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Abstract—Semantic segmentation of remote sensing images en-
counters four significant difficulties: 1) complex backgrounds,
2) large-scale differences, 3) numerous small objects, and 4) ex-
treme foreground–background imbalance. However, the existing
generic semantic segmentation models mainly focus on the mod-
eling context information and rarely focus on these four issues.
This article presents an enhanced remote sensing image semantic
segmentation framework to solve these problems through the hi-
erarchical atrous pyramid (HASP) module and spatial-adaptive
convolution-based FPN decoder framework. On the one hand,
HASP solved the problem of complex backgrounds and large-
scale differences by further enlarging the receptive field of the
network through the cascade of atrous convolution with various
rates. On the other hand, spatial adaptive convolution is embedded
in FPN decoder framework step by step to solve the problems
of numerous small objects and extreme foreground–background
imbalance. Besides, a boundary-based loss function is constructed
to help the network optimize the relevant segmentation results.
Extensive experiments over iSAID and ISPRS Vaihingen datasets
reflect the superiority of the presented structure to conventional
the state-of-the-art semantic segmentation approaches.

Index Terms—Attention module, remote sensing, semantic
segmentation, spatial adaptive.

I. INTRODUCTION

W ITH the fast growth of remote sensing technology,
high-resolution remote sensing images can be easily

obtained for semantic segmentation. Remote sensing image
semantic segmentation has a broad domain of usages in various
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Fig. 1. Illustrations of potential challenges in remote sensing aerial images.
(1) Multiscale problem. (2) Complex backgrounds of remote sensing images.
(3) Various small objects in remote sensing images. (4) Foreground–background
imbalance.

areas, such as urban planning [1], [2], disaster monitoring [3],
meteorological monitoring [4], and environmental modeling [5],
[6]. This demonstrates the important academic and application
value of the research and development of remote sensing image
semantic segmentation.

In recent years, deep learning-based methods have brought
revolutionary development in semantic segmentation. Although
FCN and its variants [7], [8], [9], [10] perform well in general
semantic segmentation tasks, their performance in remote sens-
ing images is not satisfactory. This is because remote sensing
images have the following challenges, which are described in
detail in Fig. 1.

1) Multiscale problem. The scale differences between dif-
ferent categories of objects in remote sensing images and
within the same category are significant.

2) The complex backgrounds of remote sensing images can
easily lead to false alarm.

3) There are various small objects in remote sensing images,
and their dense arrangement leads to the misdetection
problem.

4) Foreground–background imbalance. The number of the
foreground is much smaller than the background, and the
lack of foreground modeling in existing networks will
easily cause the network to fall into local optimum.

As presented in Fig. 2, the existing approaches mainly employ
the multiscale information to solve the problem of multiscale
and complex backgrounds. PSPNet [11] presented a pyramid
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Fig. 2. Description of the segmentation pipeline. (a) Previous methods usually
employ a simple encoder–decoder framework for feature encoding. (b) SPANet
adopts HASP for promoting the extraction of multiscale information at the
encoder stage. In the decoder stage, spatial adaptive convolution is embedded
into the FPN framework to enhance the network’s perception of the foreground
objects and small objects. The boundary-based loss function is introduced into
the training process to optimize the results.

pooling module (PPM). Deeplab series [12] proposed atrous
spatial pyramid pool (ASPP). However, the performance of these
modules for natural scenes in remote sensing images is limited.
This is because the scale differences in natural scenes is much
smaller than that in remote sensing images, and the receptive
fields of the multiscale module proposed for natural scenes
are insufficient remote sensing images. Thus, a critical issue
is how to extract the features of objects with very large-scale
differences. Inspired by the ideas of DenseNet and ASPP, the hi-
erarchical atrous spatial pyramid (HASP) is proposed. It further
extends the pyramid module’s receptive field range by cascading
the output of the atrous convolution with a lower rate into the
input of the atrous convolution with a higher rate. Besides, since
the existing methods usually adopt concat operation for the
properties of various receptive fields, they cannot fully play to
the advantages of different receptive field features. Therefore, a
scale-aware fusion (SAF) module is proposed for optimization.
The SWF module employs the channel-weighted (CW) and
spatial-weighted (SW) mechanisms to weigh the properties of
various receptive fields and optimize the feature fusion mode of
various receptive fields.

