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Landslide Mapping Using
Multilevel-Feature-Enhancement Change

Detection Network
Lukang Wang , Min Zhang , Xiaoqi Shen , and Wenzhong Shi

Abstract—Landslide mapping (LM) from bitemporal remote
sensing images is essential for disaster prevention and mitigation.
Although bitemporal change detection technology has been applied
for LM, there remains room for improvement in its accuracy
and automation. In this article, a multilevel feature enhancement
network (MFENet) is proposed for LM based on modules built
in convolutional neural networks (CNNs) like CNN-Attention.
MFENet mainly consists of three modules: the postevent feature
enhancement module (PFEM), the bifeature difference enhance-
ment module (BFDEM), and the flow direction calibration module
(FDCM). Specifically, the main role of PFEM is to selectively fuse
postevent multilayer features to provide discriminative postevent
features. BFDEM fuses the multilayer differences of both pre-event
and postevent features to generate high-quality change detection
features, which are sufficiently powerful to distinguish foreground
from background. FDCM uses a digital elevation model to calibrate
the flow direction of each pixel of the landslide detection results to
complete the LM task. Experiments were conducted to test the
effectiveness of MFENet on two real-world regions, Lantau Island
and Sharp Peak, Hong Kong, where landslides occurred after
rainstorms. Compared with other state-of-the-art general change
detection methods and landslide-specific change detection methods,
the proposed method outperforms all metrics, with its intersection
over union reaching 87.23%. The availability of additional features
and the generalization performance of MFENet are demonstrated
experimentally. It is anticipated that the proposed network will
further contribute to disaster prevention and mitigation.

Index Terms—Change detection, convolutional neural network
(CNN), flow direction, landslide mapping (LM), remote sensing
images.

I. INTRODUCTION

LANDSLIDES are one of the major natural disasters, caus-
ing huge economic losses and casualties worldwide [1],
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[2]. Under the background of frequent occurrences of severe
weather around the world caused by environmental problems,
landslide disasters appear to be occurring more frequently [3],
[4]. Therefore, there is positive significance in quickly and
accurately obtaining the location, boundary, and flow direction
of landslides that follow disasters by the means of landslide
mapping (LM) for postevent rescue, disaster investigation, and
disaster prevention and mitigation [5].

During recent years, the development of remote sensing has
provided new opportunities for LM [6], [7]. Many LM methods
based on remote sensing images have been developed, and such
methods can be divided into two types: object detection based
on postevent images and change detection based on pre-event
and postevent bitemporal images [8]. Deep learning technology
shines in remote sensing image processing [9], [10], making it
possible to achieve more accurate and automated LM [11].

LM using postevent images is usually based on textural,
spectral, and morphological features. Of specific interest is that
it can also be assisted by additional data such as that gained by
the digital elevation model (DEM) [7], [11]. From Landsat-8
images, Yu et al. [12] proposed a method for LM, which intro-
duced saliency enhancement to recognize landslides and used
additional DEM data to remove the ground objects of plain areas
in which landslides are less likely to occur. Cheng et al. [13]
proposed a classification method based on the k-nearest neigh-
bor, combining the bag-of-visual-words and the probabilistic
latent semantic analysis model, which automatically divides a
given image into landslide areas and nonlandslide areas. Yu
et al. [14] used a deep convolutional neural network (CNN)
to initially determine the landslide and then used an improved
region-growing algorithm to extract the region and boundary of
the landslide. Qi et al. [15] combined the characteristics of U-Net
and residual network (ResNet) to design a deep learning model
to complete automatic LM. “Different objects with the same
spectral features” is the specific difficulty regarding this type of
method [16], as it is necessary to, either manually or by using
additional data, remove exposed rocks, roads, and other ground
objects similar to the specific spectral landslide characteristics.
This action leads to poorer LM results, whereas postprocessing
reduces the associated automation.

