first-order and second-order learning mechanisms. Mean-
while, during the last few decades, the attention mechanism
has made significant advances in a variety of computer vision
tasks, such as image classification [11] and object detection [9].
Thus, attention mechanism was introduced to the field of remote-
sensing image SR. HSENet [28] exploits the single-scale and
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Fig. 1. Architecture of the proposed MSFFTAN network.

cross-scale self-similarity information using multiscale nonlocal
attention. A split attention fusion block was established by Chen
et al. [2] allowing the method to adapt to varied multiscale land
surface reconstructions. Rather than exploring first-order atten-
tion (channel or spatial statistics), Zhang et al. [29] advocated a
high-order attention block to restore the missing details. Salvetti
et al. [25] proposed the residual attention multiimage superreso-
lution network, which leverages feature extraction from multiple
LR images of the same scene, resulting in reconstructed images
with fine texture details. Hu et al. [30] proposed a network that
utilizes a HR, spatially lossless multispectral image to guide the
super-resolution reconstruction of a LR hyperspectral image.
The experimental results demonstrate that this strategy can
effectively preserve spatial detail information in the recovered
image. Xu et al. [31] utilized an iterative regularization technique
based on tensor subspace representation to amalgamate paired
multispectral and hyperspectral images, thereby reconstruct-
ing HR hyperspectral images with distinct texture and sharp
edges. Hong et al. [32] proposed a decoupled and coupled
high-spectral-resolution image super-resolution algorithm that
progressively aggregates high-spectral and multispectral infor-
mation. Through experimentation, it was demonstrated that this
fusion method can enhance the quality of reconstruction. In
addition, The CUCaNet [33] proposed a cross attention module
that is also proposed to efficiently explore the spatial-spectral
information. Furthermore, many researchers have introduced
generative adversarial networks [34] (GAN) into remote-sensing
SR tasks for generating perceptually pleasing remote-sensing
images. Pan et al. [35] introduced the concept of back-projection
into a generator to further enhance the visual quality. In ad-
dition, an attention-based GAN (SRAGAN) was proposed by
Li et al. [36], which combined both local and global attention
mechanisms to distinguish features at various sizes on different
objects. Lei et al. [37] used a transformer to fuse high- and
low-frequency information to reconstruct detail-rich pictures,
building on the success of transformer in the fields of natural
language processing and computer vision.

III. PROPOSED METHODS

In this section, we introduce the MSFFTAN for remote-
sensing super-resolution. First, the overall framework of
MSFFTNet is presented in Section III-A. Then, branch gated
selective block (BGSB), FFT-RB, and LGCAB are described in
the following three subsection.

A. Network Architecture

As shown in Fig. 1, MSFFTAN mainly consist of the follow-
ing four parts:

1) auxiliary path (AP)
2) shallow feature extraction block (SFEB)
3) multiscale deep feature extraction module;
4) reconstruction block.
We present the MSFFTAN, a multiscale feature extraction

approach that fully leverages multiscale features retrieved from
an input image. The architecture of MSTFFAN is based on a
three stage U-shape structure [38] with significant development
for efficient multiscale feature representation. Specifically, an
MSFFTAN is composed of three encoder blocks (EBs) and de-
coder blocks (DBs). Each EB or DB is composed of multiple cas-
caded FFT-RBs. We define ILR ∈ R

H×W×3, ISR ∈ R
sH×sW×3,

and IHR ∈ R
sH×sW×3 as the input LR image, the reconstructed

SR image, and the corresponding HR image, respectively. In
addition, ILR2

∈ R
H
2 ×W

2 ×3 and ILR3
∈ R

H
4 ×W

4 ×3 represent the
downsampled input image. H and W denote the height and
width of the image, respectively, with s representing the upsam-
pling factor.