In order to solve the problem of foreground–background
imbalance and numerous of small objects. The existing methods
use FPN-based methods to directly fuse low-level features with
high-level ones. However, it is not reasonable to adopt the
direct integration method. On the one hand, vanilla convolution
is utilized to maintain the matching of dimensions in direct
fusion, while vanilla convolution is space sharing. As a result,
the gradient is calculated as the mean of the entire image. At
the same time, remote sensing data with a more significant
proportion of background than foreground are prone to fall into
local optimum. On the other hand, the direct fusion method
makes the network more advantageous in predicting large
objects while making it challenging to predict small objects.
Therefore, an FPN framework is proposed based on spatially
adaptive convolution to solve the low-level and high-level
features’ fusion problem. The spatially adaptive convolution

is embedded in the decoder framework of FPN step by step to
enhance the network’s perception of foreground information
so that the network performs better on remote sensing images
with the foreground–background imbalance and many small
objects.

For the segmentation of foreground objects, we can simplify
to find the boundary of foreground objects in the images. Thus,
a new boundary loss function is designed, integrating with focal
loss and dice loss to achieved more competitive performance.

Extensive experiments are performed on two challenging
large-scale aerial datasets, i.e., iSAID [13] and ISPRS Vaihin-
gen [14].

Based on the abovementioned considerations, spatial-
adaptive convolution-based content-aware network (SPANet) is
presented for aerial image semantic segmentation. In summary,
our main contributions are as follows.

1) The HASP module is established for solving the large-
scale difference problem and complex backgrounds of
remote sensing images.

2) A spatial-adaptive convolution-based FPN decoder frame-
work (SPA-FPN) is designed to solve the problem of
foreground–background imbalance and numerous small
objects.

3) A robust boundary loss is proposed to achieve the com-
petitive performance.

4) To verify the effectiveness of our method, we conduct ex-
periments on two datasets as iSAID and ISPRS Vaihingen.
Our approach yields the state-of-the-art results on both
datasets.

The rest of this article is organized as follows. Section II
briefly introduces some relevant methods. The details of the
presented method are given in Section III, and the experiments
are presented in Section IV. In the end, Section V includes the
conclusions and discussion of the results.

II. RELATED WORK

A. Image Segmentation

Traditional image semantic segmentation methods based on
machine learning mainly include two processes: first, feature
extraction of images, and then classification of image pixels.
Image features can be extracted by manually marking [15],
[16], [17], [18], but these manually made features depend on the
experience of researchers. At the same time, when classifying
pixels, only support vector machine [19] and other machine
learning algorithms are used [20], [21], [22], [23], even though
later algorithms based on probability graph model [24], [25],
[26], [27], [28] consider using the values of the pixels around
the classified pixels to improve the segmentation edge results.
However, generally speaking, the feature expression ability of
manually extracted features is limited and has limitations in
practical applications [29].

With the development of deep learning, deep learning has
achieved the highest accuracy rate in image segmentation [30],
[31], [32]. Image segmentation is mainly divided into two cate-
gories: semantic segmentation and instance segmentation. In this
article, we study the semantic segmentation method based on
deep learning. Semantic segmentation is an intensive prediction
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TABLE I
OBJECT SEMENTATION MIOU(%) ON ISAID VAL