The accumulation of historical data has created new possibili-
ties for LM in the use of bitemporal remote sensing images [17].
Landslides mostly occur in vegetation-covered areas, in which
the texture and spectral features of the ground before and after
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a landslide are generally different. However, disturbed objects
like rocks still maintain their original features. Therefore, LM
using bitemporal image change detection methods has become
one of the mainstreams [6]. Such methods are generally divided
into two steps: the generation of change detection images (CDIs)
[18], [19], [20], and the segmentation of CDIs for LM. Mondini
et al. [21] used the normalized differential vegetation index
(NDVI), image spectral angle, principal component analysis
(PCA), and independent component analysis (ICA) to generate
CDIs and then employed multivariate classification techniques,
such as logistic regression, linear discriminant analysis, and
quadratic discriminant analysis, to detect landslides. Li et al. [22]
applied change vector analysis to generate CDIs and employed
a more robust threshold method to generate the landslide mask.
Then, a change-detection-based Markov random field (CDMRF)
method was proposed for LM using the spectral and spatial
contextual features of landslides. Lu et al. [23] first generated
CDIs through NDVI, PCA, and ICA and then combined the
CDMRF method for LM. Lv et al. [8] proposed an approach
based on adaptive region shape similarity, which used the neigh-
borhood features of pixels to obtain richer context information
to generate CDIs, and finally used the threshold segmentation
method to segment the CDIs to complete LM. These methods
rely on the quality of CDIs and also require empirical manual
selection of optimal features and thresholds, resulting in a low
degree of automation. In addition, bitemporal SAR images are
also used for LM, and their effect is better than that of optical
remote sensing images when there is cloud cover [24], [25]. But
SAR-based LM relies on additional data such as DEM.

Deep learning methods can automatically extract more ef-
fective features through deep convolutional layers to complete
the end-to-end LM [11], [26]. It is a potential LM method with
a high degree of automation and accuracy equal to or better
than traditional methods. Zhang et al. [27] used a deep CNN to
learn landslide features from historical images, then proposed
a change detection CNN to detect landslides from bitemporal
images, and postprocessed landslide objects to obtain attribute
information such as their trail, flow direction, and source points.
Similarly, fully convolutional network (FCN)-based methods
were proposed to extract features from differential images or
directly superimpose depth features from bitemporal images for
LM [26], [27]. Fang et al. [30] combined a generative adversarial
network and a Siamese neural network to generate bitemporal
feature images and used pixelwise Euclidean distance for LM.
Based on U-Net and ResNet, Su et al. [31] proposed the LanD-
CNN model to detect landslides, which superimposed bitem-
poral images and DEM as the input of the model. Amankwah
et al. [32] tested the change detection methods proposed on
nonlandslide datasets, such as the spatial–temporal attention
neural network and Siamese nested U-Net (SNUNet) on the
landslide dataset, and achieved good results. These methods
can be summarized as using three feature extraction and fusion
strategies

1) using differential images as the model input,
2) using the direct superimposition of bitemporal images as

model inputs to extract features,

3) using the same encoder to extract features for bitemporal
images and then superimposing these features into the
decoding stage.

The pre-event and postevent features are equally weighted in
the model.

When doing LM, more attention is paid to the new landslide.
New landslides exist in the postevent image and generally occur
in vegetation-covered mountainous areas. Its spectral, textural,
and morphological features are obvious in the postevent image
and are well differentiated from the surrounding vegetation.
Taking advantage of this property combined with change de-
tection techniques, in this article, a network based on multilevel
feature enhancement is proposed for LM. First, the postevent
feature enhancement module (PFEM) is designed to enhance
the postevent image features to make them more discriminative.
Here, the additional DEM or partial landslide segmentation
results of the postevent image can be input into the network
through concatenate or side supervision to further enhance the
postevent feature. Second, the pre-event image feature and the
enhanced postevent image feature are input to the bifeature
difference enhancement module (BFDEM), which highlights
the differential features of bitemporal images to obtain reliable
landslide change detection results. Finally, the flow direction
calibration module (FDCM) uses an eight-direction pour point
model (D8) [33] to calibrate the landslide flow direction. Our
main contributions are as follows.

1) We propose an end-to-end change detection net-
work named multilevel feature enhancement network
(MFENet) for LM. MFENet enhances features from two
levels and can use side supervision and concatenation to
input additional features.

2) PFEM and BFDEM are proposed to enhance postevent
image features and bitemporal image difference features.
The modules make the results have clear boundaries and
consistent internal logic, and they reduce false detections
and missed detections caused by interference factors.

3) FDCM uses the D8 method to calibrate the flow direction
of the LM with the DEM to meet the application require-
ments of subsequent landslide analysis.

4) Compared with existing general change detection methods
and landslide-specific change detection methods, both of
which are based on deep learning, the proposed method
yielded state-of-the-art (SOTA) results on landslide
detection.

