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Small Maritime Target Detection Using Gradient
Vector Field Characterization of Infrared Image

Ping Yang , Lili Dong , Member, IEEE, and Wenhai Xu

Abstract—Infrared small maritime target detection under strong
ocean waves, a challenging task, plays a key role in maritime
distress target search and rescue applications. Many methods based
on directionality or gradient properties have proven to perform
well for infrared images with heterogeneous scenarios. However,
they tend to perform poorly when facing strong ocean wave back-
ground, mainly due to the following: 1) infrared images have low
signal-to-clutter ratio with low intensity for small targets; 2) some
waves have high local contrast that may be similar to or higher
than targets. To solve these issues, a new method based on gra-
dient vector field characterization (GVFC) of infrared images is
proposed. First, we construct the gradient vector field and coarsely
extract suspected targets. Then, gradient vector distribution mea-
sure (GVDM) is presented, which comprehensively integrates a
synergistic homogeneity test based on Kolmogorov–Smirnov test
with absolute difference standard deviation for gradient direction
angle and regression analysis for gradient modulus. The proposed
GVDM takes advantage of pixel-level gradient distribution prop-
erty to further filtrate refined suspected targets. Moreover, gradi-
ent modulus horizontal local dissimilarity is proposed to measure
the diversity of gradient modulus in horizontal direction between
targets and waves, so as to enhance target saliency and suppress
residual clutter simultaneously, which achieves preferable perfor-
mance. Finally, a simple adaptive threshold is applied to confirm
targets. Extensive experiments implemented on infrared maritime
images with strong ocean waves demonstrate that the proposed
method is superior to the state-of-the-art methods with respect to
robustness and detection accuracy.

Index Terms—Gradient vector, infrared maritime image, small
target detection, vertical local dissimilarity.

NOMENCLATURE

GVFC Gradient vector field characterization.
GVDM Gradient vector distribution measure.
GMHLD Gradient modulus horizontal local dissimilarity.
GVF Gradient vector field.−→
GV Gradient vector.
GM Gradient modulus map.
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BGM Binary GM.
STs Suspected targets.
NB Neighboring background.
TNR Target neighboring region.
SHT Synergistic homogeneity test.
K-S Kolmogorov–Smirnov.
ADSD Absolute difference standard deviation.
CDF Cumulative distribution function.
LRC Linear regression classification.
RST Refined ST.
SCR Signal-to-clutter ratio.
SCRG Signal-to-clutter ratio gain.
LCG Local contrast gain.
BSF Background suppression factor.
ROC Receiver operating characteristic.
AUC Area under the curve.

I. INTRODUCTION

D ETECTING infrared maritime targets robustly is a key
technology in sea surface distress target searching and

rescue systems and will directly affect the effectiveness of
subsequent target location and tracking [1], [2], [3]. Infrared
images tend to have low SCR because of long imaging distance,
and infrared small maritime targets’ contours and shapes are not
concrete and texture features are scarce [4]; moreover, due to the
complex and variable marine weather conditions, humid and hot
environment, sunlight, sea fog, and ocean waves have significant
effects on imaging quality [5], which limits the infrared small
maritime target detection performance; strong ocean waves typ-
ically present high radiation intensity in infrared image, which
may be similar to real targets and easily submerge targets.
Therefore, it remains a challenging task to develop effective
infrared small maritime target detection algorithms with high
performance and satisfactory accuracy.

Generally, existing infrared target detection methods can be
roughly classified into two broad categories based on the number
of image frames used: 1) sequential frames detection and 2)
single-frame detection. Sequential frames detection methods,
also known as track before detection methods, usually employ
spatiotemporal information of multiframe images to identify tar-
gets, such as spatio-temporal tensor model [6], spatial–temporal
local difference measure [7], multiple subspace learning and
spatial–temporal infrared patch-tensor (MSLSTIPT) [8], novel
spatiotemporal saliency method [9]. However, the processing
procedures of sequential frames-based methods are complicated
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and need more prior information; besides, their performance also
relies on the information of single-frame processing. Therefore,
developing a high-accuracy infrared target detection method
based on a single frame image will be crucial. Single-frame de-
tection methods, also termed as detection before track methods,
have attracted much attention because of their easy implemen-
tation and the robust and high performance for detecting small
targets in infrared images with complex and fickle background.