TABLE II
ABLATION STUDIES FOR PROPOSED MODULES

TABLE III
ABLATION STUDIES FOR THREE LOSS FUNCTIONS

task that classifies every pixel in an image, which is more difficult
than image classification [33], [34]. Long et al. [7] proposed a
fully convolution network (FCN) to semantically segment im-
ages in 2015. FCN modified the architecture of the convolutional
neural network VGG16 [35]. FCN can accept images of any size
as input and generate segmentation maps of the same size. In
order to produce more accurate results, FCN uses jump connec-
tions to upsample the last layer of the feature map of the model
and fuse it with the shallow feature map to combine semantic and

spatial information. FCN uses an end-to-end approach to train
deep neural networks to semantically segment images. Because
the final result of FCN does not respond well to local features
and the localization is inaccurate [36], [37], [38], Chen et al. [39]
used the fully connected conditional random fields on the final
output to associate any two pixels on the image to produce more
refined results. FCN ignores useful scene-level context because
it does not obtain global semantic information. In order to obtain
a wider range of contextual information, Liu et al. [40] proposed
ParseNet, which enhances the features of each location by global
average pooling, so that each pixel can obtain global contextual
information. PSPNet [11] proposed a PPM. The PPM performs
multiple pooling operations on the input features at different
scales, and then upsamples all feature maps to the same size to
obtain contextual information at different scales.

At present, the mainstream semantic segmentation model is
the encoder–decoder structure, the encoder can obtain high-level
semantic information, and the decoder can recover the detailed
information of the segmentation. The encoder can use a clas-
sification network that removes fully connected layers, such
as ResNet [41] and Xception [42], and the decoder fuses the
feature maps of different stages output by the encoder to obtain
the final result. Ronneberger et al. [43] proposed UNet, which
is a fully symmetric encoder–decoder structure. Feature maps
are downsampled using pooling layers at the encoder stage, and
feature maps are downsampled at the decoder stage. The stage
is upsampled by transposed convolutions, and shallow features
are connected by skip connections. The decoder stage requires
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Fig. 3. Overall SPANet framework. The HASP module models the encoded features with multiscale information. PAC convolution is embedded in each upsampling
stage of FPN to assist high-level information to predict more refined foreground information.

Fig. 4. HASP. In this module, the output of the smaller atrous convolution and the original input are cascaded into the larger atrous convolution kernel to increase
the range of receptive field of the network. SAF means the proposed SAF module.

upsampling of high-level features, which is especially critical for
subsequent feature fusion. Badrinarayanan et al. [9] proposed
SegNet, which uses the index of the encoder stage max-pooling
to nonlinearly upsample the feature map, so that upsampling
cannot be learned separately. Since the result of upsampling is
sparse, dense feature maps can be generated through trainable
convolutional layers. After upsampling, shallow features need
to be connected to obtain finer segmentation results.

B. Remote Sensing Imagery Segmentation

Compared with natural images, remote sensing images are
rich in high-resolution spatial information, texture details and
complex scenes. Traditional remote sensing image semantic seg-
mentation methods only rely on the texture or color difference of
pixels in the image to achieve pixel classification, which leads to
the segmentation accuracy has been difficult to meet the actual
needs [44], [45], [46], [47], [48], [49].

The remote sensing image semantic segmentation method
also benefits from the development of depth learning technology.
Guo et al. [50] used the full convolution neural network with

atrous convolution for remote sensing image segmentation, and
used conditional random fields for postprocessing to smooth the
prediction results. Diakogiannis et al. [51] proposed a method
based on Unet that integrates residual connection, and then
finetuned the loss function to obtain more accurate segmentation
results. Wang et al. [52] used ResNet101 as a bone net to ex-
tract the high-level semantic features of remote sensing images.
HMANet [53] introduced the category attention mechanism to
calculate the category based correlation to recalibrate the cate-
gory information. GraFNet [54] proposed a transformer-induced
hierarchical graph network for multimodal semantic segmenta-
tion in remote sensing scenes, which promotes the exploration
of potential intra- and intermodal relations by introducing a new
modeling paradigm. GLCNet [55] proposed propose a global
style and local matching contrastive learning network for remote
sensing image semantic segmentation.

