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Joint Sparse Representation-based Single Image
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Abstract—Sparse representation-based single image super-
resolution (SISR) methods use a coupled overcomplete dictionary
trained from high-resolution images/image patches. Since remote
sensing (RS) satellites capture images of large areas, these images
usually have poor spatial resolution and obtaining an effective
dictionary as such would be very challenging. Moreover, traditional
patch-based sparse representation models for reconstruction tend
to give unstable sparse solution and produce visual artefact in the
recovered images. To mitigate these problems, in this article, we
have proposed an adaptive joint sparse representation-based SISR
method that is dependent only on the input low-resolution image for
dictionary training and sparse reconstruction. The new model com-
bines patch-based local sparsity and group sparse representation-
based nonlocal sparsity in a single framework, which helps in
stabilizing the sparse solution and improve the SISR results. The
experimental results are evaluated both visually and quantitatively
for several RGB and multispectral RS datasets, where the proposed
method shows improvements in peak signal-to-noise ratio by 1–
4 dB and 2–3 dB over the state-of-the-art sparse representation-
and deep learning-based SR methods, respectively. Land cover
classification applied on the super-resolved images further vali-
date the advantages of the proposed method. Finally, for practical
RS applications, we have performed parallel implementation in
general purpose graphics processing units and achieved significant
speed ups (30–40×) in the execution time.

Index Terms—Dictionary training, joint sparse representation
(JSR), parallel processing, remote sensing (RS), super-resolution.

I. INTRODUCTION

R EMOTE sensing (RS) applications, such as surveillance,
change detection, disaster management, and agriculture

monitoring, require images with high spatial and spectral reso-
lutions. High spatial information allows the accurate geometric
analysis, while high spectral resolution allows better thematic
interpretation. With recent developments in high-definition dis-
plays, there are numerous applications, where the existing
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low-resolution (LR) images are not preferred. Although high-
resolution (HR) images can be acquired by using state-of-the-art
HR imaging sensors directly, they are expensive in implementa-
tion. Moreover, an LR satellite sensor that is already in the orbit
cannot be replaced with a new one. So, reconstruction of HR
images from the available LR images by signal processing be-
comes an important and highly promising topic of research [1],
[2], [3], [4], [5].

Single image super-resolution (SISR) is considered as an ill-
posed inverse problem in image processing, where an HR image
is to be restored from one of its available LR versions. The tradi-
tional SISR techniques apply standard interpolation techniques
to estimate the missing pixels in the target HR image. They usu-
ally produce low-quality images with artifacts at higher zooming
factors as they do not consider a priori information of the target
HR image [6]. Regularization-based methods exploit specific
prior information about the target HR image, e.g., the sparsity
of the image gradient magnitudes (total variation-norm) [7] or
gradient profile information [8] as constraints along with the
least-square-based data fidelity term. Recently, dictionary learn-
ing and sparse representation have been successfully applied to
natural image SR [9]. Their success owes to the fact that natural
images are intrinsically sparse in one or more domains, and
to solve the underlying sparse representation problem, there are
highly efficient �1-solvers [10], [11], [12]. Sparse representation
can be unveiled by efficient dictionaries, which are constructed
either from a fixed basis set (e.g., overcomplete DCT, wavelets,
etc.) or learned iteratively from an external dataset/the test image
itself [13], [14].

In this article, we focus on exploiting nonlocal similarity
among patches to form patch groups and then formulate a JSR
problem for SISR of RS images. It is verified that similar patches
do occur multiple times within a single image irrespective of
image scaling [15]. First, we train an adaptive dictionary (patch-
based) from the single LR image to overcome the traditional
dictionary training problem from an external database. This is
very significant for RS applications as relevant satellites provide
images only at low spatial resolution. Moreover, as the dictionary
training is usually carried out offline and before sparse recon-
struction, so the same would not fit well for different test images.
Hence, in the proposed SISR, we learn an adaptive dictionary
exclusively from patches taken from the given LR RS image,
and then the corresponding HR image is reconstructed. The
adaptive learning has obvious advantageous as the dictionary
atoms are more correlated to the input image patches [16]. It
can be deployed for real RS applications, as it is independent
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of any external dataset. Furthermore, to ensure quality of the
trained dictionary, we have selected only key patches from
the training patch dataset by applying a variance-based patch
pruning technique.

In particular, we propose a novel JSR-based adaptive SISR
reconstruction by integrating both patch and group sparsity (PSR
and GSR) in a common framework. We solve the above two
subtasks using the alternating direction method of multipliers
(ADMMs) approach. The role of PSR subproblem is to reduce
the oversmoothing effects by inducing precise local informa-
tion (through the patch sparsity constraint), while that of GSR
subproblem is to subdue the visual artifacts of final image by
maintaining nonlocal uniformity (through the nonlocal similar-
ity constraint). Next, we consider CUDA-GPU-based parallel
processing for accelerating the proposed algorithm intended for
practical RS applications. In a nutshell, the major contributions
of this work are listed as follows.

1) A new adaptive SISR algorithm is developed using the JSR
strategy for SR of LR RS images. The proposed algorithm
utilizes a PSR subproblem for restoring local patch-based
high-frequency information and a GSR subproblem for
inducing the nonlocal information, which further refines
the PSR reconstructed images. Then, the two subproblems
are fed into an ADMM framework to obtain the final HR
reconstructed image.