For ILR1
, the SFEB is used to transform the original LR image

to feature domain

F0 = HSFEB(ILR1
) = Conv3×3(δ(Conv3×3(ILR1

))) (1)

where F0 represents the shallow feature extracted from the LR
image.HSFEB(·) denotes the shallow feature extraction block. In
detail, SFEB consists of two3× 3Conv layers with an activation
unit. Conv3×3(·) and δ(·) denote 3× 3 Conv layer and linear
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Fig. 2. Structure of the BGSB.

rectification function (ReLU) activation function, respectively.
Then, the extracted shallow feature F0 is fed to the next EBs

FEBi
=

{ HEB1
(F0) , i = 1

HEBi
(HBGSB (FEBi−1

,HSFEB (LRi))) , i �= 1
(2)

where HEBi
(·) stands for the ith EB which consists of multiple

FFT-RBs, FEBi
represents the deep encoder feature extracted

by the ith EB. HSFEB and HBGSB denote SFEB and BGSB,
respectively. In addition to the first EB, not only the down-
sampled features of previous encoder are received, but also
the information of corresponding downsampled image. In this
way, our EB is anticipated to successfully handle multiscale
features by utilizing the complimentary information from the
downsampled feature space and the feature available from the
image domain. To alleviate the inconsistency in the image and
feature domains, we use BGSB for feature selection and feature
fusion. In this work, we use a total of three encoder layers. Then,
the DB can be described as follows:

Ffusei

=

⎧⎨
⎩

HB G S B (FE B1
, UP2 (FE B2

) , UP4 (FE B3
)) , i=1

HB G S B (Down2 (FE B1
) ,FE B2

, UP2 (FE B3
)) , i=2

HB G S B (Down4 (FE B1
) , Down2 (FE B2

) ,FE B3
) , i=3

(3)

FDBi
=

{ HDB1
(F fusei) i = 3

HDBi
([F fusei , UP2 (FDBi−1

)]) i �= 3
(4)

where HDBi
represents the ith DB which consists of multiple

FFT-RBs,FDBi
stands for the deep decoder feature extracted by

the ith decoder layer. Upsampling operation or downsampling
operation is indicated by UPfactor(·) or Downfactor(·) and factor
represents the magnification factor. Notably, to further enhance
the network’s ability to extract multiscale features, we aggregate
features of different sizes and dimensions using BGSB module
denoted asF fuse_i. Thus,F fuse_i contains rich structural informa-
tion. Finally, deep decoder feature is fed into the reconstruction
block which is consistent with a Conv layer, a subpixel layer,
and a Conv layer as

ISR = Conv_2 (H↑ (Conv_1 (DB1 +F0))) (5)

where H↑(·) is the function of upscale operation and SR rep-
resents the recovered HR image. We further adopt residual
connection between a shallow feature and a deep feature to

alleviate the training difficulty. In this way, we are able to force
the network to focus on the lost high-frequency information,
thus accelerating the convergence of the network.

B. Branch Gated Selective Block

Simple concatenation or summation are the most frequent
strategies for feature aggregation. However, these choices hinder
the representation capability of the network. Based on the fact
that visual cortical neurons can adaptively change their receptive
fields depending on the intensity of the stimulus [39], we propose
a novel multiscale multiresolution feature fusion block named
BGSB (see Fig. 2), which is composed of branch aggregation
(BA) and gate selective fusion (GSF).

1) Branch Aggregation: The BA generates global feature
descriptors by combining the information from multiresolution
branches. Specifically, the downsized feature F1 ∈ R

H×W×C

and the feature obtained from the downsampled image F2 ∈
R

H×W×Care summed as the input F , and the global average
pooling (GAP) is utilized to squeeze the global spatial infor-
mation into a channel descriptor Z , which can be expressed as

F = F1 +F2 (6)

Zc = HG A P (Fc) =
1

H ×W

W∑
i=1

H∑
j=1

Fc(i, j) (7)

where HGAP(·) denotes the global average pooling operation.
Fc and Zc denote cth channel input feature and output feature
of HG A P, respectively. Fc(i, j) is the value at the position (i, j)
of cth channel of input feature F .