C. Dynamic Convolution

Spatial adaptive convolution is a kind of dynamic convolution.
Ordinary convolutions have many shortcomings, such as only
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Fig. 5. SAF module. The module is composed of CW module and SW module in series.

Fig. 6. PAC alerts a typical convolution on an input f by changing the spatially
invariant filter W with an adapting kernel K, established via either predetermined
or trained. ⊗ describes the elementwise multiplication of matrices followed by
a summation. Only one output channel is presented for the description.

establishing local relationships and failing to capture geomet-
ric transformations of objects. Yu et al. [56] proposed atrous
convolution, which adds an interval between each sampling
point to extent the convolutional layer’s receptive field. Peng
et al. [57] reduced the amount of computation by replacing
k × k convolution with k × 1 and 1 × k convolutions, so that
larger convolution kernels can be used to extract features without
increasing too much computation and parameters.

The abovementioned methods are all static convolution types,
that is, the parameters of any input convolution kernel will not be
transformed. Nowadays, many dynamic convolution algorithms
proposed [58], [59], [60], [61]. For example, Zhang et al. [62]
started from the module, and the convolutional layers in a module

share the same convolutional kernel aggregation attention vector
to reduce the computational amount. CondConv [61] uses the
same convolution kernel for each target point on the feature map,
while Chen et al. [58] proposed dynamic region-aware convo-
lution (DRConv). DRConv selects different convolution kernels
for each target point to extract features, which improves the
representation ability and translation invariance of convolution.

III. METHODS

Aiming at the four major challenges in remote sensing images,
we propose spatial adaptive convolution-based content-adaptive
network for aerial image semantic segmentation. On the one
hand, aiming at the characteristics of remote sensing images with
large-scale differences and complex backgrounds, the HASP is
proposed. On the other hand, aiming at the characteristics of
foreground–background imbalance and numerous small objects,
a SPA-FPN is proposed. Fig. 3 shows the overall network frame-
work. In the following, the presented approach is illustrated in
detail.

A. HASP Module

There is considerable difference in the objects’ size in remote
sensing images. For example, cars and buildings are not of
the same order of magnitude in size of the objects. However,
it is crucial to make the network accurately perceive small
objects and fully perceive large objects. Extending the network’s
receptive field range as much as possible is a friendly solution
to deal with object interpretation under complex backgrounds.
Inspired by the multiscale modules ASPP and PPM in natural
scenes, the HASP module is proposed.

As shown in Fig. 4, for the featureFin obtained by the encoder,
1 × 1 convolution is first utilized for decreasing the dimension
(the channel number is a multiple of 4). The features after
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Fig. 7. Comparison of segmentation results between SPANet (ResNet-50) and baseline on the iSAID validation set.

dimensionality reduction are divided into four groups according
to the channel dimension. Then, 1× 1 convolution is adpoted for
the separated features, and 3 × 3 atrous convolutions with rates
of 6, 12, and 18 are used. Different from the ASPP module, the
output of the 3 × 3 atrous convolution at the upper level (such as
rate = 6) is cascaded with the original input, and then fused with
the SAF module, and then input to the atrous convolution at the
next level (such as rate = 12) for operation. Since the feature
output of atrous convolution with a small rate is cascaded to the
input of convolution with a large rate, the output feature map
of convolution with a large atrous rate has richer receptive field
range so that can solve the problem of large size difference of
objects and complex backgrounds.