2) Adaptive patch-based coupled overcomplete dictionary is
learnt from the single test image itself using the K-SVD
algorithm, thereby making it independent of any external
training dataset. Furthermore, nonlocal similarity-based
multiple adaptive group dictionaries are learnt for each
patch group using the rank minimization technique.

The rest of this article is organized as follows. In Section II,
the related SR works are briefly discussed. A brief background
on the sparse and group sparse representation (GSR) techniques
are discussed in Section III. In Section IV, the proposed method
is explained across two sections, namely, adaptive patch- and
group-dictionary training, and joint sparse reconstruction-based
SR. Experimental setup and detailed simulation results are pre-
sented in Section V. Section VI provides a brief discussion on
the simulation results. Finally, Section VII concludes this article.

II. RELATED WORKS

Yang et al. [14] proposed a sparse coding-based SR (ScSR)
technique for natural images with a coupled dictionary learned
from an external dataset [17]. Apart from computational cost,
it is highly dependent on the quality of the trained dictionary
and SR results are not up to the mark for highly textured RS
images. Moustafa et al. [17] proposed self-example learning and
sparse representation-based multispectral (MS) SR using mor-
phological features. This method not only provides a fast imple-
mentation using parallel processing but also avoids external data
dependency for dictionary training. However, it ignores nonlocal
similarity of image patches within or across different scales of an
image, which is widely considered to be a strong reconstruction
constraint. Convolutional sparse coding (CSC) was used to
perform image SR, where sparse coding via linear combinations

of a set of dictionary vectors (as adopted in ScSR) is replaced
by the sum of a set of convolutions with dictionary filters [18].
Furthermore, Song et al. [19] proposed the multimodal image
SR algorithm known as “CDLSR,” where images of different
modalities in the sparse feature domain are coupled to learn a
set of dictionaries followed by a two-stage reconstruction of the
target HR image via joint sparse representations (JSRs), given
another related image modality. Romano et al. [4] proposed
the accurate image SR technique utilizing a set of prelearned
filters from image patches, which is able to restore a sharper and
contrast enhanced image.

Recently, a collaborative sparse representation-based regular-
ization along with nonlocal self-similarity (CRNS) is proposed
by Chang et al. [20], which is able to provide effective recovery
of high-frequency information and minimum error for the SR of
natural images. Hou et al. [21] proposed a global joint dictionary
learning model-based RS SR exploiting nonlocal self-similarity
(NLSS) and sparsity constraints. However, they have shortcom-
ings, such as point-like targets, and complex textures not being
fairly discernible in the output.

In patch-based sparse coding, individual image patches are
reconstructed separately assuming that they are independent
and uncorrelated due to which instabilities among sparse so-
lutions arise, and hence, artifacts are visible in the reconstructed
image. However, the recent SR methods focus on the group
sparse representation of similar patches to maintain consistency
among the recovered patches [22], [23], [24], [25], [26], [27].
Xu and Gao [25] applied the group-sparsity concept of Zhang
et al. [23] to perform natural image SR by utilizing the Gaussian
distance to measure similarity and named it as “GSRGSiSR.” In
another work, Yang et al. [24] proposed group-structured sparse
representation-based SR method by forming clusters of similar
nonlocal patches and then sparse coding with principal com-
ponent analysis-based online dictionary learning. Lu et al. [28]
proposed a group-based SISR with online dictionary learning,
where they basically consider a patch group instead of a single
patch. Although the above group-based methods are able to
slightly reduce the reconstruction error, yet there is ample scope
for further improvements.

Researchers have also shown interests to combine the sparsity
model with other image refinement constraints, such as nonlocal
self similarity (NLSS) based group sparsity to develop a JSR
model. A joint patch-group-based sparse representation model
was proposed by Zha et al. [29] for the restoration (e.g., inpaint-
ing or deblocking) of natural (photographic) images. Mikaeli
et al. [30] proposed a patch- and group-based local smoothness
modeling prior for SISR. Gao et al. [31] demonstrated an SR
method using JSR and low-rank approximation to enhance the
spectral information of MS images. This method indirectly
performs spatial SR for the hyperspectral images up to a level
of MS image’s resolution. In another work [32], Zha et al.
proposed a low-rank regularized group sparse coding (LR-GSC)
based image restoration method. They have demonstrated better
results than a few existing methods for different tasks, such as
image inpainting and compressive sensing. Shi et al. [33] demon-
strated a joint regularization problem involving patch-based and
pixel-based models for face image hallucination preserving local
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details and structures present in the images. Liu et al. [34] pro-
posed an adaptive joint distribution modeling-based SR method
exploiting the gradient sparsity and nonlocal patch correlation.
However, their results are still lacking in peak signal-to-noise
ratio (PSNR) even for high-quality datasets (e.g., Set5 and
Set14).

Recently, deep learning (DL) based methods have become
very popular in the field of image SR due to their ability to
synthesize the missing data by learning a mapping function from
LR to HR images. Wang et al. [35] developed a lightweight SR
network that incorporates context enhancement and contextual
feature aggregation modules to boost the representational power
of the extracted feature. Dong et al. [36] proposed a practical
degradation model and a kernel-aware SR network for real-
world RS images in order to address the degradation and the
high-frequency recovery issues. Lei and Shi [37] presented a
hybrid-scale self-similarity exploitation network that enhances
feature representations by exploiting single- and cross-scale
similarity information in RS images. SR methods using con-
volutional neural network (CNN) and generative adversarial
networks (GANs) are mostly explored for the generation of
HR images [38], [39], [40], [41], [42], [43]. These methods are
generally data intensive and often require retraining (offline)
of the existing models whenever data from a new sensor with
different spatial resolutions are encountered. Since RS satel-
lites acquire MS images at low spatial resolution, collection
of a large dataset becomes practically difficult, and hence, the
model performance is severely affected. It is also observed that
the sparse representation-based methods are computationally
expensive because of iterative minimization steps as well as
several high-dimensional matrix multiplications involving the
dictionaries and image data. Tan et al. [44] applied LASSO for
sparse approximation and CUDA-based parallel implementation
to achieve 30–35× speed up. A similar work is presented by
Attarde and Khaparde [45] for natural image SR.