A. Related Work

In recent years, many researchers have dedicated to devel-
oping single-frame-based infrared target detection methods that
generally contain the following four categories:

1) background-estimation-based method;
2) low-rank and sparsity-analysis-based method;
3) deep-learning-based method;
4) human visual system (HVS)-based method.
The conventional background-estimation-based methods de-

sign filters to predict background information followed by differ-
ence operation between raw image and estimated background.
Top-hat transformation, a typical filter, utilizes mathematical
morphology operations to capture difference information be-
tween the target and surrounding background and achieve target
enhancement [10], [11]. Max-mean and max-median filters are
also useful for acquiring background information, which con-
duces to infrared small target detection [12]. Soni et al. [13]
employed two-dimensional least-mean-square adaptive filter to
predict correlated background clutter, which was subtracted
from original signal, then small targets were preserved in the
residual component. However, these methods cannot eliminate
the interference of complex background, such as random noise,
heavy ocean waves, and strong cloudy clutter.

Recently, the low-rank and sparsity-analysis-based methods
have come into much notice, and they mainly include two
types: 1) low-rank matrix recovery theory and 2) tensor model.
The former usually decomposes infrared image into sparse and
low-rank components using the nonlocal self-correlation prop-
erty of background and sparsity of targets for infrared target
detection. Gao et al. [14] first introduced infrared patch-image
(IPI) model that transformed target detection into the recovery of
low-rank and sparse matrices. Then, low-rank matrix recovery
theory has been gradually used in the infrared target detection
field. He et al. [15] proposed low-rank and sparse representation
model that combined sparse representation and basis of low-rank
decomposition to segment target from noise and background.
Wang et al. [16] added total variation regularization into the
low-rank background recovery that was handled by principal
component pursuit, which performs better in unsmooth and
uneven background. However, they are time consuming and not
suitable for practical applications. The latter, tensor model, ex-
tends patch-image into high-dimension matrixes, which is more
effective for highly different scenes. Dai et al. [17] proposed
reweighted infrared patch-tensor model and creatively handled
with target-background separation problem as the optimization
of sparse and low-rank tensors recovery. Subsequently, varied
infrared patch-tensor (IPT)-based methods have been proposed,

such as the partial sum of the tensor nuclear norm (PSTNN) [18]
and improved IPT model based on nonconvex tensor fibered
rank approximation [19]. To dig out more spatial and structural
information, Zhao et al. [20] presented three-order tensor cre-
ation and Tucker decomposition. However, these methods usu-
ally have high computational complexity.

With the rapid and wide development of deep learning, it
has been applied to the field of infrared target detection. Deep-
learning-based methods excavate image properties by training
the model on large samples, then detect infrared targets using
the trained deep learning model. Generally, the deep convolu-
tional neural network (CNN) is the commonly used network
and beneficial to learning the hierarchical features of infrared
images, such as lightweight CNN (L-CNN) and multisource
feature cascade decision method [23], target-oriented shallow-
deep features and effective small-anchor-based CNN detection
method [25], and the salient target detection for infrared and
visible image fusion (STDFusionNet) [24]. Generative adversar-
ial network (GAN), another predominant deep learning model,
builds an adversarial game between source images and gener-
ative images to learn the desired probability distribution. Zhao
et al. [21] proposed infrared small target detection with GAN
(IRSTD-GAN), which considers infrared target detection as the
problem of image-to-image translation. Besides, Dai et al. [22]
proposed a novel model-driven deep network named attention
local contrast network (ALCNet), which implants traditional
local contrast into the deep network. However, the performance
of deep learning models rely on the training samples, which
limits their application for complicated and volatile scenes.