The SAF module is designed to perform feature fusion at
different scales, and its structure is shown in Fig. 5. Specifically,
two feature maps Ua and Ub are obtained from the features Fa

and Fb of two different receptive fields by CW module, and the
channel attention weight map are generated as follows:

Ua = M ⊗ Fa

Ub = N ⊗ Fb (1)

where, ⊗ stands for the elementwise product. M and N repre-
sent the characteristic coefficients, and the specific calculation
process is as the following:

M =
eQz

eQz + ePz
, N =

ePz

eQz + ePz
(2)

where, Q,P ∈ RC×C denote the learnable transformation ma-
trices, z represents an input feature, and the specific calculation
process is as the following:

z = FC (GAP (Fa + Fb)) (3)

where, FC stands for full connection layer.
Next, Ua and Ub enter the SW module. Specially, we pass via

some convolutions and obtain two feature maps A,B ∈ RH×W

of the different receptive fields. Then spatial attention weight
maps α, β ∈ RH×W are generated as the following:

αi =
eAi

eAi + eBi
, βi =

eBi

eAi + eBi
, i = [1, 2, 3. . ., H ×W ].

(4)
In the end, the Ffusion is attained as the following:

Ffusion = α⊗ Ua + β ⊗ Ub (5)
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Fig. 8. Qualitative analysis of SPANet (ResNet101) and baseline (ResNet-101+FPN) on Vaihingen test set.

Fig. 9. Comparison of performance improvement at different objects.

where, ⊗ denotes the elementwise product operations, which
acts between spatial weight maps and feature maps of different
receptive fields for obtaining the fused feature map Ffusion.

B. Spatial-Adaptive Convolution-Based FPN Decoder
Framework

The existing networks utilize FPN framework is used to up-
sample the encoded features, and features from the encoder are
channeled into the decoder to directly fuse to help the network
predict more accurate results. However, this method still cannot
show good performance for remote sensing images with ex-
treme foreground–background imbalance and numerous small
objects. This is because vanilla convolution is used to maintain
the matching of dimensions in a direct fusion way, whereas
ordinary convolution is spatially shared. As a result, the gradient
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is calculated as the mean of the whole image, while remote
sensing data with a much larger proportion of background than
the foreground is prone to fall into local optimum and tend to
predict large objects.

Inspired by spatial adaptive convolution, a hierarchical FPN
structure based on pixel-adaptive convolution (PAC) [63] is
proposed to solve this problem. PAC is a popular spatial adaptive
convolution. As shown in Fig. 3, the low-level feature map in
the encoder is adopted to guide the high-level feature map in
the decoder step by step. The low-level features in the encoder
contain richer foreground information andPACT convolution is
a foreground-aware enhanced operator. PACT is the deconvo-
lution of PAC. For clarity, this article first introduces PAC. PAC
convolution is a content-adaptive operator, which can be network
parameters that pay more attention to foreground information
and small objects. This helps the decoder to recover more refined
foreground segmentation results.

In order to clearly describe PAC convolution, we first
introduce vanilla convolution. The convolution kernel W ∈
Rc′×c×r×r acting on image f = (f1, . . ., fn), fi ∈ Rc over n
pixels and c channels is denoted as

fi
′ =

∑
j∈Ω(i)

W [pi − pj ]fj + b (6)

where, pi = (xi, yi)
T represents the pixel coordinates, Ω(·) de-

scribes an r × r window, and b ∈ Rc′ describes biases. [pi − pj ]
lists the relative positions of pixels in window r × r. The men-
tioned convolution operation gives a c-channel output, fi

′ ∈ Rc′ ,
at every pixel i. Equation (6) expresses that the weight of the
vanilla convolution kernel is spatially shared, that is, image
agnostic. Such convolution is performance constrained, so we
want to use a content-adaptive convolution kernel.