III. PRIOR ART

A. Formulation of PSR and GSR

An image patch xi ∈ Rm×1∀i = 1, 2, . . ., N can be approxi-
mated as a linear combination of a few selected basis functions
or atoms/columns of an overcomplete dictionary D ∈ Rm×n,
where m� n and the sparse coefficient vector αi ∈ Rn×1, i.e.,

xi = Dαi (1)

where the symbols m, n and N are used to represent sizes of
image patch (i.e.,

√
m×√m), dictionary atoms, and the total

number of patches in the image, respectively.
A schematic representation of the PSR formulation is depicted

in Fig. 1(a). The solution of (1), an underdetermined system of
equations, can be approximated as follows:

α̂i = argmin
αi

( 12 ‖xi −Dαi‖22 + λ ‖αi‖1) (2)

where λ is a constant, known as the regularization parameter.
Here, the dictionary D is shared by all the patches extracted
from the given image. So, if we concatenate N such patches

Fig. 1. Schematic representation of patchwise sparse representation (top) and
formation of patch-group matrix (bottom) (source: [23], Fig. 1). (a) Patch-based
sparse representation. (b) Patch-group formation.

extracted from the image as X = [x1, . . .,xN ] ∈ Rm×N , then
we can rewrite (2) as follows:

α̂ = argmin
α

(
1

2
‖X−Dα‖22 + λ ‖α‖1

)
(3)

where α = [α1, . . .,αN ] ∈ Rn×N is the sparse coefficient ma-
trix and �1-norm is applied to each column of α corresponding
to each patch in X.

As shown in Fig. 1(b), a patch group may be represented by
a matrix with columns formed by nonlocal image patch vectors
having the most identical features in them. For each example
patch xi, the corresponding most similar k patches are selected
from a search window of size W ×W . Here, the similarity is
measured in terms of the Euclidean distance between the target
patch x′ and the candidate patch x as follows:

di =

√∑√
m

i=1

∑√
m

j=1
(xi,j − x′i,j)

2 (4)

where xi,j and x́i,j represent the pixel values of the target and
candidate patches, respectively, while di is the distance between
them. Now, similar patches Sxi

within the search window W ×
W are vectorized and stacked as columns of the group matrix
Xgi = (x(i,1), . . . ,x(i,k)) ∈ Rm×k, where x(i,k) represents the
kth patch in the ith group. Similar to (2), assuming a group
dictionary Dgi ∈ Rm×M having M atoms, we can carry out
sparse coding for each patch group Xgi corresponding to the ith
patch over Dgi as follows:

β̂gi = argmin
βgi

(
1

2

∥∥Xgi −Dgiβgi

∥∥2
2
+ λ

∥∥βgi

∥∥
1

)
(5)

where βgi ∈ RM×k are the corresponding group sparse coeffi-
cients’ matrices. If we put all the patch groups extracted from
N patch locations of the given image X together as XG =
(Xg1 ,Xg2 , . . . ,XgN ) ∈ Rm×kN , we can use a combined group
dictionary DG = (Dg1 ,Dg2 , . . . ,DgN ) ∈ Rm×MN , and then
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Fig. 2. Schematic of the proposed JSR-based SISR method.

rewrite (5) as follows:

β̂G = argmin
βG

(
1

2
‖XG −DGβG‖22 + λ ‖βG‖1

)
(6)

where βG ∈ RMN×kN is an expanded version of βgi .

IV. PROPOSED METHOD

The proposed algorithm restores the desired HR image by
solving two sparse coding subproblems—the PSR and the GSR
for individual image patches and patch groups, respectively.
These subproblems can be combined for the composite JSR
problem, which can be solved using the ADMM framework. We
named it as the joint sparse representation-based adaptive single
image SR (JASISR). A graphical representation of the proposed
SR scheme is shown in Fig. 2. Detailed adaptive dictionary
learning and joint sparse reconstruction techniques are explained
in the following sections.

A. Adaptive Patch- and Group-Dictionary Learning

The SISR problem, i.e., recovering the HR version X of an
image from the observed LR image Y, is defined as follows:

Y = SHX+ n (7)

where S is the downsampling factor, H is the blurring operator,
and n is the additive white Gaussian noise or representation
error, which is taken care of by the fidelity term while solving
a sparse approximation problem. Two adaptive dictionaries are
learned from Y, one for the PSR and the other for the GSR.
First, we learn a coupled overcomplete dictionary DC from
the HR–LR combined patch dataset YC = (Yh;Y�). Here,
HR patches with the most relevant information are directly
extracted from the input image itself and stored as columns
in the matrix Yh. On the other hand, for obtaining the cor-
responding LR feature patch, the given image is first blurred,
downsampled, and then resized to the original image size by
using bicubic interpolation. Then, the training set is prepared
from the key patches having variance values above a certain
threshold, while the nonsignificant patches are not included. In
order to extract high-frequency features and their orientations
from the LR patch, we apply four one-dimensional Sobel filters
in the x-, y-, and two diagonal directions (+45◦ and −45◦)
on each patch. We prefer the Sobel filters here since they are
simple to use and capable of generating effective gradient maps,
which essentially import details, such as edges and contours, for

accurate sparse representation. Finally, an LR feature vector is
formed corresponding to each patch location by concatenating
four gradient maps, and then the feature matrix Y� is formed by
stacking LR feature vectors, corresponding to all key patches, as
its columns. Assuming that LR and HR dictionaries Dh and D�

share similar sparse coefficients vectors in A, the coupled dic-
tionary DC = (Dh;D�

) can now be jointly learned from YC .
Mathematically, the relevant optimization problem is written as
follows:

min
{DC ,A}

‖YC −DCA‖22 + λ
(

1
p + 1

q

)
‖A‖1 (8)

where p and q are the dimensions of HR and LR patch vectors,
respectively, and λ is the regularization parameter. Equation 8 is
efficiently solved by the existing coupled K-SVD algorithm [46].
Next, for the GSR, we learn self-adaptive group dictionariesDgi

for the individual patch groups Ygi rather than learning a single
overcomplete dictionary Dg . Because, learning a single dictio-
nary by joint sparse coding of all available patch groups at a time
is computationally expensive and may no preserve the individual
group specific identity very well. Adaptive group dictionaries
Dgi(i = 1, 2, . . .,M) are directly learned from the given image
patch groups Ygi(i = 1, 2, . . .,M) using rank minimization to
obtain its low-rank estimate Ygr , i.e.,

Ygr = Ugi

∑
gi
VT

gi
=

r∑
j=1

σgi⊗j
(
ugi⊗jv

T
gi⊗j

)
(9)

where Ugr and Vgr are the orthogonal matrices consisting
of the left- and right-singular vectors of Ygr , respectively,
and

∑
gr

= diag(γYgi⊗j ) is a diagonal matrix consisting of
r nonzero singular values of Ygi represented by γYgi⊗j =
[σgi⊗1;σgi⊗2; . . .;σgi⊗r] on its principal diagonal in the de-
scending order, i.e., σgi⊗1 ≥ σgi⊗2 ≥ · · · ≥ σgi⊗r. Now, if
columns of Ugi and Vgi are denoted by ugi and vgi , respec-
tively, then each submatrix dgi ∈ Rm×k of the group dictionary
Dgi is obtained as follows:

dgi⊗j = ugi⊗jv
T
gi⊗j, j=1,2,...,r. (10)

The final adaptively learned dictionary for the group Ygi can
be formulated by concatenating all the r submatrices obtained
from above as follows:

Dgi = (dgi⊗1,dgi⊗2, . . .,dgi⊗r) . (11)

The proposed self-adaptive group dictionary training is more
robust and effective as it assures that all the patches in each
group Ygi are using the same dictionary Dgi and sharing the
same dictionary atoms. The learning is also very efficient as it
needs to solve only one SVD problem for each group.

B. Joint Sparse Reconstruction-Based SR

As shown in Fig. 2, the proposed JSR-based reconstruction
first upscales the LR image Y to a size equal to that of the
target HR image using bicubic interpolation. Then, a joint regu-
larization problem incorporating the two subproblems: PSR and
GSR is solved using the ADMM technique. Mathematically, it
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is given as follows:

X̂ = argmin
X
‖Y − SHX‖22 + μ�JSR (X)

= argmin
X
‖Y − SHX‖22 + μ1�PSR (X) + μ2�GSR (X)

(12)

where �JSR(X) represents the JSR regularization, which is
further split into PSR and GSR terms; μ1 and μ2 are the regular-
ization parameters. �PSR(X) solves a patchwise optimization
problem using the input bicubic upscaled image Y and pre-
trained coupled LR and HR dictionaries obtained from (8), as
follows:

�PSR (X) =
∑
i

(
1

2

∥∥∥ỹi − D̃αi

∥∥∥2
2
+ λ1 ‖αi‖1

)
(13)

where D̃ =
(

PDl

RDh

)
, ỹi =

(
yi

γw

)
, and yi = P (SHX) give

the ith feature patch extracted by the operator P and w con-
tains the overlapping pixels between the present HR patch and
previously generated HR image. The operatorR is used to select
the region of overlaps. The features sign search algorithm [47] is
adopted here to solve the PSR-based regularization subproblem.
On the other hand, �GSR(X) solves a group sparse coding
problem for the bicubic upscaled image Y by forming groups
of similar patches. It finds sparse representation of the ith group
Ygi involving the dictionary Dgi as follows:

�GSR (X) =
∑
i

(
1

2

∥∥Ygi −Dgiβgi

∥∥2
2
+ λ2

∥∥βgi

∥∥
1

)
(14)

where Ygi = Γi(SHX) is a patch group extracted using the
operator Γ from the ith search window. The above GSR regu-
larization subproblem is efficiently solved using the accelerated
split Bregman algorithm [48].

Now, to solve the composite regularization problem in (12),
we adopt the variable splitting technique [49]. It is split into three
relatively simpler subproblems with respect to α, βgi , and X,
respectively, where the third subproblem becomes a simple least-
square problem. Mathematically, these optimization problems
are as follows:

α̂ = argmin
α

∑
i

(
1
2

∥∥∥ỹi − D̃αi

∥∥∥2
2
+ λ1 ‖αi‖1

)
(15a)

β̂gi = argmin
βgi

∑
i

(
1
2

∥∥Ygi −Dgiβgi

∥∥2
2
+ λ2

∥∥βgi

∥∥
1

)
.