2) Gate Selective Fusion: The channel statistic Z may be
thought of as a grouping of local descriptors whose statistics
can be utilized to represent the entire image. To make full use
of the multiresolution feature interdependences, we employ a
gating mechanism by the simple softmax function

S = δ (Conv1×1(Z)) (8)

S1 = Conv1×1(S),S2 = Conv1×1(S) (9)

where δ(·) denotes activation function and Conv1×1(·) denotes
1× 1 convolution. Then, we use softmax function to obtain
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Fig. 3. Architecture of the FFT-RB.

attention weights belonging to each branch

Z1 =
eS1

eS1 + eS2
, Z2 =

eS2

eS1 + eS2
(10)

where Z1 and Z2 represent attention weight of different reso-
lution branch. These descriptors are used by the GSF operator
to recalibrate the feature map after aggregation. In this way, it is
possible to adaptively aggregate different resolutions branches
that carry information at different scales.

C. FFT-Based Residual Block

Image recovery task requires both low-frequency and high-
frequency information, however, the standard ResBlock lacks
the capacity to integrate high-frequency characteristics. Inspired
by Mao et al.[40], we propose an FFT-RB as shown in Fig. 3
which consists of a conventional spatial domain Conv branch
and a frequency domain branch. Specifically, to convert infor-
mation to frequency domain space and extract complementary
features for the space domain, we employ the discrete Fourier
transform. Let X ∈ R

H×W×C be the input volume, where H,
W, and C indicate the height, width, and channel of the feature,
respectively. The bottom branch is processed as follows:

X̂ = HrFFT2D(X ) (11)

where HrFFT2D(·) represents 2-D discrete FFT and X̂ repre-
sents the result of 2-D real FFT. Then, the real part and imaginary
part are concatenated along the channel dimension

X imag + real =
[
I
(
X̂
)
,R

(
X̂
)]

(12)

where I(·) and R(·) get real and imaginary parts, respectively.
[·] denotes the concatenate operation. We use two 1× 1 Conv to
extract high-frequency features

X high = Conv1×1 (δ (Conv1×1 (X image+real))) . (13)

Here, Conv1×1(·) and δ(·) denote the 1× 1 Conv and ReLU
activation function, respectively. Finally, inverse 2-D real FFT
operations are used to transform frequency features back to
spatial domain. It is worth noting that due to the intrinsic char-
acteristics of the Fourier transform, FFT can easily obtain the
global field of perception without adding any additional burden.
Influenced by ConvNest [41], we added a large convolution
kernel to expand the perceptual field in the spatial branch

X space = Conv7×7DW (Conv3×3 (δ (Conv3×3(X )))) (14)

Fig. 4. Structure of the LGCAB.

where Conv3×3(·) and δ(·) denote the 3× 3 Conv and ReLU
activation function, respectively.Conv7×7DW (·) denotes depth-
separable convolution [42] with kernel size 7. Then, the final out-
put Y = X +X space +X high of FFT-RB is calculated through
LGCAB to further refine features.

D. Local–Global Channel Attention Block

Existing channel attention mechanisms [43] typically build
channel descriptors via a global average pooling operation,
which overlooks many beneficial little objects that play a vital
role in RSSR. Hence, to be capable of assessing both informative
large and tiny target objects, an LGCAB is proposed, as shown in
Fig. 4. It allows the network to concentrate on significant features
while still paying attention to minor target details. Consider
an input feature F ∈ R

H×W×C , where C, W, and H indicate
channel number, width, and height, respectively. The top branch
of the LGCAB is in charge of characterizing little items, whereas
the bottom branch is responsible for detecting global essential
foundational features. The top branch can be expressed as

Alocal = WU (δ (WD(X ))) (15)

where Alocal denotes the local channel attention map. δ(·) de-
notes activation function.WU (·) and WD(·) denote the weights
of two 1× 1 Conv layers to increase and decrease the number of
channels by reducing factor r, respectively. This branch does not
use global average pooling, preserving the original resolution of
the features and enabling the capture of fine-grained information.
In this way, it is possible to concentrate on the attributes of the
whole features. The GAP operation can be expressed as

Z =
1

H ×W

H∑
i=1

W∑
j=1

Fc(i, j) (16)

where FC(i, j) is the value at the position (i, j) of cth channel
of input feature X . Then, the bottom branch can be expressed
as