Further, as shown in Fig. 6, the description of the PAC convo-
lution we used is as follows. We choose to modify the spatially
invariant convolution in (6) with a spatially varying kernel that
depends on pixel features g

fi
′ =

∑
j∈Ω(i)

K(gi, gj)W [pi − pj ]fj + b (7)

where, K ∈ Rc′×c×r×r is a kernel function that has a fixed
parametric form. We followed PAC convolution for the value
of K

K(gi, gj) = exp

(
−1

2
(gi − gj)

T (gi − gj)

)
(8)

where, g is an adaptive feature, and in this article is a low-level
feature that provides detailed information. Similar to the trans-
pose convolution corresponding to vanilla convolution, PACT

can be obtained in the same way.
PAC convolution is a content-aware spatial convolution,

which can acutely capture the rich foreground information in the
encoder to help the decoder recover more accurate segmentation
results. The hierarchical progressive FPN framework proposed
by PACT convolution can recover more accurate foreground
information step by step. Furthermore, enhanced capture of
foreground information also leads to enhanced perception of
small objects in the foreground.

C. Loss Function

We optimize our objective from three perspectives:
distribution-based, region-based, and boundary-based, and com-
bine them, as shown in the following:

L = Lfc + Ldice + Lb. (9)

1) Distribution-Based Perspective: In the distribution per-
spective we use focal loss, it deals with extreme foreground–
background category imbalance and reduces the loss of samples
allocated to simple classification. The definition of focal loss is
described as

Lfc(y, p) = − 1

N

N∑
i=1

C∑
c=1

yi,c · α · (1− pi)
γ · log(pi,c) (10)

where, y describes the ground truth and p describes the predicted
value of the network in every pixel. α represents the normaliza-
tion factor which is set to 0.25, and γ is chosen as 2.

2) Region-Based Perspective: From the region-based per-
spective, we use dice loss. As shown in (11), the dice efficient is
a set similarity measure,calculate the similarity of two samples
in the range [0,1]

Dice efficient =
2 |X⋂

Y |
|X|+ |Y | (11)

where, |X⋂
Y | is the intersection computes between X and Y ,

|X| and |Y | represents the number of elements of X and Y . The
dice loss is shown as

Ldice = 1− 2 |X⋂
Y |

|X|+ |Y | . (12)

The dice loss is to control the gradient of the loss function to
make the model pay more attention to samples with larger loss
values.

3) Boundary-Based Perspective: We propose a robust
boundary loss, where the boundary of the label is extracted from
the edge by the gradient convolution kernel (GCK) [64]. GCK
is a learnable boundary detection operator evolved from Sobel
operator, and the cross entropy is calculated separately for the
edge part to strengthen the information of the boundary

Lb = − 1

N

N∑
i=1

c∑
c=1

GCK(yi,c) · log (pi,c) . (13)

IV. EXPERIMENTS

A. Datasets and Assessment Metrics

1) iSAID: contains 15 types of foreground objects with spa-
tial resolutions ranging from ∼ 800× 800 to ∼ 4000×
13000. We followed [79], with 1411 images as the training
set and 458 images as the evaluating. Note that annotations
for 937 images in test sets are not available. The mean F1

score, the mean of categorywise intersection over union
(mIoU) and overall accuracy (OA) of foreground classes
are used for evaluation.

2) Vaihingen: contains six types of objects whose average
spatial resolution is 2494× 2064. We followed [64], [79],
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TABLE IV
ABLATION STUDIES FOR EVERY BLOCK OF HASP

TABLE V
ABLATION STUDIES FOR SPA-FPN IN EVERY STAGE

with 16 images as the training set and 17 images as the test
set. The F1 score, OA and mIoU are used for evaluation.

B. Implementation Detail

ResNet-50/101+FPN is baseline due to its excellent perfor-
mance. And ResNet-50/100 is our backbone. The samples are
cropped with a fixed size of 896× 896 for iSAID and 512× 512
for Vaihingen. SGD optimizer with batch size = 8 is employed
over four GPUs. We set the momentum and weight decay to
0.9 and 0.0001, respectively. The initial learning rate is 0.007
for iSAID and 0.01 for Vaihingen. We employ the poly learning
rate policy (lr = base_lr ∗ (1− iter

max _iter )
power), where power

= 0.9. Each experiment is performed on 4× NVIDIA 20180Ti
GPU for 80 k iterations. Horizontal and vertical flip, rotation
of 90 · k(k = 1, 2, 3) degree are utilized within the learning
to perform training data augmentation. It is worth noting that
we performed the He normal initialization [80] for the HASP
module.