(15b)

After obtaining the above two solutions, they are utilized to solve
the third subproblem of finding X as follows:

X̂ = argmin
X

1
2 ‖Y − SH (X)‖22

+ μ1

∑
i

(
1
2

∥∥∥P (SH (X))− D̃αi

∥∥∥2
2

)

+ μ2

∑
i

(
1
2 ‖Γi (SH (X))−Dgiβgi‖22

)
(16)

TABLE I
SPECIFICATIONS OF LISS-III, LISS-IV, AND PUBLICLY AVAILABLE DATASETS

Algorithm 1: Proposed JASISR Algorithm.
Input: Y, S, H , P , Γ, Dh, D�, Dgi

Initialization: t← 0, δ← 10−4, λ1, λ2, μ1, μ2

1: while not converge do
2: k ← k + 1
3: αi

t ←
argminα

∑
i ‖P (SHX)− D̃αi‖22 + λ1‖αi‖1

4: βt
gi
←

argminβ
∑

i ‖Γi(SHX)−Dgiβgi‖22 + λ2‖βgi‖1
5: Xt ←

(SH)tY+μ1

∑
i (PSH)tPD̃αi+μ2

∑
j (ΓjSH)tDgi

βgi

(SH)tSH+μ1

∑
i (PSH)tPSH+μ2

∑
i (ΓiSH)tDgi

βgi

6: check convergence :‖Xt −Xt−1‖/‖Xt‖ ≤ δ
7: end while

Output: X∗ ← Xt

whereμ1 andμ2 are the small positive regularization parameters.
Minimization problem in (16) is strictly convex and a closed-
form solution can be obtained by setting its gradient w.r.t. X to
zero. The solution is shown in step 5 of Algorithm 1.

V. EXPERIMENTS AND RESULTS

A. Dataset Preparation

In this work, the proposed SR algorithm is tested on RS
images captured by ResourceSat-2 satellite and outsourced by
National RS Center (NRSC),1 Hyderabad, India, along with
three standard RS datasets available in the public domain,
namely, the PatternNet,2 UC Merced Dataset (UCMD),3 and the
Aerial Image Database (AID).4 Detailed datasets’ information
and experimental settings are provided in Tables I and II, while

1NRSC Data Center: https://uops.nrsc.gov.in/ImgeosUops/land.html
2PatternNet data: https://sites.google.com/view/zhouwx/dataset
3UCMD data: http://weegee.vision.ucmerced.edu/datasets/landuse.html
4AID data: https://captain-whu.github.io/AID/

https://uops.nrsc.gov.in/ImgeosUops/land.html
https://sites.google.com/view/zhouwx/dataset
http://weegee.vision.ucmerced.edu/datasets/landuse.html
https://captain-whu.github.io/AID/


DEKA et al.: JOINT SPARSE REPRESENTATION-BASED SINGLE IMAGE SUPER-RESOLUTION FOR REMOTE SENSING APPLICATIONS 2357

TABLE II
EXPERIMENTAL SETUP AND STANDARD PERFORMANCE EVALUATION METRICS

Fig. 3. Columnwise from left to right: test images of (a) LISS-III and (b)
LISS-IV datasets for different bands.

a few representative images from ResourceSat-2 satellite used
for performance evaluation are shown in Fig. 3.

B. Experimental Settings and Comparison to the
State-of-the-Art

In this work, the LR test images for simulations are ob-
tained by blurring and downsampling the selected images from
the datasets (referred as ground truths). We have considered
eight state-of-the-art patch/JSR-based SR methods, namely, the
ScSR [14], Moustafa et al. [17], the CRNS [20], the GSR-
SiSR [25], the RAISR [4], the CDLSR [19], the CSC-SR [18],
and the LR-GSC [32] for comparisons with the proposed
method. To show the competitiveness of the proposed method
with the recently developed DL-based methods, we have also
compared the proposed method with the SRCNN [50], the

Fig. 4. Example from LISS-IV showing improved performance of JSR over
PSR and GSR corresponding to a upscale ratio of 2.

VDSR [39], the SAN [42], the CFSRCNN [40], the MHAN [41],
the Beby-GAN [43], and the RCAN-it [51] for the same datasets.

C. Results

1) Ablation Test: An ablation experiment is carried out to
determine the effects when we restrict either the PSR or GSR
subproblem in the JASISR framework. With these settings,
we obtain two variants of the proposed algorithm. Results are
compared with the proposed JSR-based technique (using both
PSR and GSR simultaneously), as shown in Fig. 4. It can be
seen that when JSR is not used, contrast produced by PSR or
GSR alone is not significantly different. There are also drops
in PSNR values, about 3 dB in the case of PSR and roughly
1 dB in the case of GSR. Furthermore, it is also clear from
the experimental results of Fig. 5 and Table III that methods
based on only PSR and GSR (e.g., in ScSR or in GSRGSiSR)
fail to produce significant improvements. Apart from lacking in
quantitative metrics, method based on only PSR, such as ScSR,
is unable to adequately decrease the serrated edges or ringing
effects. However, GSRGSiSR attempts to oversmooth the im-
ages for higher upscale ratios. In this scenario, the proposed JSR
method produces structurally sharpened and contrast improved
high PSNR images.