HVS-based methods have caught attention and made great
progresses for infrared small target detection in recent years.
The predominant HVS-based methods can be subsumed un-
der two broad categories, i.e., local contrast-based methods
and directionality/gradient-based methods. Local contrast-based
methods assume that there is great difference or discontinu-
ity in radiation intensity between the target and neighborhood
background on the infrared image. Inspired by biological vi-
sion mechanism, Chen et al. [26] first proposed local contrast
measure (LCM) to achieve target enhancement and background
suppression simultaneously. Then many researchers have pro-
posed its variation, such as improved LCM (ILCM) [27], novel
LCM (NLCM) [28], relative LCM (RLCM) [29], homogeneity-
weighted LCM (HWLCM) [30], etc. However, these methods
are sensitive to strong clutter and edges with high bright-
ness. Directionality/gradient-based methods construct the final
saliency map by measuring the gradient, directional derivative,
or intensity difference between target and neighboring back-
ground (NB) in different directions. Liu et al. [31] transformed
infrared image to infrared gradient vector field (GVF), and
proposed multiscale flux density and gradient direction diversity
to separate small targets from complex background clutter. Lu
et al. [32] analyzed gradient properities using multidirectional
derivative subbands. Besides, multiscale-patch-based contrast
measure (MPCM) [33], absolute directional mean difference
(ADMD) [34], local hypergraph dissimilarity measure [35],
and multiscale trilayer LCM (TLLCM) [36] were proposed to
estimate directional dissimilarity information of small target
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neighborhood. These methods can preferably suppress strong
edges. Moreover, some researchers integrated both local contrast
and directionality/gradient properties, such as local intensity
and gradient (LIG) [37] and fast adaptive masking and scaling
with iterative segmentation (FAMSIS) [38], which takes more
comprehensive information into account and deserves further
research.

B. Motivation

Under marine environment, infrared images have low SCR
and targets are small with low intensity because of the long
imaging distance. Furthermore, for infrared maritime images
with strong ocean waves, there are some waves with high local
contrast; particularly, intensity of some strong ocean waves may
be similar to or higher than that of small targets. Therefore,
local contrast-based methods suffer from strong wave residuals,
which causes high false alarm. From our observation, the target
represents isotropic Gaussian characteristic in the neighbor-
hood [37], [39], that is, the dissimilarity between the target and
NB is similar in all directions. In contrast, the dissimilarity be-
tween ocean wave and corresponding neighborhood is different
in horizontal and vertical directions [40].

In infrared maritime images with strong ocean waves, waves
are serious interference that may be likely to cause severe false
alarm detection. To date, researchers have observed the practica-
bility of directionality or gradient property for infrared small tar-
get detection [41], [42], [43], [44], [45]. However, many infrared
small target detection methods did not perform effectively on
strong ocean wave suppression. Our crucial observation is that
multidirectional dissimilarity is insufficient to separate infrared
small targets from complicated background with strong ocean
waves. In fact, infrared small targets and waves also differ in their
gradient vector distribution. Based on this observation, utilizing
both gradient vector distribution and directional dissimilarity
simultaneously and appropriately will be helpful for improving
the infrared small target detection performance under strong
ocean wave background.

Therefore, we propose a novel framework, gradient vector
field characterization (GVFC), for single-frame small target
detection under strong ocean waves. The contributions of this
article are mainly composed of the following three folds.

1) A GVFC framework is developed for infrared small mar-
itime target detection under strong ocean waves by an-
alyzing gradient vector feature, which employs multiple
morphological attributes, i.e., distribution of pixel-level
gradient direction angle and modulus, and gradient mod-
ulus local dissimilarity.

2) To improve the efficiency and effectiveness, we first intro-
duce a synergistic homogeneity test (SHT) based on K-S
test with ADSD to describe gradient direction angle distri-
bution; besides, regression analysis of gradient modulus
is considered to handle ocean wave clutter comprehen-
sively. The proposed gradient vector distribution measure
(GVDM) strictly achieves filtration of refined suspected
targets (STs).

3) The gradient modulus horizontal local dissimilarity
(GMHLD) based on horizontal direction information,

which utilizes local directional dissimilarity property of
gradient modulus, is promoted to drastically enhance tar-
get saliency and suppress residual wave clutter.

Our proposed GVFC method is implemented on various
infrared maritime image datasets under adverse strong ocean
waves. Experiments demonstrate that the proposed method
achieves preferable and satisfactory detection performance with
high accuracy, which outperforms the state-of-the-art methods.

The remainder of this article is structured as follows. In Sec-
tion II, the theoretical basis of the proposed method is introduced
in detail. Section III describes the experimental setup; besides,
we analyze the key parameters of the proposed method and
discuss result comparisons with baseline methods. Finally, we
conclude this article in Section IV.

II. PROPOSED METHOD

The framework diagram of the proposed GVFC method is
shown in Fig. 1. First, we construct GVF that contains gradient
modulus and gradient direction. Then, we present GVDM that
contains homogeneity analysis of gradient direction angle dis-
tribution and regression analysis of gradient modulus to achieve
STs extraction. Due to the gradient modulus diversity of targets
and waves in the horizontal direction, GMHLD is introduced
to measure the saliency of STs, so as to enhance target and
suppress residual ocean wave clutter. Finally, real targets can be
segmented from background clutter using the adaptive threshold.