Aglobal = WU (δ (WD(Z))) (17)

where Aglobal denotes the global channel attention map. δ(·) de-
notes activation function. WU (·) and WD(·) denote the weights
of two 1× 1 Conv layers to increase and decrease the number
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Fig. 5. Examples of the different categories of different scenes in the UCMerced LandUse and AID datasets.

of channels by reducing factor r, respectively. As this branch
uses global average pooling, it allows the network to focus on
large objects that occupy a significant portion of the image. Next,
global and local attention maps are be used to rescale the input
feature X

X̃ = σ (Alocal +Aglobal)⊗X (18)

where X̃ indicates the refined output features. σ(·) and ⊗(·)
represent a sigmoid function and element-wise multiplication
between feature maps, respectively. By using the above steps,
we enable to emphasize important information and suppress ir-
relevant features using a global and local manner, thus enhancing
the discriminative capacity of the network.

E. Loss Function

To optimize the RSSR network, various loss functions have
been investigated, such as L1 loss [19], L2 loss [44], perceptual
loss [45], and adversarial loss [34]. As stated by Lim et al. [19],
L2 loss can maximize peak signal-to-noise (PSNR) metrics,
but it is prone to produce blurry images. Therefore, L1 loss
is chosen as our optimization function for training MSFFTAN.
Then, MSFFTAN is optimized by minimizing the pixel-wise
dissimilarity between estimated super-resolved image SR and
corresponding ground truth HR. The optimization function LL1

is formulated as

LL1(Θ) =
1

N

N∑
i=1

∥∥HM S F F T A N
(
Ii

L R; Θ
)− Ii

H R

∥∥
1

(19)

where Θ denotes trainable parameters of MSFFTAN net-
work, and deep MSFFTAN is trained by using a training set
{Ii

LR, I
i
HR}Ni=1, which containsN LR images patches and their

HR counterparts. Auxiliary loss terms, in addition to theL1 loss,

has been suggested in recent research for performance enhance-
ment. Auxiliary loss terms that reduce the distance between
the input and output in the feature space have been frequently
employed in image restoration tasks and have shown promising
results. Since the primary objective of super-resolution is to
recover the lost high-frequency characteristic, it is critical to
minimize the frequency space comparison. To this end, we intro-
duce an FFT-based frequency reconstruction loss LFFT function.
The LFFT loss measures the Euclidean distance between HR
images and SR images in the Fourier entity as follows:

LF F T =
1

N

N∑
i=1

∥∥F (
HM S F F T A N

(
Ii

L R

)−F (
Ii

H R

))∥∥
(20)

where F denotes the FFT that transfers image domain to the
frequency domain. The following is the final loss function for
training our network:

Ltotal = LL1 + τLF F T (21)

where we experimentally set τ = 0.01.

IV. EXPERIMENT

In this section, experiments are conducted to evaluate our
proposed model. The datasets and metrics we employed in our
experiments are described in Section IV-A. Then, the implemen-
tation details are presented in Section IV-B. Section IV-C com-
pares our model to state-of-the-art (SOAT) methods on several
datasets to show that our proposed approach is superior. Finally,
an ablation study is performed in Section IV-D to analyze the
contribution of each component to our MSFFTAN network.
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Fig. 6. Convergence analysis. (a) Loss analysis on UCMerced LandUse with upscale factor 2. (b) PSNR analysis on UCMerced LandUse with upscale factor 2.

A. Dataset and Implementation Details

To test the efficiency of the proposed approach, we utilize the
following two publicly available (some examples of these two
datasets are shown in Fig. 5): 1) UCMerced LandUse [46]; and 2)
AID [47] datasets. These datasets have seen a lot of application in
the field of remote-sensing super-resolution [28], [36], [37]. The
HR images were downsampled with a scale factor using a bicubic
interpolation operation in the MATLAB setting to produce LR
images.

UCMerced LandUse dataset: This collection includes agricul-
tural, runway, sparseresidential, storagetanks, and other remote-
sensing types. Each class has 100 pictures, each of which is 256
× 256 pixels in size and has a spatial resolution of 0.3 m/pixel.
This dataset was divided into two halves: Train and test, with
20% of the training set used as validation.