2) Visual Interpretation: In the proposed work, we carry out
SR of each band image from the MS image separately. We per-
form 2× and 4× upscaling of two test images, namely, Test1 and
Test2, while for another test image, Test3 (results provided in the
supplementary file), we choose to perform 2× and 3× SR from
respective undersampled LR images. The reconstructed band
images of the LISS-IV dataset for different methods are shown
in Fig. 5 for all the test images. From visual inspection, it is clear
that the proposed method provides the best perceptual quality
of reconstructed images. Furthermore, error images between
original and reconstructed images of Test1 and Test2 are also
shown in Fig. 6 for better interpretation. The results demonstrate
that the least error is obtained in case of the proposed method.

The proposed method is also tested using some of the public
domain RGB RS datasets and results are compared in Fig. 7. It
is clearly able to maintain better performance than others both
visually and in terms of PSNR and structural similarity (SSIM).

3) Quantitative Analysis: Ideally, for a better reconstructed
image with richer information, values of PSNR, SSIM, Q-index,
enhanced measure evaluation (EME), and EN should increase,
while that of erreur relative globale adimensionnelle de synthese
(ERGAS), spectral angle mapper (SAM), and natural image
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Fig. 5. Visual comparisons of the SR outputs for LISS-IV dataset. (a) Rows 1–3 “Test1” band2. (b) Rows 1–3 “Test2” band3 images for upscale ratios of 2 and
4 using different sparse representation-based methods. The PSNR and SSIM measures for all the visual outputs are provided at the bottom of image for better
interpretation.

TABLE III
AVERAGE QUANTITATIVE MEASURES ACROSS ALL THE BANDS FOR THE LISS-III DATASET

Fig. 6. Error between original and reconstructed images of LISS-IV: first row - Test1-band2 with upscale ratio 2; second row - Test2-band3 with upscale ratio 4.
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Fig. 7. Visual comparison of SR results for different methods on a test image of PatternNet for zooming factors of 2 and 4. The PSNR and SSIM measures for
all the visual outputs are provided at the bottom of each image for better interpretation. (a) Upscale ratio 2. (b) Upscale ratio 4.

quality evaluator (NIQE) should decrease compared with others.
We evaluate different methods based on eight quantitative pa-
rameters mentioned above and the results are shown in Table III
and Fig. 8 for Test1 with 2× upscaling and Test2 with 3×
upscaling, respectively, for the LISS-III dataset. We observe that
average PSNR is the highest in case of the proposed method
that is 37.54 dB for Test1 and 24.90 dB for Test2; resulting
on an average 0.5–3.63 dB improvements over other tech-
niques. GSRGSiSR and CRNS are the closest in terms of PSNR
and SSIM with the proposed. However, the proposed method
clearly outperforms GSRGSiSR and CRNS with improvements
of 0.26–0.82, 0.29–0.39, and 11.20–12.92 in terms of ERGAS,
SAM, and NIQE, respectively, in case of Test1 for 2× upscaling.
Other methods, such as ScSR, CSC-SR, and LR-GSC, result
in less PSNR with differences of 3.27 dB, 3.45 dB, and

1.33 dB, respectively. Similarly, SSIM is also the highest in
case of the proposed method with average improvement of
0.005–0.18 over others, while ERGAS and SAM values are the
least in most cases. Spatial correlation coefficient (sCC) value is
slightly higher in case of CRNS and RAISR both for 2× and 3×
upscaling, while the proposed method gives the best EME value
in all cases. It should also be noted that with learned dictionaries
of sizes greater than 256, PSNR slightly improves for all the test
images, but at the cost of considerable computational time.

4) Comparison With DL: We compare the performance of
the proposed method with seven state-of-the-art DL-based SR
methods, as mentioned in Section V-B. Simulations are carried
out using three publicly available RS datasets. Since these im-
ages are in RGB format, we first transform them into YCbCr
format and apply the proposed algorithm on the Y-channel.
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Fig. 8. Comparison of ERGAS, SAM, Q-index, EME, Entropy, and NIQE
values for Test1 and Test2 images of LISS-III corresponding to upscale ratios 2
and 3, respectively.

We have selected 80%–90% images of each datasets for training
the network and 10% is used for validation. We select a few
test images from the above datasets randomly such that they
are not a part of the training. To provide a fair comparison
with the non-DL methods, LR test images for evaluating the
DL-based SR methods are generated by the same procedure.
While preparing for the LISS-IV training datasets, equal number
of RoI images of size 256× 256 need to be selected from
the original images (of size, say, 10 000× 10 000). RoI images
selected from individual bands are based on their entropy and
variance values. The SR reconstruction is carried out for 7–8 test
images from the PatternNet, UCMD, and AID datasets using
the seven DL methods. Visual outputs of three test images,
namely, Airplane, Buildings, and Bridge from these datasets, are
shown in Fig. 9, while average PSNR and SSIM comparisons are
shown in Table IV, for upscale ratios 2, 3, and 4, respectively. In
visual inspection, it is observed that high-frequency information
is not well preserved by the DL-based methods from blurred
images. On the other hand, the reconstructed images of the
proposed method have more fine details and edges compared
with others. Similarly, from Table IV, it is observed that the
average PSNR and SSIM of the proposed method are higher
compared with the DL-based SR methods for all the test images.
The improvement in PSNR is in the range of 2–3 dB, while that
of SSIM ranges in 0.1–0.15, approximately. Furthermore, the
last row of Fig. 5 shows that the proposed method performs
better than the DL-based methods both visually and in terms of
PSNR/SSIM for the LISS-IV dataset as well.