II. METHODOLOGY

In this section, we introduce the overview of our proposed
network and then introduce the details of the modules in the
network.

A. Overview

MFENet is an end-to-end network, and its architecture is
shown in Fig. 1. It consists of the following four parts:

1) a feature extractor based on a Siamese network,
2) a PFEM for enhanced postevent features,
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Fig. 1. Overall framework of the proposed MFENet. The framework mainly consists of four parts. (a) ResNet-34 is used as the backbone encoder for feature
extractor. (b) PFEM fuses multilayer features to obtain discriminative postevent features. (c) BFDEM uses BFDEB to fuse the multilayer difference features to
generate high-quality change detection features, and additional features can be input into the network in this part for end-to-end training. (d) FDCM uses DEM to
calibrate the flow direction.

3) a BFDEM for enhanced bitemporal difference features,
4) an FDCM to calibrate the flow direction.
Let Ipre and Ipost represent pre- and postevent images, respec-

tively. The flow of MFENet is as follows.

Step 1: The Siamese network is a neural network framework
with two branches. The “Siamese” of the neural network
is realized by sharing weights. The Ipre and Ipost are input
into two weight-sharing branches of the Siamese network to
obtain multilayer features of pre- and postevent, represented
as FN = {f1

N , f2
N , f3

N , f4
N , f5

N}, N = {pre, post} , super-
scripts 1–5 represent layer1–layer5.

Step 2: The Fpost is fed into a PFEM to get enhanced postevent
features, i.e., F ′

post = {f1
post, f

2
post, f

3
post, f

4
post}. PFEM con-

tains the following three stages of enhancement.
1) As the core block of PFEM, the postevent enhancement block

(PFEB) fuses the different layers’ features to enhance Fpost.

2) Fpost is corrected and refined using the feature repay (FR)
mechanism before feeding it to step 3.

3) As optional inputs, DEM and partial landslide segmentation
results are used to further enhance Fpost.

Step 3: The Fpre and F ′
post are input into BFDEM to obtain the

output change detection map. The core block of BFDEM,
the bifeature difference enhancement block (BFDEB), fuses
Fpre and F ′

post to obtain the change detection feature Fdout

= {f1
dout, f

2
dout, f

3
dout, f

4
dout, f

5
dout}. Convolutions are em-

ployed to reduce the feature dimension of f1
dout to 1, that is,

the output change detection map. A combined loss function
that integrates binary cross entropy [34], structure similarity
[35], and intersection over union (IoU) [36] loss is used to
calculate the distance between the change detection map and
the ground truth to complete the training. It can be defined as
follows:

l = lBCE + lSSIM + lIoU (1)
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The BCE loss function calculates the loss value for each pixel
for the image as follows:

lbce = − 1

N

H∑
i=1

W∑
j=1

[gtij log pij + (1− gtij) log (1− pij)]

(2)
where gtij and pij represent the true value at the pixel (i, j)
and the predicted value, respectively. H and W represent the
height and width of the image, respectively. The SSIM loss
function is integrated to focus on the integrity of the local area.
Its calculation formula is given as follows:

lssim = 1− (2μxμy + C1) (2σxy + C2)(
μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) (3)

where x and y represent the reference image and the predicted
image, respectively. μx, μy and σx, σy represent the mean and
standard deviation of x and y, and σxy represent the covariance.
C1 andC2 are two constants to avoid the denominator being 0, in
this study, C1 = 0.012 and C2 = 0.032 . The IoU loss function
focuses on the global structural information. Its calculation
formula is given as follows:

lIoU = 1−
∑H

i=1

∑W
j=1 (gij ∗ pij) + 1

∑H
i=1

∑W
j=1 (gij + pij − gij ∗ pij) + 1

(4)

where gij and pij represent the true value and the predicted
value, respectively.

Step 4: The proposed FCDM uses DEM and D8 to calibrate the
flow direction of landslides.