AID dataset: This dataset contains 10 000 photos from 30
different types of remote-sensing scenarios, such as airports,
bareland, churches, dense-residential areas, and so on. All of
the photos are 600× 600 pixels, with a spatial resolution of
up to 0.5 m/pixel. According to TransNet [37], 80% of the
whole dataset is randomly selected to be the training set, and
the remaining images are used as the test set in the AID dataset.
Moreover, we randomly select five images per class in a total of
150 images to construct the corresponding validation.

Metrics: Peak signal to noise ratio (PSNR) and structural
similarity (SSIM) [48] are chosen as the common image super-
resolution evaluation metrics, and all super-resolution results
are evaluated on the RGB space. Besides, we further introduce
the learned perceptual image patch similarity (LPIPS) [49] to
evaluate the reconstruction quality of the competing methods.
A lower LPIPS value indicates a higher perceptual quality. We
also analyze the floating point operations (FLOPS) and runtime
of the models. Note that the FLOPs is calculated corresponding
to a 48× 48 image.

B. Implementation Details

To obtain better generalization performance, we use data
augmentation, which includes random rotation by 90◦, random
horizontal flipping and vertical flipping. We use Pytorch frame-
work to implement and train the proposed MSFFTAN, and
the model is trained using one NVIDIA GeForce GTX 3090.
We train different models to super-resolve the remote-sensing
images for scale factors 2, 3, and 4 with random initialization.
The ADAM [50] optimizer with β1 = 0.9 and β2 = 0.999 is
used. The learning rate is initialized as 2× 10−4 and halved
every 400 epochs. For training, we randomly crop 16 48× 48 LR
patches as a training batch while HR image size corresponding
to the scaling factor. In our MSFFTAN, all convolution layers
contain 64 filters except 1 × 1 convolution layers. Specifically,
the number of FFT-RB included in our backbone of different
depths is 3, 2, and 1.

C. Comparisons With the SOAT Methods

1) Quantitative Results: To demonstrate the superiority of
MSFFTAN, eight SOAT super-resolution methods, including
Bicubic, SRCNN [17], FSRCNN [51], VDSR [18], LGCNet
[26], DCM [52], HSENet [28], and CTN [53], are compared in
terms of quantitative and visual quality on the UCMerced Lan-
dUse dataset. Among them, SRCANN, FSRCNN, and VDSR
are the approaches proposed for nature image SR task, while
LGCNet, DCM, HSENet, and CTN are currently leading SR
methods exclusively developed for remote-sensing images. It
should be noted that, we analyze various comparison meth-
ods using the open-source code, and all of these methods are
trained and evaluated in the same environment. Specifically,
quantitative evaluations are made in two datasets for three scale
(×2,×3,and×4). Table I displays the average results of different
approaches on the UCMerced Landuse test dataset which clearly
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TABLE I
PSNR/SSIM RESULTS ON UCMERCED LANDUSE DATASET OF SCALE X2, X3, AND X4