C. Experiments on iSAID

1) Comparison to Traditional Methods: To assess the
SPANet, various experiments are accomplished on the iSAID
dataset. SPANet was compared with numerous deep learning
approaches from typical to state-of-the-art, most of which em-
ployed the ResNet-50 as the backbone. SETR [71] and Swin-
B [73] utilize transformer [81] as backbone, a more common
research area. The quantitative results presented in Table I
indicated the superiority of the SPANet to other approach in
remote sensing scenario. FarSeg [78] utilized foreground-aware
approach to gain better performance. As a contrast, the proposed
method achieved 65.9% mIOU, which is a more excellent result.
Some examples of the segmentation results of the iSAID dataset
is presented in the Fig. 7.

In order to further verify the performance of the pro-
posed HASP and SPA-FPN, we conducted baseline+HASP and
baseline+SPA-FPN experiments, respectively.

For the challenge (1) multi-scale problem and (2) complex
background problem of remote sensing image, we conducted
baseline+HASP experiment. Experiments show that both large-
scale baseball diamond (BD) and small-scale small vehicle (SV)
have obvious improvement. Furthermore, for plane (PL), which
is often accompanied by a complex background, the HASP
module is also significantly improves this problem, thus proving
the superiority of our approach.

Moreover, experimental results show that the baseline+SPA-
FPN can significantly improve the performance of 15 types
of foreground objects in iSAID dataset with unbalanced
foreground–background. On the other hand, for various small
objects, such as SV, the improvement of SPA-FPN can reach
4.4%. This proves the effectiveness of our proposed SPA-FPN
module for these challenges (3) and (4) in remote sensing
images.

2) Ablation Study for Presented Method: Ablation exper-
iments are accomplished to verify the influence of various
elements of the presented approach, involving the HASP and
SPA-FPN. The ResNet-50+FPN is the baseline. We embed the
PAC on each upsampling stage of the FPN and append the HASP
at the end of baseline’s encoder.

As presented in Table II, the baseline attains 59.4% mIoU.
Besides, incorporating the HASP into FPN provides a 2.2%
mIoU enhancement. A mIoU of 63.3% is attained using the
SPA-FPN. Moreover, the baseline is improved by a large margin
by integrating HASP and FPN-PAC into the network, achieving
64.1% mIoU. The experimental results show that HASP and
SPA-FPN provide significant improvement in the imbalance
scenario and numerous small objects.

3) Ablation Study for Loss Functions: In order to make a
clear contrast, the common cross entropy of the other ablation
experiments is utilized to further verify the proposed losses. The
significance of various types of losses is verified and the results
are given in Table III. It can be concluded that the focal loss based
on distribution considerably enhanced the foreground’s seg-
mentation accuracy. Both focal loss and dice loss significantly
improved the segmentation accuracy. Finally, it resulted in the
most excellent result of 65.9% mIoU via the proposed three loss
functions. The proposed boundary-based loss improved mIOU
by 0.6%.

4) Ablation Study for HASP: In order to assess the perfor-
mance gain that can be attained via the presented HASP, they
are not incorporated into the network and the accuracy of the
baseline (ResNet-50+FPN) is evaluated. We find that its mIOU is
59.4%. Directly utilizing the baseline networks cannot fulfill the
precision requirements. After attaining the mentioned accuracy,
all the presented blocks are introduced into the network and the
accuracy is evaluated. The detailed performance gain attained
by each block is presented in Table IV. In particular, we first
add the CW into the baseline. It can be found that the mIOU
scores increase suddenly from 59.4% to 61.2%, demonstrating
the importance of the CW. In order to determine the performance
gain that can be attained by the SW, this module is added to the
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TABLE VI
COMPARISONS WITH THE STATE-OF-THE-ART ON VAIHINGEN TEST SET