B. Feature Extractor

The feature extractor is a Siamese network with two weight-
sharing branches, as shown in Fig. 1(a). First, in each branch,
convolutions with a stride width of 1 and kernel size of 3
(Conv3×3_str1) are used to increase the feature dimension
to 64. Second, the first four layers of ResNet34 [37], i.e.,
layer1–layer4, each of which contains a varying number of
BasicBlock of ResNet, are used as the backbone for feature
extraction. BasicBlock for each layer contains the same num-
ber of Conv3×3_str1 as the number of channels and uses a
skip connection known as “shortcut.” Skip connection solves
the degradation problems of vanishing gradients and exploding
gradients when training deep neural networks. Feature extraction
by using skip connections enables the network to learn fea-
tures with multiscale information and various receptive fields.
A BasicBlock as layer5 is used to obtain deeper features for
feature enhancement. Finally, layer1 –layer5 of features can be
obtained, and their channels are 64, 128, 256, 512, and 512,
respectively.

C. Postevent Feature Enhancement Module

The PFEM contains three stages of enhancement as shown in
Fig. 1(b), i.e., PFEB, FR, and additional features.

Stage 1: The PFEB is the core block of the PFEM, which
selectively fuses postevent multilayer features to provide dis-
criminative postevent features. Due to the difference in the

Fig. 2. Structure of SE-Net.

receptive field, low-layer features retain more complete details,
such as localization information and clearer boundaries, but they
suffer from background noise, whereas high-layer features have
a clear background and semantic information. PFEB reduces
feature variance by fusing high-level and low-level features that
contain different information. As shown in Fig. 1, PFEB is a
bi-input and bioutput structure. The postevent feature of the ith
layer and the high-layer feature of the i+1 layer are used as input.
The enhanced postevent feature and the high-layer feature of the
ith layer are the output. An overview of PFEB can be expressed
as follows:

(f i
post)

′
, f i

high = PFEB
(
f i

post, f
i+1
high

)
(5)

where i = { 4, 3, 2, 1} represents the layer of network.
The feature f ′

post output by each layer of PFEB contains more
comprehensive information, but it also retains the differences in
the features of each layer. The specific process of PFEB is as
follows.

Step 1: The consistent part of the multilayer features of the bi-
input is obtained by elementwise multiplication, denoted as
Fcon. This process can be expressed as follows:

Fcon = Fpost ⊗ Fhigh (6)

where ⊗ represents elementwise multiplication.

Step 2: The Squeeze-and-Excitation network (SE-Net) [38] is
used for the “feature recalibration” ofFcon. As shown in Fig. 2,
first, the Squeeze uses the global average pooling (GAP) to
compress the spatial dimension in each channel into a global
feature constant. Second, the Excitation is used to capture the
dependencies between feature channels to generate weights
for each feature channel, which is realized through layers
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FC + Relu + FC + Sigmoid, that is

Weigths = σ (FC2 (Relu (FC1 (Fcon)))) (7)

where σ(·) represents a Sigmoid activation function. FC1 and
FC2 represent fully connected layers with dimensions c/r and
c, respectively. c represents the feature dimension of Fcon, and r
is the dimension reduction coefficient, generally r = 16.

Finally, the Scale weights feature channel-by-channel by mul-
tiplication to complete the “feature recalibration” in the channel
dimension. Scale makes the model more discriminative to the
characteristics of each channel, which is similar to the attention
mechanism. This process can be expressed as follows:

F ′
con = Weigths � Fcon (8)

where � represents dot product by channel.

Step 3: The recalibrated consistent features are applied to en-
hance saliency cues in Fpost and Fhigh, thereby yielding fused
features

F ′
post = Relu (BN (Conv (F ′

con ⊕ Fpost))) (9)

Fhigh = Relu (BN (Conv (F ′
con ⊕ Fhigh))) (10)

where ⊕ represents elementwise addition, and Conv, BN, and
Relu represent Conv3×3_str1, batch normalization, and recti-
fied linear unit in the common deep learning network, respec-
tively.

Compared with methods using direct addition or concate-
nation to fuse the features of different layers, the proposed
PFEB can remove the information generated during the fusion
process that may muddy the original features. Through upward
propagation, Fpost continuously learns useful information from
Fhigh so that the enhanced F ′

post contains rich information, such
as clear boundaries, accurate localization, and rich semantics.