A. GVF Construction

For infrared maritime images with small targets captured
under strong edge sea clutter conditions, the intensity of some
clutter is similar to that of targets, which causes the difficulty for
small infrared maritime target detection. However, the gradient
of targets, background, and waves are distinct, which is bene-
ficial to identifying real targets [40]. Considering that the raw
infrared image can be regarded as a two-dimensional function
I(x, y), its GVF is a bivector that consists of partial derivatives
in x and y directions and can be expressed as follows:

GVF = ∇I(x, y) =

[
∂I
∂x

∂I
∂y

]
(1)

where x and y directions correspond to horizontal and vertical
directions, respectively. Thus, GVF can be calculated as follows:

GVF =

⎡
⎢⎣

I(x+ 1, y)− I(x− 1, y)

2
I(x, y + 1)− I(x, y − 1)

2

⎤
⎥⎦ . (2)

Take the real infrared image shown in Fig. 2 as an example,
we utilize (2) to calculate the corresponding GVF for the target
and wave labeled in raw image. In Fig. 2(b1) and (b2), the
length and direction of ever arrow indicate the modulus and
direction of the gradient vector (

−→
GV), respectively. Thus, to

further intuitively illustrate the difference in GVF between target
and wave, we decompose the gradient vector of every pixel into
two components, namely direction angle and gradient modulus.
And the decomposition process is shown in Fig. 3, which can
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Fig. 1. Framework of the proposed method.

Fig. 2. Gradient characteristics for different types of regions. (a) Raw image. (b1) and (b2) GVF of target and wave, respectively. (c1) and (c2) Direction angle
of target and wave, respectively. (d1) and (d2) Gradient modulus in two directions (horizontal and vertical) of target and wave, respectively. (e) Gradient modulus
difference in horizontal and vertical directions.

Fig. 3. Decomposition for gradient vector.
−→
GV represents a gradient vector. θ

is the direction angle of the
−→
GV.

−→
GVhor and

−→
GVver denote subgradient vector

of the
−→
GV in horizontal and vertical directions, respectively.

also be expressed as follows:⎧⎪⎨
⎪⎩
|−→GV| =

√
|−→GVhor|2 + |−→GVver|2

θ = tan−1

−→
GVver−→
GVhor

(3)

where θ is the angle between
−→
GV and the clockwise direction of

the x-axis, so θ ranges from 0◦ to 360◦.
−→
GVhor and

−→
GVver can

be calculated by (2). Form Fig. 2(c1) and (c2), we can see that
direction angles of target are evenly distributed in all directions,

however, direction angles of wave mainly concentrate on the
vertical direction (i.e., 90◦ and 270◦). Furthermore, it can be
seen from Fig. 2(d1) and (d2) that gradient moduli of target
pixels in horizontal and vertical directions are approximate, but
there are significant diversities of module values for wave in
two directions, which can also be seen from Fig. 2(e). Module
value differences of wave in two directions are generally greater
than that of target. Moreover, horizontal gradient modulus of
wave is obviously small. Given the diverse gradient vector
characteristics between target and wave, we present GVDM and
GMHLD to achieve real target enhancement and background
clutter suppression.

B. ST and Neighborhood Estimation

To improve the computing efficiency of the target detection
algorithm, we first extract STs coarsely and adaptively estimate
corresponding neighborhoods for subsequent processing. Ini-
tially, we normalize the gradient modulus of the infrared image
to obtain the gradient modulus map (GM) as follows:

GM = norm
(
|−→GV|

)
(4)

where norm(·) is the normalization operator. Then, a simple
adaptive threshold is used to binarize GM and extract STs as
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Fig. 4. Illustration of matching process and relationship between ST, NB, and
TNR.

follows:

Tb = mean(GM) + k · std(GM) (5)

where mean(·) and std(·) denote the mean and standard devi-
ation of GM. k is a constant and set to 3 empirically, which is
discussed in Section III-B. The binary GM is denoted as BGM.