TABLE VII
QUANTITATIVE COMPARISON OF PERFORMANCE OF PARAMETERS SIZE AND

FPS (MEASURED ON INPUT IMAGE SIZE OF 3×896×896) ON ISAID VAL

baseline, and the performance variation is measured. With the
SW, the mIOU scores increase sharply from 59.4% to 61.1%,
indicating the importance of the SW. Furthermore, CW and SW
modules are integrated into HASP, which can further increase
the mIOU to 61.6%.

We further compare the performance with some well-
verified context aggregation methods, including ASPP [70] and
PPM [11]. For a fair comparison, all modules are only plugged
into the FPN architecture’s top lateral branch. The details of the
results are presented in Table IV. Although both “+ASPP” and
“+PPM” attain superior performance, there is still an accuracy
gap compared to our method.

5) Ablation Study for SPA-FPN: As discussed previously,
aerial remote sensing images have the problem of extreme
foreground–background imbalance. The current section con-
structs an ablation test to evaluate the mentioned point. In
particular, we concentrate on the foreground objects’ mIOU
variation. Intuitively, the feature maps from low-level stages
have a more significant resolution and can be employed for
extracting detailed information.

Thus, we first embed PACT convolution from the high stage
(i.e., stage 3), and employ the encoder features to guide the
upsampling of the features in the highest stage (i.e., stage 4) in
the decoder. Subsequently, we embed PACT convolution in stage

2 and stage 1 in series. The results are presented in Table V. The
foreground’s mIOU scores increase more significantly in the low
stage. This is due to more detailed information on the low-level
features.

D. Computational Complexity

The results in Table VII provide comparative analysis of
the computational complexity of the proposed SPANet, and
six representative reference methods: PSPNet [11], DeepLab
v3+ [70], CCNet [66], Nonlocal [69], OCR [75], and Semantic
FPN [76]. The following attributes are reported: the number
of parameters, and FPS for inferencing speed (measured on
input image size of 3×896×896). All experiments are conducted
on a computer equipped with an Intel Xeon 2.10-GHz CPU,
16-GB RAM, and an RTX 2080TI GPU. Compared to classic
PSPNet and DeepLab v3+, our model has less parameters and
faster inferencing speed. In terms of the number of parameters
and the speed of computation, our method still needs further
optimization, which is the focus of our future work.

E. Experiments on Vaihingen

In order to assess the efficiency of the SPANet, experiments
are performed on the Vaihingen. As presented in Table VI, the
presented SPANet indicated the optimum performance, exceed-
ing the baseline by 1.9% in the average F1. Fig. 8 presents
various results on the Vaihingen dataset. Furthermore, as shown
in Fig. 9, the effectiveness of our approach is also demonstrated
by the fact that the gains compared to baseline are more signif-
icant on small object cars and low vegetation with a complex
background.

V. CONCLUSION

In this article, we focus on the problems of complex back-
grounds, large scale differences, numerous small objects, and
extreme foreground–background imbalance in remote sensing
images. Therefore, we propose SPANet, an enhanced semantic
segmentation network that contains two important components:
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the HASP and SPA-FPN. The HASP can deal with the problem
of large differences and complex backgrounds by cascaded
atrous convolution kernels with various rates. SPA-FPN im-
proves the network’s perception of numerous small objects
and extremely foreground–background imbalance scenes by
embedding spatially adaptive convolution kernels in the decoder
step by step. Furthermore, to achieve better result, SPANet
use three types of loss for optimization. The proposed SPANet
achieves better performance than several prevalent methods on
two challenging datasets: iSAID and Vaihingen. In the feature,
we will concentrate on decreasing the number of parameters and
promoting the network’s inference rate.
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