In terms of computational complexity, the DL-based methods
take≈ 5–8 h for network training, and 10–100 s for the recon-
struction of a 256×256 image. However, the proposed method
takes only ≈ 350–400 s for learning adaptive dictionaries as
well as reconstruction of an HR image of the same size.

5) Convergence Test: An empirical test is done by plotting
PSNR values of the reconstructed images obtained with varying

number of iterations of the proposed algorithm. Fig. 10(a) and (b)
shows the convergence plot of all the three bands for Test1 and
Test2 images, respectively. We consider 30 iterations to reduce
the computation time as it is observed that PSNR increases
gradually up to 20–30 iterations and beyond that it becomes
almost flat.

6) Computational Complexity and CPU Time Comparison:
Major computation comes from two aspects—first, learning the
K-SVD dictionary and solving the PSR problem, and second,
solving the GSR problem. If K is the number of atoms in
the dictionary, then PSR needs O(K3) operations. If N is
the total number of pixels, ts is the time required for search-
ing similar patches for any given patch, and the complexity
of SVD dictionary learning from each group is O(m× k).
Therefore, the overall complexity of the GSR part can be given
as O(N(m× k + ts)). The overall computational cost of the
JSR problem is O(K3 +N(m× k + ts)). The execution time
of the proposed method is graphically compared with those
of the other methods in Fig. 11. In this work, since we have
performed bandwise SR, we compute the execution time for
the reconstruction of a test image as the average time over all
of its bands. Here, the first plot (top) compares the average SR
reconstruction time taken by different methods for equal number
of test images randomly taken from each of the dataset. Also, to
get an idea of the underlying experimentation on different test
images, we have shown a comparison of average execution times
against the three test images of LISS-IV for different methods
(bottom part).

7) Parallel Implementation Using GPGPU Hardware: We
have used GPGPU hardware to accelerate the execution time
of the proposed JSR-based MS image SR using the CUDA
programming model in the MATLAB parallel computing en-
vironment. The major time consuming parts in the sequential
program are the �1-feature sign for sparse representation (PSR)
and GSR (block matching, group-sparse coding via SVD).
A CPU–GPU hybrid environment is utilized to speed up the
code executions in this work. Here, the PSR is implemented
using CUDA-mex and the other functions are implemented
using C++ mex functions in the MATLAB parallel computing
environment.

In sequential version of the proposed JASISR, the PSR and
GSR subproblems in CPU require 4.82 s and 5.82 s, respec-
tively, which are called in an inner loop, which in turn is called in
an outer loop of the ADMM algorithm. The time taken by PSR
and GSR for each patch using parallel implementation is approx.
0.70 s and 0.36 s, respectively. Hence, the overall execution
time of the algorithm is accelerated by several times. We have
compared the run time of the CPU versus GPU implementations
of the proposed algorithm for different images sizes starting
from 128×128×4 to 1024×1024×3, as shown in Table V. Here,
we have additionally used the MATLAB “parfor” instruction
to simultaneously process all the bands of the MS images,
where each image will be reconstructed through the proposed
MEX-CUDA-based parallelization.

8) Parameter Sensitivity Analysis: Selection of different reg-
ularization parameters is examined by conducting a few param-
eter sensitivity experiments. For this, the PSNR values obtained
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Fig. 9. Comparison of reconstructed images of DL-based methods with the proposed method for different datasets. From top to bottom: first row - PatternNet
(upscale ratio: 2), second row- UC Merced (upscale ratio: 3), and the last row for AID images (upscale ratio: 4). From left to right: original, RoI, reconstructed
images using different methods: SRCNN, VDSR, SAN, CFSRCNN, MHAN, Beby-GAN, RCAN-it, and the proposed method.

TABLE IV
PERFORMANCE EVALUATION OF DL AND THE PROPOSED METHOD FOR LAND COVER DATASETS

TABLE V
COMPARISON OF SEQUENTIAL AND PARALLEL IMPLEMENTATION TIME FOR

DIFFERENT IMAGES

by the proposed algorithm are recorded by varying a single pa-
rameter while keeping the remaining parameters fixed. Fig. 12(a)
shows the sensitivity of λ for dictionary training; the PSNR
reaches the maximum at λ = 0.15 when the latter is varied
in the range of 0.11–0.19. Similarly, Fig. 12(b) and (c) shows
the effects λ1 of PSR and λ2 of GSR, respectively. From the
plots, it is found that the best values of λ1 and λ2 are 0.15
and 0.2, respectively. In Fig. 12(d), we have shown the tradeoff
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Fig. 10. Convergence analysis of the proposed method shown in terms of
progression of PSNR values with respect to the iteration number. (a) For “Test1”
image with upscale ratio 2. (b) For “Test2” image with upscale ratio 4 of LISS-IV
dataset.

Fig. 11. Average reconstruction time of different methods (corresponding to
upscale ratio 2) for equal number of randomly selected images from different
datasets (top), and average bandwise reconstruction time of different methods
for the three test images of LISS-IV dataset.

between the parameters μ1 and μ2 by taking a range of values
for μ1 ∈ [1× 10−5, 7× 10−5] and μ2 ∈ [1× 10−3, 7× 10−3],
while the best combination is found as μ1 = 0.00005 and μ2 =
0.005.