TABLE II
PSNR/SSIM RESULTS ON AID DATASET OF SCALE X2, X3, AND X4

reveal that MSFFTAN outperforms other advanced methods by
a wide margin, offering the best restoration results in all three
upscale factors. Specifically, our model achieves 1.66, 1.17, and
1.24 dB improvement over the second-best method (HSENet)
on all three upscale factors. Furthermore, for the SSIM metric,
our model outperforms HSENet by 0.0394, 0.0395, and 0.0386,
respectively. However, the complexity of MSFFTAN is half
of HSENet, which is attribute to the ability of our designed
network to fully exploit and explore multiscale information.
The AID dataset is utilized to evaluate the generality and
generalization performance further since the images in this
dataset contain more categories and a higher disparity than those
in UCMerced Landuse dataset. In this dataset, we evaluate the
developed MSFFTAN against several SR algorithms, including
Bicubic, SRCNN, LGCNet, VDSR, DCM, and TransENet [37].
According to Table II, it can be seen that MSFFAN has the
greatest average PSNR and SSIM score in all three upscale
factors. More specifically, compared to the currently leading
method TransENet, we improve the PSNR (SSIM) from 35.28
(0.9374) to 37.04 (0.9626) for upscale factor 2 and from 29.38
(0.7909) to 30.78 (0.8185) for upscale factor 4. The results reveal
that in most circumstances, the designed MSFFTAN exceeds
the existing leading approaches, confirming the stronger gener-
alization ability of MSFFTAN. In addition, Table III provides
comprehensive discovery of several approaches for all 30 scene
classes of the AID dataset at an upscale factor of 4. MSFFTAN
yields the highest PSNR scores in 14 scene classes, while
TransENet scored better in the remaining scene categories. It is
worth mentioning, however, that MSFFTAN obtains a good re-
sult that is 1.4 dB higher than TransENet. To further demonstrate
the superiority of our proposed method, we employed the LPIPS
metric. The lower the image quality is, the higher LPIPS is. As
seen in Table IV, MSFFTAN outperforms other approaches by
a significant margin. Specifically, MSFFTAN is 0.0009 lower
than the current SOTA method HSENet on scale factor 2. This
reveals that the reconstructed images generated by our method
exhibit a higher degree of aesthetic appeal to the human visual
system. Finally, as demonstrated in Fig. 6, it can be observed that
the MSFFTAN exhibits faster convergence, further highlighting

TABLE III
MEAN PSNR (DB) OF EACH CLASS FOR UPSCALING FACTOR 4 ON AID

TEST DATASET

the effectiveness and superiority of the proposed module. These
positive results support the efficacy of our method.

2) Visual Comparison: We assess the visual quality of the
given MSFFTAN to current leading approaches to further val-
idate its efficacy. Figs. 7–11 display multiple example super-
resolution results from the testset acquired utilizing various
approaches, as well as the HR images for convenient compar-
ison. It is worth noting that a close-up region denoted by red
rectangle is displayed below the related image for convenient
comparison. According to Fig. 7, we can observe that MSFFTAN
is able to reconstruct images closest to HR. It is noteworthy
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Fig. 7. Visual comparison on UCMerced Landuse with scale factor 2.

Fig. 8. Visual comparison on the UCMerced Landuse with scale factor 3.

Fig. 9. Visual comparison on the UCMerced Landuse with scale factor 3.

Fig. 10. Visual comparison on the UCMerced Landuse with scale factor 4.

Fig. 11. Visual comparison on the UCMerced Landuse with scale factor 4.
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TABLE IV
LPIPS RESULTS ON UCMERCED LANDUSE DATASET OF SCALE X2, X3, AND X4

Fig. 12. Visual comparison on a real remote-sensing sample.

that the self attention-based HSENet and TransENet produced
significant checkerboard effects and artifacts. We conjecture that
this is due to the self-attention mechanism being influenced by
noise and degradation, aggregating incorrect information. As
displayed in Fig. 8, MSFFTAN produces the clearest parking
places at a large magnification, whereas other approaches yield
variable degrees of blurring, distortion, and warping, which fur-
ther demonstrates the superiority of our method. The second-best
network recovered by the zebra line loses a lot of lines, as seen
in Fig. 9, but our MSFFTAN can provide the closest image to the
HR. Furthermore, other approaches cause artifacts in the most
challenging situation (magnification scale of 4×), however our
method produces good visual results, as shown in Figs. 10 and
11. As depicted in Fig. 11, our proposed MSFFTAN ensures the
maximum preservation of the yacht’s authenticity, while other
methods exhibit varying degrees of distortion and degradation.
To further prove the generalization performance of the proposed
method, we tested it on real remote-sensing images. As shown in
Fig. 12, MSFFTAN has better reconstruction performance than
the leading RSSR method. Specifically, MSFFTAN is able to
recover better lines (as shown by the red arrow in the figure),
while HSENet and TransENet’s recovered image lines distorted.
From the above analysis, we can conclude that MSFFTAN can
produce visually satisfying HR images, which have rich and real
textures, sharp edges, and clear boundaries.