After the aforementioned process, we employ (6) to capture
the target neighboring region (TNR) and corresponding NB for
ST{

TNR = ST ⊕Dr = {(x, y)|[ST ∩ (Dr)x,y] �= ∅}
NB = TNR − ST = {(x, y)|(x, y) ∈ TNR, (x, y) /∈ ST}

(6)
where ⊕ is dilation operator, Dr is a disk-shaped morphological
structure element, and its radius is r pixels. r is a positive integer
and set to 4 empirically in this article, see more discussion in
Section III-B.

Then, STs in BGM are utilized to guide corresponding GM.
To be more specific, we traverse STs in BGM from top to
bottom and left to right, and match positions and shapes of STs
and corresponding NBs to GM. To make it more intuitive, the
matching and neighborhood acquisition process is illustrated
in Fig. 4. Thereinto, the small yellow squares correspond to
pixels of the ST, small green squares represent pixels of the
corresponding NB, and they collectively constitute TNR. After
that, we employ the information of STs with NBs and TNRs
in GM to measure gradient vector distribution and calculate
horizontal local dissimilarity.

C. Gradient Vector Distribution Measure

Gradient vector consists of direction angle and gradient mod-
ulus, and they represent the high-frequency characteristics of
images synergistically. According to the description for gradient
vector in Section II-A, we comprehensively analyze the direction
angle and modulus of the gradient in detail to further filtrate STs
strictly.

1) Direction Angle Analysis: According to the gradient vec-
tor direction angle characteristics of target and heavy wave
analyzed in Section II-A, direction angle distribution of target
is homogeneity and ranging from 0◦ to 360◦ while direction
angles of heavy wave diverge in two ranges. Therefore, an
SHT based on Kolmogorov–Smirnov (K-S) test and absolute
difference standard deviation (ADSD) is proposed to analyze
direction angle distribution in TNR of each ST.

K-S test is a test of goodness-of-fit based on cumulative
distribution function (CDF) and usually used to test whether a

observed sample obeys the hypothetical theoretical distribution
function [46]. For an ST, assume that there are N pixels in
corresponding TNR, and the theoretical sample is expressed
by At = {360 ∗ i/N, i = 1, 2, . . ., N}. We represent observed
sample in ascending sort as Ao. Then, the CDF of theoretical
sample and observed sample can be denoted asFt(x) andFo(x),
respectively

Ft(x) =
#
{
Ai

t � x, i = 1, 2, . . ., N
}

N
(7)

Fo(x) =
#
{
Ai

o � x, i = 1, 2, . . ., N
}

N
(8)

where #{·} represents the number of individuals that satisfy
corresponding criteria in the sample, and x ∈ {At, Ao}. Thus,
K-S statistic is the maximal absolute deviation between Ft(x)
and Fo(x) as follows:

DKS = max (|Ft(x)− Fo(x)|) . (9)

The critical value can be calculated by

Dcrit,α =

√
− 1

2.6
ln

α

2
·
√

1

N
(10)

where α is the significance level and related to the confidence
coefficient, which can be represented as 1-α. In this article, at a
given confidence coefficient of 95% (i.e., 1-α = 0.95). Then, α
= 0.05, and we can get the corresponding critical value Dcrit,0.05

by (10). According to K-S test theory, if DKS < Dcrit,0.05, then
Ao obeys distribution of At. That is, direction angle distribution
of the ST is homogeneity.

ADSD is also introduced to improve the robustness of the
SHT. ADSD is used to measure the degree of dispersion for the
absolute difference between Ao andAt, which can be calculated
by the following formulas:

ADi =
∣∣Ai

o −Ai
t

∣∣ , i = 1, 2, . . ., N (11)

ADSD =

√
1

N − 1

∑N

i=1

(
ADi − AD

)2
. (12)

Obviously, the smaller the value of ADSD, the more homoge-
neous the direction angle distribution. In this article, if ADSD
�16, direction angle distribution of the ST is homogeneity
empirically.

Therefore, DKS is combined with ADSD to make the SHT.
When DKS < Dcrit,0.05 or ADSD �16 is satisfied, the corre-
sponding ST is more likely to be a target. The specific decision
rule can be described as

SHTST =

{
1, if DKS < Dcrit,0.05 ∨ ADSD � 16
0, otherwise.