Stage 2: The f1
high output of the layer1 PFEB is relatively

complete, and the FR is a mechanism that downsamples the f1
high

to the same dimension as each layer in F ′
post to further correct

and refine F ′
post. This process can be expressed as follows:

F ′
post = F ′

post ⊕ f1
high. (11)

Stage 3: Additional features can be used to further enhance
F ′

post. The first kind of additional information is DEM; because
of the independence between DEM features and optical image
features, concatenation is directly used to combine them. This
process can be expressed as follows:

F ′
post = F ′

post C©Fdem (12)

where C© represents the concatenation of two feature matrices.
The second one is the labeling of some landslide segmentation

results on the postevent image. This network can upsample the
output f1

high to the original image size as a rough landslide seg-
mentation result. Labeled landslides are used to side-supervise
the corresponding image regions and update model parameters
by using back-propagation.

D. Bifeature Difference Enhancement Module

The architecture of the BFDEM is shown in Fig. 1(c). The
BFDEM uses its core block BFDEB as the backbone of the
decoder to obtain change detection results by continuously
upsampling and upward propagation. The structure of BFDEB
is shown in Fig. 1; it generates a differentiated feature map by
enhancing the difference between pre- and postevent features.
The process of BFDEB is as follows.

First, the difference feature matrix obtained by elementwise
subtraction is denoted as Fdiff. This process can be represented
as follows:

Fdiff = F ′
post � Fpre (13)

where � represents elementwise subtraction.
Second, similar to the PFEB, elementwise multiplication is

used to get the consistent part of Fdiff and Fhigh as follows:

Fdiff−con = Fdiff ⊗ Fhigh. (14)

Third, similar to (7) and (8), SE-Net is used to achieve “feature
recalibration” to get F ′

diff−con. The calculation process will not
be repeated.

Finally, F ′
diff−con is combined with the difference feature

Fdiff by an elementwise addition to obtain the feature-enhanced
change detection features. This process can be expressed as
follows:

Fdout = Relu
(
BN

(
Conv

(
F ′

diff−con ⊕ Fdiff
)))

. (15)

Compared with methods using direct subtraction or concate-
nation to fuse pre- and postevent features, the designed BFDEB
can highlight spectral, textural, and morphological differences
between features to obtain more accurate results.

After BFDEB of layer1, Conv3×3_str1 is used in f1
dout to

reduce its dimension to get the final change detection result.
In addition, a hybrid loss function is applied to the supervised
training process, as suggested in [39].

E. Flow Direction Calibration Module

FDCM uses D8 to calibrate the landslide flow direction as
shown in Fig. 1(d). D8 is a single-flow-direction algorithm using
DEM for flow direction analysis. The idea of the single-flow-
direction algorithm is that the central grid has only one outflow
grid, and all the “water” in the central grid is transferred to the
outflow grid after the flow direction is determined. D8 assumes
that the “water flow” in a single grid can only flow into the eight
adjacent grids and use the steepest slope method to determine
the direction of the flow.

Specifically, D8 calculates the elevation weight drop between
the central grid and each adjacent grid on the 3 × 3 DEM grid
and takes the grid with the largest elevation weight drop as the
outflow grid of the central grid. On the final flow direction pre-
diction map, we use eight different values to represent different
flow directions, as shown in Fig. 3. D8 is a simple and effective
method for the detection task of landslide flow direction.
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Fig. 3. D8 direction code. Different numbers and different colors represent
different flow directions.

Fig. 4. Study area. Areas A–C are located in Lantau Island, Hong Kong, and
Area D is located in the sharp park of Sai Kung East Country Park, Hong Kong.

III. EXPERIMENTS

A. Study Area and Dataset

Under the influence of a torrential rainstorm on June 7, 2008,
thousands of landslides with different sizes, shapes, and spatial
distributions were caused in Hong Kong, causing huge losses to
human life and property. The Hong Kong government attaches
great importance to the prevention and postprocessing of such
disasters [40]. Historical landslide data are recorded through the
Enhanced Natural Terrain Landslide Inventory, which provides
a wealth of prior knowledge for landslide identification. Our
study area consists of four areas A–D, as shown in Fig. 4. Areas
A–C are located in Lantau Island, the largest island in Hong
Kong, and Area D is located in the sharp park of Sai Kung East
Country Park. The pre-event and postevent aerial photos of areas
A–D were collected by an aerial survey system equipped with a
Zeiss RMK TOP 15 aerial survey camera at a flight altitude of
2400 m. The spatial resolution of the photos is 5 m, and the size
is 2698 × 2698 pixels. At the same time, the postevent DEM
data were also obtained from the relevant departments in Hong
Kong. In Fig. 5, we illustrate study area A. A more detailed
introduction to the study area can be found in [27].