D. Ablation Study

1) Study the number of FFT-RB in Encoder and Decoder:
The number of basic blocks on network performance is inves-
tigated in this subsection, as network depth has a substantial
impact on model reconstruction properties. As a result, we
perform a series of experiments to investigate this point. Table V
compares the reconstruction using the UCMerced LandUse
dataset with different basic block settings when the upscale
factor is set to 2. Specifically, MSFFTAN_abc stands for the

Fig. 13. Performance and Complexity. Results are evaluated on UCMerced
LandUse dataset with scale factor 2.

TABLE V
RESULTS WITH DIFFERENT EBS AND DBS SETTINGS FOR UPSCALING FACTOR

2 ON UCMERCED LANDUSE DATASET

different depths of backbone number of basic module settings,
which are a, b, and c. We can see that when the number of
FFT-RBs of MSFFTAN of the encoder and decoder are set to
321, MSFFTAN can obtain the highest PSNR and SSIM. It is
worth noticing that when we increase the number of blocks in the
network to reach MSFFTAN_333, the performance of network
drops, which we ascribe to parameter overfitting. Finally, this
also demonstrates that using an appropriate blocks setting may
further enhance the reconstruction quality.

2) Effectiveness of MultiInput Mechanism: Multiinput strat-
egy is an essential part of multiscale information exploration and
aggregation. To achieve improved performance, the multiinput
technique is designed to permit as much origin multiscale infor-
mation in remote-sensing images as feasible. Here, we investi-
gate the effect of this design with different inputs. According to
the Table VI, when we add the Input-2 AP, our model achieves
a 0.007-dB improvement. In addition, by adding Input-3 AP,
we get a 0.06-dB improvement. We discover that the benefit
of providing extra auxiliary pathways grows as the network
deepens, owing to the increasing loss of shallow information
as MSFFTAN grows. As a result, we may conclude that using a
multiinput strategy can lead to improved performance.
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TABLE VI
RESULTS WITH DIFFERENT INPUT SETTINGS FOR UPSCALING FACTOR 2 ON

UCMERCED LANDUSE DATASET

TABLE VII
RESULTS WITH DIFFERENT AGGREGATION SETTINGS FOR UPSCALING FACTOR

2 ON UCMERCED LANDUSE DATASET

TABLE VIII
RESULTS WITH DIFFERENT CHANNEL ATTENTION SETTINGS FOR UPSCALING

FACTOR 4 ON UCMERCED LANDUSE DATASET

3) Study of BGSB: BGSB is specifically designed for mul-
tiscale and hierarchical feature exploration and aggregation.
In this part, we perform a series of experiments to illustrate
the efficacy of BGSB comparing with the SUM operation and
CONCAT operation (as shown in Table VII). In comparison to
the SUM operation, our BGSB improves PSNR and SSIM by
0.019 dB and 0.000016, respectively, with near little increase in
Parameters. In addition, the FLOPS for these two operations are
almost identical, but BGSB achieves better performance. More
importantly, when compared to CONCAT operation, BGSB has
a significant performance and complexity advantage. Specifi-
cally, BGSB obtains a boost of 0.116 dB and 0.0013, but only
takes up 96% of the parameters and 97% of FLOPS. These
positive results support the efficacy of our BGSB. Finally, this
also demonstrates that using an appropriate multiscale feature
fusion approach may show considerable future reconstruction
effort.

4) Study of LGCAB: In LGCAB, we use the dual-branch
structure to better extract small- and large-size information
simultaneously. To prove the effectiveness of using LGCAB, we
remove LGCAB or add other commonly used channel attention
blocks (e.g., SE or CBAM) to perform ablation experiments.
As shown in Table VIII, we show the results of these modified
networks. If we do not employ any channel attention mechanism,
the super-resolution performance will drop dramatically, and
the usage of LGCAB raises the PSNR and SSIM scores by
0.067 dB and 0.001, respectively. It is worth noting that the
use of the widely employed SE and CBAM modules resulted

TABLE IX
RESULTS WITH DIFFERENT LOSSES FOR UPSCALING FACTOR 2 ON UCMERCED

LANDUSE DATASET AND AID DATASET

TABLE X
ABLATION INVESTIGATION OF DIFFERENT COMPONENTS ON UCMERCED

LANDUSE DATASET WITH UPSCALING FACTOR 2

in a rapid decline in network performance. We hypothesize that
this is due to the fact that the SE and CBAM modules employ
global average pooling and global max pooling to compress
spatial information, resulting in the loss of a large number of
small-scale features that are also crucial for the final recon-
struction. Additionally, they only capture global peak signals
that do not accurately reflect texture and structural information,
which is another reason for the decrease in network performance.
Furthermore, compared with one branch channel attention block
(all spatial information is discarded), using the dual-branch
structure promotes the average PSNR and SSIM values by
0.159 dB and 0.0016, respectively. Therefore, we can draw
a conclusion that we can get better performance by applying
the LGCAB which can capture both large- and micro-scale
characteristics.