(13)

2) Gradient Modulus Analysis: Linear regression classifi-
cation (LRC) model can effectively deal with the recognition
problem, such as face recognition [47]. Fig. 5 shows the scatter
diagrams of the gradient modulus distribution for representative
targets and waves. By observing the changing trend of gradient
modulus, we find that it conforms to the exponential change
law, which demonstrates that there is a log-linear relationship
between the gradient moduli and pixels. Thus, we introduce
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Fig. 5. Examples of gradient modulus distribution for pixels in corresponding
TNR. (a)–(c) Modulus distribution of targets. (d)–(f) Modulus distribution of
waves.

log-linear regression to infrared small target detection, assuming
that the regression function of gradient modulus admits the
following formula:

lnyT = β0 + β1x
T (14)

where x = {1, 2, . . ., N} is the pixel sequence and N is pixel
number in TNR. y = {y1, y2, . . ., yN} represents the gradi-
ent modulus sequence arranged in ascending order. β0 and
β1 are coefficients that can be estimated using the least-
squares estimation method [48], [49], [50]. Then, (14) can be
expressed as ŷ = A ·Bx, where A = eβ0 and B = eβ1 . We
now calculate distance between original and predicted gradient
modulus

d(β0, β1) = ‖yT −A ·BxT ‖2. (15)

Then, the optimal estimation of β0 and β1 can be effectively
handled by minimizing d(β0, β1), i.e,

arg min
β0,β1

‖yT −A ·BxT ‖2, s.t. A = eβ0 , B = eβ1 . (16)

Therefore, the specific LRC rule is

LRCST =

{
1, if β0 < β0,crit ∧ β1 > β1,crit

0, otherwise
(17)

where β0,crit and β1,crit are numerical constants and determined
experimentally. The adaptive critical values of β0,crit and β1,crit

are ln2.3 and ln1.02, respectively.
Finally, the gradient direction angle distribution of ST in

corresponding TNR is combined with distribution of gradient
modulus to make a comprehensive final decision as follows:

ST is

{
preserved, if SHTST = 1 ∧ LRCST = 1
removed, otherwise.

(18)

Consequently, the preservation or removal of ST is concluded
to achieve GVDM. The procedure of GVDM is described in
Algorithm 1. Furthermore, we introduce GMHLD to enhance
saliency of real targets and suppress residual clutter.

D. Gradient Modulus Horizontal Local Dissimilarity

Considering the similarity of target in horizontal and vertical
directions and diversity of wave in two directions for gradient

Algorithm 1: Gradient Vector Distribution Measure.
Input: GVF, BGM, structure element radius r.
Output: ST extraction result GVDMST.
1: Calculate the number of STs found in BGM (Nst);
2: for k = 1 : Nst do
3: Generate the TNR of ST k by (6);
4: Match ST and TNR to GVF and obtain the gradient

modulus and direction angle of each pixel;
5: Sort the direction angles of all pixels of the ST in

ascending order and denoted as Ao;
6: Construct theoretical sample

Ak = {360 ∗ i/pixn, i = 1, 2, . . ., pixn}, where
pixn is the number of pixels of ST;

7: SHT by (7)–(13);
8: Sort the gradient modulus of all pixels of the TNR in

ascending order and denoted as y;
9: Analyze gradient modulus based on LRC model by

(15)–(17);
10: Make the decision by (18);
11: end for
12: Obtain the GVDM map.

Fig. 6. Example of NB division. Small yellow squares correspond to pixels
of RST; small green and gray squares represent pixels of NB. (xo, yo) is the
center of RST. 2w and 2h are the width and height of RST, respectively.

modulus, we present GMHLD to enhance target and suppress
residual clutter simultaneously.

GMHLD measures the dissimilarity between refined ST
(RST) and horizontal NB, where the RST is calculated according
to STs in GVDM as follows:

RST = [[BGM • D3,GVDMST]]RG (19)

where • denotes morphological closing operation, D3 denotes
disk structure element with a radius of 3 pixels, and [[·]]RG is
region growing operation.