Due to the limitations of the GPU and the need for continu-
ous downsampling of the model, we cropped four large-format
photos into several 256 × 256 pixel images with a 20% overlap
rate. Flip, rotate, blur, and GridMask [41] are randomly adopted
to enhance the data, and finally, 1296 sets of data were obtained.
We use the following two data division methods.

1) Randomly divide the training set, validation set, and test
set according to the ratio of 3:1:1. This division method is
used for comparative experiments to verify the accuracy
of the model.

2) Divide the data according to the A–C areas as the training
set and the D area as the test set to verify the stability and
generalization performance of the model.

B. Comparative Methods

To demonstrate the superiority of MFENet, six SOTA deep-
learning-based change detection methods were selected for
comparison, which included the three SOTA general change
detection methods proposed on nonlandslide datasets and the
three landslide-specific methods proposed on landslide datasets.
These six methods are briefly introduced. Methods 1)–3) are
proposed on nonlandslide data, and methods 4)–6) are proposed
on landslide data.

1) FC-Siam-diff [42]: This network is proposed based on the
U-Net architecture, which uses an encoder composed of a
Siamese network to extract bitemporal features in parallel
as the input to the decoder.

2) DSIFN [43]: This network uses pretrained vgg16 as an
encoder, spatial and channel attention mechanisms in the
feature fusion stage, and deep supervised learning to su-
pervise feature fusion at different scales.

3) SNUNet [44]: This network is a densely connected
Siamese network that maintains high-resolution and fine-
grained features through dense skip connections. Mean-
while, the deep supervision module of the ensemble chan-
nel attention module is used to refine the most represen-
tative features of different semantic levels.

4) FCN-PP [28]: This network uses FCN as the encoder of
the network in order to construct a U-shaped network. The
network is improved by adding a pyramid pooling (PP)
module at the bottom of the U-shaped network. PP consists
of three convolutions of different sizes and different stride
widths to obtain features in the different receptive fields.

5) DP-FCN [29]: This network uses Siamese FCNs to en-
code and decode pre- and postevent images, respectively,
and fuses pre- and postevent features by concatenation in
the intermediate stage of decoding.

6) LanDCNN [31]: This network also uses U-Net as the main
structure, replacing the encoder with ResNet50. The DEM
and the image are concatenated as the input of the network,
which proves the effectiveness of the DEM as an additional
feature.

C. Implementation Details and Evaluation Metrics

The proposed method is implemented based on Pytorch using
python3.8 + cuda10.2. The Adam optimizer is used with an ini-
tial learning rate of 0.0001, and the training batch data size is set
to 8. The optimizer of the comparison method is only mentioned
by SNUNet in its paper and also uses the Adam optimizer; our
optimizer is unified as Adam during training. The epoch is set
to 100 in order to make the results obtained by all networks
converge to their optimal values. All of our experiments are
conducted on the NVIDIA GeForce RTX 3090 24 GB.
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Fig. 5. Data example from study area A. (a) Pre-event image. (b) Postevent image. (c) Ground truth of landslide. (d) DEM.

Fig. 6. Visualization results of comparisons. (a) Pre-event image. (b) Postevent image. (c) Ground truth. (d) FC-Siam-diff. (e) DSIFN. (f) SNUNet. (g) FCN-PP.
(h) DP-FCN. (i) LanDCNN. (j) MFENet (ours). The detected changes are white pixels, and the unchanged parts are black pixels. It is worth noting that MFENet
does not use additional features in this section.

To evaluate the performance of the proposed method, we
used four evaluation metrics: Precision (P), Recall (R), F1
score (F1), and IoU. P represents the proportion of correctly
detected changed pixels in the model-predicted changed pixels.
The higher P indicates that fewer false pixels are detected. R rep-
resents the proportion of correctly detected changed pixels in the
true value of changed pixels. The higher the R, the fewer missing
pixels are detected. The F1 score can be regarded as the harmonic
means of the model’s P and R. IoU represents the ratio of the
intersection and union between the predicted result of the change
pixels and the real change pixels. They are calculated as follows:

P =
TP

TP + FP
× 100% (16)

R =
TP

TP + FN
× 100% (17)

F1 =
2× P ×R

P +R
× 100% (18)

IoU =
TP

TP + FN + FP
× 100% (19)

TABLE I
COMPARISON RESULTS

where TP represents the correct detection as changed pixels, FN
and FP represent the missed and falsely detected changed pixels,
and TN represents the correct detection as unchanged pixels.