5) Study of FFT Loss: In this section, we investigate the
impact of the loss function on the final performance of the model
as shown in Table IX. In order to balance the distribution of
the FFT loss and L1 Pixel, we use a relatively small weight
on the FFT loss term, which helps to optimize the network.
In addition, through experimentation, we found that adding the
FFT loss can improve the quality of the reconstructed image,
specifically resulting in a 0.018 and 0.035-dB increase in PSNR
on the UCMerced LandUse and AID datasets, respectively.

6) Effectiveness of Our Proposed Components: In this sub-
section, we investigate the individual contributions of var-
ious components of our proposed model through ablation
experiments. We use a baseline model consisting of the main
path without an AP, FFT-RB, and LGCAB. All comparative
models are trained for 500 epochs on the UCMerced LandUse
dataset under consistent experimental conditions. From Table
X, we can conduct that using AP (Model 1) can improve
0.086 dB compared with the baseline model (Model 0). The
AP module can automatically supplement a variety of origin
shallow multiscale information which play important roles in the
reconstruction of degraded remote-sensing images. Compared
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with the baseline model (Model 0), the FFT-RB model (Model
2) achieves an improvement of 0.121 dB and 0.001 in terms
of PSNR and SSIM. The incorporation of the FFT-RB module,
which utilizes FFT, enables efficient capture of global infor-
mation, which is crucial for the reconstruction of high-spatial
resolution remote-sensing imagery. Furthermore, the proposed
LGCAB module derives a numerical gain of 0.24 dB and 0.002
for PSNR and SSIM, respectively. The LGCAB model employs
a resource allocation strategy that prioritizes the allocation of
resources to regions of higher criticality, while concurrently
implementing mechanisms to suppress irrelevant information
from both a local and global perspective. In summary, the
overall performance of the network is notably superior when
incorporating our proposed components, thereby demonstrating
the effectiveness of our proposed modules.

E. Model Complexity Analysis

The tradeoff between PSNR and FLOPS is examined as shown
in Fig. 13 in this section. FLOPs stands for floating point opera-
tions, which is defined as the number of computations and can be
used to measure the complexity of models. Obviously, MSFF-
TAN achieves competitive results with fewer FLOPS. Despite
CTN having fewer FLOPS than MSFFTAN, its performance
is 2.29 dB worse. MSFFTAN, one the other hand, achieves a
1.66-dB enhancement while only requiring half of HSENet’s
FLOPS, indicating that MSFFTAN can reach a reasonable
balance between model complexity and performance. In con-
clusion, MSFFTAN has fewer FLOPS and produces excellent
super-resolution results than previous approaches, demonstrat-
ing that our method has achieved a satisfactory balance between
network complexity and image super-resolution quality.

V. CONCLUSION

In this work, a novel FFT-based multiscale attention net-
work, referred to as MSFFTAN, is proposed for the task of
RSSR. The MSFFTAN utilizes a multiinput encoder–decoder
structure to extract multiscale information and enhance features,
resulting in superior reconstruction capabilities. In particular, a
FFT-RB, containing a convolution operation and FFT operation,
is elaborately designed to extract and aggregate both local details
and global structures. To enhance the ability of MSFFTAN to
utilize both large and small target information, an LGCAB is
constructed. More importantly, a BGSB is presented to make full
use of middle features from multiple scales and depths in order
to increase the quality of the reconstructed results. Extensive
experiments on both two public datasets indicate that MSFFTAN
outperformed other presently leading approaches in quantitative
and qualitative evaluations.
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