In order to achieve GMHLD, NB is divided into four patches
according to the shape of RST, and we select two horizontal
patches for GMHLD calculation, which is shown in Fig. 6. We
build a two-dimensional coordinate system with the origin at the
center of RST (i.e., (xo, yo)). Thus, the two horizontal patches
of NB can be denoted as follows:

NBL =

{
(x, y) | (x, y) ∈ NB, x � xo,

y − yo
x− xo

�
∣∣∣∣ hw

∣∣∣∣
}
(20)
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Algorithm 2: GMHLD and Target Segmentation.
Input: GM, BGM, structure element radius r, GVDM map.
Output: Final detection result Res.
1: Generate RST according to (19);
2: Calculate the number of RSTs (Nrst)
3: for k = 1 : Nrst do
4: Generate the NB of RST k by (6);
5: Generate the NBL and NBR by (20) and (21);
6: Match RST, NBL, and NBR to GM followed by

calculating their mean of gradient modulus,
respectively;

7: Calculate the GMHLDk by (22);
8: Record the salient value of the RST as follows

SV _RST (k) = GMHLDk;
9: end for

10: Calculate the segmentation threshold T by (24).
11: Separate the GMHLD map by (25).
12: Acquire the final detection result Res and target

position.

NBR =

{
(x, y) | (x, y) ∈ NB, x � xo,

y − yo
x− xo

�
∣∣∣∣ hw

∣∣∣∣
}
(21)

where (x, y) represents coordinates of pixels in NB. GMHLD
can be calculated by

GMHLD =
(
GMRST −GMNBL

) · (GMRST −GMNBR

)·
ε
[
GMRST −max(GMNB)

]
(22)

where GM∗ denotes mean of gradient modulus of the corre-
sponding region. ε[ GMRST −max(GMNB)] is a step function
which can be expressed as follows:

ε
[
GMRST −max(GMNB)

]
=

{
1, GMRST > max(GMNB)
0, GMRST ≤ max(GMNB).

(23)

Finally, the targets can be separated from residual clutter by
an adaptive segmentation threshold. We count the salient value
of each RST in enhanced result and denote them as SV_RST;
then, the threshold can be calculated as follows:

T = λ · SV_RSTmax + (1− λ) · SV_RSTmin (24)

where SV_RSTmax and SV_RSTmin are the maximum and
minimum of SV_RST. λ is a constant ranging from 0 to 1.
Finally, the detection result is obtained as follows:

Res(x, y) =

{
1, GMHLD(x, y)≥ T
0, otherwise

(25)

where (x, y) represents the infrared image pixel point. The
procedure of GMHLD and target segmentation is summarized
in Algorithm 2.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we utilize eight infrared maritime image
datasets with strong ocean wave clutter to demonstrate the small
target detection performance of the proposed method. Initially,
the information of datasets, baseline methods, and evaluation
metrics are introduced in this article. Then, we analyze the
effects of key parameters by performing experiments on the
representative datasets. And ablation experiments are designed
to demonstrate the robustness of our method. Finally, qualita-
tively and quantitatively, we discuss and compare the detection
performance of the considered methods. All experiments are
conducted on a computer with 16.0-GB RAM and Intel i7-9700
CPU with 3.0 GHz processor, and the code is implemented using
MATLAB(X64) R2016a.

A. Experimental Setup

1) Datasets: In the experiment, eight infrared maritime im-
age datasets (1390 images) with different types of targets (more
than 2100 targets) and complex background are used to demon-
strate the performance of our method. The detailed information
of eight datasets (i.e., Datasets 1–8) is listed in Table I. The
resolution of Datasets 1 to 7 is 284 × 236, and the resolution
of Dataset 8 is 640 × 512. Dataset 1 is disturbed by heavy
waves and islands simultaneously, and two small targets have
similar contrast. In Datasets 2 and 5, there is a small ship and
sea–sky background with heavy wave clutter and cloudy sky.
And Dataset 5 has small islands in the distance. Dataset 3
presents a very strong ocean wave background and the target
is submerged in ocean wave clutter. In Dataset 4, there are
three small targets with obviously different intensity, and the
background is sea–sky background with strong ocean waves.
Datasets 6 and 7 are synthetic images. The two image datasets
are synthesized by real targets from Dataset 3 and real infrared
maritime background with heavy waves or/and thick cloud, and
the synthesis strategy is similar to that in [31]. Dataset 8 contains
two small dim targets and there are islands with high radiation
intensity in the background.