D. Comparisons and Analysis

It is worth noting that MFENet does not use additional
features in this section. According to the first data division
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Visualization results of ablation study. (a) Pre-event image. (b) Postevent image. (c) Ground truth. (d) BASE. (e) BASE+BFDEM. (f) BASE+PFEM.
(g) MFENet. The detected changes are white pixels, and the unchanged parts are black pixels.

TABLE II
ABLATION STUDY

method, a comparative test is carried out to verify the accuracy
of the model. The quantitative results for the P, R, F1, and IoU
of all methods are summarized in Table I. The method proposed
in this article achieves the best in P, IoU, and F1 and improves
by 0.79%, 4.84%, and 2.85% compared with the suboptimal
method. In addition, MFENet achieves the highest accuracy
with a modest number of parameters (Params). This shows
that the MFENet has a good balance between computational
complexity and accuracy. To evaluate the performance more
intuitively, details of the experimental results are presented in
Fig. 6. It can be found that the proposed method improves the
results mainly in the following aspects.

1) Clearer boundaries: The postevent features enhanced by
PFEM have a more complete boundary, which is preserved
when the landslide change detection results are obtained.

2) Consistent internal logic: The detected landslides have
fewer internal voids or partial truncations because the
model preserves more detailed features of ground objects
through feature enhancement.

3) Less “salt and pepper:” This is a spurious change
consisting of a small number of pixels on the predicted
map. The “salt and pepper” is the pollution of low-layer
features by background noise and the loss of some

semantic information between pixels during decoding.
The proposed method fuses high-layer and low-layer
features through PFEM and BFDEM, which preserves
rich semantic information and suppresses background
noise on the final feature map.

4) Small targets can be caught: Through the feature-
enhancement modules PFEM and BFDEM, the major fea-
tures are enhanced and the useless features are suppressed
so that many small tributaries of landslides are not ignored
by the network.

E. Ablation Study

To evaluate the effectiveness of PFEM and BFDEM, the
following four ablation experiments are set up to further examine
the modules and network structures.

1) Both PFEB and BFDEB of MFENet are replaced by the
concatenated features and the Conv3×3_str1 to achieve
two feature fusions in the network (BASE).

2) PFEB of MFENet is replaced by the concatenated features
and the Conv3×3_str1 (BASE+BFDEM).

3) The BFDEB of MFENet is replaced by the concatenated
features and the Conv3×3_str1 (BASE+PFEM).

4) MFENet.
The experimental results are shown in Table II and Fig. 7.

BFDEM and PFEM have significant effects regarding the re-
spective improvement of the P and R of the model. More-
over, the overall performance of PFEM is higher than that
of BFDEM, which shows that PFEM specially designed for
this type of postevent change of landslide is very effec-
tive. The MFENet model, which combines PFEM and BF-
DEM, achieves the best performance, indicating that there
is good compatibility between the two modules. Thus, and
in summary, MFENet is able to be effectively applied for
LM.
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Fig. 8. Visualization results of LM. (a) Pre-event image. (b) Postevent image. (c) Ground truth. (d) Landslide predicted mask. (e) Prediction boundary on the
postevent image. (f) Predicted boundary and predicted flow direction on the postevent image. (g) Predicted boundary and predicted flow direction on the predicted
mask. (h) RGB display of predicted flow direction on the predicted mask.

F. Flow Direction

First, the landslide boundary is calibrated on the postevent
image using the landslide detection results, which provide
information for calculating the perimeter and area of the land-
slide. Similarly, the landslide boundaries are demarcated on the
DEM. Then, the flow direction of each pixel of the landslide is
calibrated by using the D8 method combined with the DEM
and the landslide boundary, and the flow direction map of
the landslide is obtained. Finally, the flow-to-grayscale image
is converted to an RGB image for easy visualization. Fig. 8
visualizes the final LM results.

IV. DISCUSSION

In this section, the availability of additional features and the
generalization performance of the model are experimentally
verified and discussed.