9) SR of Real LR Images: Experiments are also carried out
to check the performance of the proposed algorithm on real RS
images. Unlike the previous experiments, here, we input the LR
test image directly to the SR algorithm, without any preprocess-
ing, i.e., without blurring and downsampling. In Fig. 13, we have
shown comparisons of SR results for 2× and 4× upscalings of
a LISS-IV test image of size 128×128. Since we do not have
the ground-truth image, we compute a few no-reference-based
quantitative metrics, such as NIQE, EN, and EME (as mentioned
in Table II) for performance evaluation. Ideally, lower NIQE and
greater EN and EME values indicate better perceptual quality.
It can be seen that the proposed method produces a sharper
image having fine details. It also yields the lowest NIQE scores
(17.34 for 2× and 35.62 for 4× upscalings) indicating the best
naturalness among all the outputs. Similarly, we also achieve
the highest scores for EN and EME for 2× (EN=6.857 and
EME=3.141) and 4× upscalings (EN=35.62 and EME=7.219),
respectively.

10) Land Cover Classification: We have performed classifi-
cation on the HR reconstructed images obtained from different
methods to interpret the image contents and analyze the effects of
SR algorithm on a given LR MS image. ENVI classic 5.1 is used
for classification and analyzing the results. We have conducted
the experiment with two test images having different number of
classes. In the first test image, regions of interests (ROIs) are
labeled as bare land (green), buildings (blue), and vegetation
(red), while in the second image, RoIs are labeled as road (red),
green field (green), mobile home (blue), and vegetation (yellow).
Multiple RoIs are selected under each class for training with the
test images. Fig. 14(a) and (b) shows the classification results
obtained for the two test images from LISS-IV and PatternNet
datasets, respectively.

It is significantly noticeable that the proposed method has
the most similar classified regions with the original image.
An average accuracy of pixel counts is also computed across
different classes for both the images. It is observed that the
maximum accuracy is obtained in case of the proposed method,
while in case of the ScSR, the pixel count is quite different from
both the original and LR images. We also calculate the land
cover area under each classified region from their pixel counts
and standard per-pixel resolution of the sensor. The average pixel
count accuracy of LR image (interpolated to original size) with
respect to the original is about 88.55% and that of the proposed
method is more than 95.96% for the PatternNet image. While
for the LISS-IV image, they are 98.37% and 99.85% for the LR
image and the proposed method, respectively.

VI. DISCUSSION

The proposed JSR-based method is able to restore the texture
as well as structure components better than others. Although
some of the sparse-based methods, such as the CRNS, the
GSRGSiSR, the LR-GSC, and the RAISR, are slightly closer in
terms of PSNR, however, smaller details in their reconstructed
images tend to be smoothed. GSRGSiSR lacks in recovering the
edges and sharp details at higher upscalings. Moreover, when
compared with other RS evaluation metrics, such as ERGAS,
SAM, and NIQE, the proposed method performs perceptually
better than these methods. The results also demonstrate that the
proposed method produces the least error compared with others.
It is also faster than its closest competitors: GSRGSiSR, CRNS,
LR-GSC, and CDLSR. However, RAISR outperforms the pro-
posed method in terms of execution time, but its reconstruction
quality is poor. This is because the objective of the former is
to achieve rapid reconstruction using a simple mapping from
LR-to-HR without targeting high accuracy in SR reconstruction.
We have not compared the proposed method with the ScSR for
reconstruction time as the dictionary training in the latter is done
separately from an external HR dataset.

In comparison with some of the state-of-the-art DL-based
methods, it is observed that fine details and edges are restored
well by the proposed method from the blurred and downsampled
images. However, this observation is somewhat surprising for
the authors, the reason may be probably due to the blurring
imposed by degradation model on the images before training
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Fig. 12. Parameter sensitivity analysis of the proposed algorithm. (a) PSNR versus λ of dictionary. (b) PSNR versus λ1 of PSR. (c) PSNR versus λ2 of GSR. (d)
Tradeoff between µ1 and µ2.

Fig. 13. Comparison of real image SR outputs by the proposed method and other SR methods.

Fig. 14. Results of supervised classification performed on (a) LISS-IV “Test1” image, and (b) PatternNet “Mobilehomepark” image. From left to right: original
image, LR image, and reconstructed images of ScSR and the proposed method.
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by the DL networks. It will be interesting to see future devel-
opments of DL models that can counter the image degradation
component in a more systematic manner. Moreover, in terms of
computational complexity, the DL methods take several hours
for network training compared with overcomplete dictionary
training in shallow learning. Furthermore, the proposed model
could achieve a speed up in the order of 15–35 times through
the parallelization of computationally intensive steps of the
algorithm using GP-GPU and the CUDA-programming model in
the MATLAB parallel computing environment. Finally, in terms
of RS applications of land cover classification, the proposed
method is reasonably better compared with some of the other
methods in sparse domain. It gives the most accurate classified
regions in terms of percent accuracy of average pixel counts of
classified regions with those of the original image.

VII. CONCLUSION

This article presents an efficient SISR method based on JSR
and adaptive dictionary learning for RS images. Reconstructed
images are enriched with both local and nonlocal informa-
tion. It reduces the high-computation costs of global dictionary
training. The proposed algorithm with adaptive JSR technique
is able to show competitive performances with several other
sparse optimization and DL-based SR algorithms. Reasonable
accelerations are also achieved through GPGPU-based parallel
implementation. Finally, the high classification accuracy of the
reconstructed images indicates the superiority of the proposed
method. In future, as an extension of this work, robust feature
extractions from MS images for learning the dictionaries may
be explored, while a joint reconstruction problem can be formu-
lated incorporating all the band images to enhance the spectral
information as well.
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