A. Availability of Additional Features

DEM and some postevent landslide segmentation results are
input into the network as additional features. Using MFENet
as the base, three sets of comparative experiments were set
up: only additional input of DEM (MFENet_DEM), only ad-
ditional input of segmentation results (MFENet_Seg), and ad-
ditional input of DEM and segmentation results simultaneously
(MFENet_DEM&Seg). The experimental results are shown in
Table III. Inputting additional features can significantly improve
the accuracy of the model. When two additional features are
input simultaneously, R, IoU, and F1 are all optimal, but the P

TABLE III
AVAILABILITY OF ADDITIONAL FEATURES

value is slightly lower than the input alone, which may be caused
by a mutual disturbance between features.

The visualization of the results is shown in Fig. 9. As a
commonly used data source for landslide detection or postpro-
cessing, the effect of adding DEM to the network is significant.
It can be seen from Fig. 9 that the DEM effectively eliminates
the internal cavity of the landslide caused by disturbance factors
and the false changes that may be identified as landslides on
the spectrum. Segmentation results increase the supervision
information of the network, which is equivalent to expanding
the training data so that the network can learn more effective
landslide spectral features to improve detection accuracy.

B. Generalization Performance

According to the second data division method, the generaliza-
tion performance of the model is verified by comparative exper-
iments. The experimental metric results are shown in Table IV.
MFENet still outperforms other networks on R, IoU, and F1.
The visualization of the results is shown in Fig. 10. Combining
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(a) (b) (c) (d) (e) (f) (g)

Fig. 9. Visualization results of availability of additional features. (a) Pre-event image. (b) Postevent image. (c) Ground truth. (d) MFENet. (e) MFENet_DEM.
(f) MFENet_Seg. (g) MFENet_DEM&Seg. The detected changes are white pixels, and the unchanged parts are black pixels.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 10. Visualization results of generalization performance. (a) Pre-event image. (b) Postevent image. (c) Ground truth. (d) FC-Siam-diff. (e) DSIFN. (f) SNUNet.
(g) FCN-PP. (h) DP-FCN. (i) LanDCNN. (j) MFENet (ours). The detected changes are white pixels, and the unchanged parts are black pixels.

metrics analysis and visualization results, it is found that the
main reason for poor generalization performance is reflected in
the following two aspects: conservative predictions lead to a
large number of missed pixels, and aggressive predictions lead
to a large number of false pixels. MFENet is neither too con-
servative to ensure that landslides can be completely detected,
nor it is too aggressive to detect many false landslides. MFENet
maintains high precision while achieving high recall. However,
it can be seen that the generalization performance of MFENet
is better than that of other models. It is also worth mentioning
that DSIFN obtained the largest P or R in the two data division
methods, respectively, showing that conservative and aggressive
may not be fixed characteristics of the model and may be related
to the dataset.

However, when compared with the first data partitioning
method, all models show a significant decrease in accuracy. This
appears to be due to the similarity of the geographical environ-
ments of the A–C areas, which leads to similar types of landslides
afterward. The models only learn the features of landslides in this
specific geographical environment, and the decrease in model
accuracy is predictable. If a fully supervised model is to have
better generalization performance, model training in different
scenarios is essential.

V. CONCLUSION

In this article, an end-to-end change detection network based
on multilevel feature enhancement is proposed for landslide
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TABLE IV
GENERALIZATION PERFORMANCE

detection. The postevent feature recalibration and bitemporal
difference feature recalibration are completed by means of two
feature-enhancement modules, PFEM and BFDEM. Experi-
ments show that MFENet outperforms both the SOTA general
change detection methods and landslide-specific change de-
tection methods for LM. The landslides detected by MFENet
maintain clear boundaries and internal logical consistency and
also reduce false detections and missed detections caused by
disturbance factors. Finally, the landslide flow direction is cal-
ibrated by using the D8 method combined with the landslide
detection results and DEM to complete the LM. On the basis of
MFENet, additional features are input through side supervision
and concatenation, which further improves the accuracy of the
network to detect landslides. In addition, it is experimentally
demonstrated that the generalization performance of MFENet
outperforms that of other methods. The LM results of this study
are shown to have high accuracy, less manual intervention, and
richer landslide information, capable of being used for landslide
sensitivity analysis, and have great significance as regards the
success of the following: postdisaster rescue, disaster preven-
tion, and mitigation. In the future, it will be worthwhile for
there to be further focus on the development of LM networks
with stronger generalization performance, enabled by combin-
ing weakly supervised learning or transfer learning with the
current limited landslide remote sensing data, worldwide.
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