2) Baseline Methods: In order to illustrate the effectiveness
and robustness of the proposed method, we perform the com-
parative experiment with the classical and acclaimed methods,
namely LIG, LCM, MPCM, NLCD, PSTNN, and the recent,
TLLCM, ADMD, FAMSIS, and MSLSTIPT. LIG and FAM-
SIS consider the LIG simultaneously to detect infrared targets.
LCM, NLCD, and TLLCM are methods based on local con-
trast. MPCM and ADMD employ directional information and
multiscale difference to enhance target saliency and suppress
background clutter. PSTNN transforms the infrared small target
detection task into nonconvex tensor robust principal component
analysis model, and it achieves target detection according to the
low-rank and sparse property of image. MSLSTIPT introduces
multisubspace learning strategy into IPT model, which deeply
excavates the spatial–temporal information to improve the ro-
bustness on complicated scenes. The parameters of baseline
methods are set to their recommended values. Table II shows
the parameter settings of considered methods.
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TABLE I
DETAILED INFORMATION OF THE EIGHT INFRARED IMAGE DATASETS

TABLE II
PARAMETER SETTINGS OF CONSIDERED METHODS

Fig. 7. Illustration for target and NB regions of a small target.

3) Evaluation Metrics: In order to validate the performance
of various methods, we introduce local contrast gain (LCG) and
background suppression factor (BSF) in this article [17], [51],
[52]. LCG is used to measure the target enhancement quality
and defined as follows:

LCG =

∣∣TP − NBP
∣∣
enh∣∣TP − NBP
∣∣
raw

(26)

where enh and raw are short for enhanced result and raw image,
respectively. TP and NBP represent the mean gray values of the
target pixels and NB pixels, respectively. The LCG is calculated
in a local region, as shown in Fig. 7. Assume that the small
target size is m× n, we set the range of corresponding NB is
d = max(m,n). Note that LCG is the average value of all the
actual targets in the image.

BSF is usually used to evaluate background suppression abil-
ity, and it can be calculated by

BSF =
σBP,raw

σBP,enh
(27)

where σBP,raw and σBP,enh denote the standard deviations of
background pixels for raw infrared image and enhanced result,

respectively. It should be noted that we only consider the back-
ground pixels other than the target region pixels when calculating
BSF, and the enhanced results for all the methods stand for the
target enhancement and background suppression result, which
is prior to final threshold segmentation.

Besides, the receiver operating characteristic (ROC)
curve [53] is usually used to comprehensively measure the
detection accuracy for target detection method. ROC reflects
variation tendency and congruent relationship between detection
probability Pd and false-alarm rate Pf . The vertical and hori-
zontal axes of ROC are Pd and Pf , respectively. Their definition
can be expressed as follows:

Pd =
number of detected actual targets

number of total actual targets
(28)

Pf =
number of false alarm targets

number of total detected targets
. (29)

According to the ROC curve, the value of area under the curve
(AUC) can be obtained. And the closer the ROC curve is to
the upper left corner, the greater the value of AUC is, which
indicates more satisfactory detection performance and accuracy
for the corresponding method.

B. Parameters Analysis

To achieve preferable detection accuracy and robustness, two
key parameters of the proposed method are discussed in this
section. We perform experiments on five real datasets (i.e.,
Datasets 1–5) to analyze binarization threshold parameter k in
(5) and structure element radius r in (6) by controlling the variate
technique. And the ROC and AUC curves are conjunctively used
to determine the optimal parameters.

1) Binarization Threshold Parameter k: Parameter k con-
trols the number, positions, shapes, and sizes of STs, which also
partly affects TNR and NB regions. Therefore, the value of k
will affect the robustness of the proposed method. We change
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Fig. 8. ROC curves of the proposed methods with different values of parameters k and r on five datasets. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset
4. (e) Dataset 5.

Fig. 9. AUC curves of the proposed methods with different values of param-
eters k and r on five datasets.

k from 1 to 6 on five datasets, and the interval is 1. In the
experiment, structure element radius r is set to 4. The ROC
curves are shown in the first row of Fig. 8. And the corresponding
AUC values are listed in the legend of each graph. In order to
intuitively and clearly observe the effect of k on performance,
we show the AUC curves in Fig. 9(a). It can be seen that if k
is set to 3, the detection performance is most satisfactory and
robust.

2) Structure Element Radius r: Parameter r conducts the
shapes and sizes of TNR and NB regions directly. In order
to ensure the detection accuracy, we must choose it carefully.
If r is too small, the information in NB cannot represent NB
characteristics, because the target neighborhood often behaves
as a Gaussian, which causes the poor performance. If r is too
large, TNR and NB may contain other strong ocean wave edges
and cause miss detection. We change r on five datasets from 1
to 10 with the interval of 1. In the experiment, the binarization
threshold parameter k is set to 3. The ROC and AUC curves
are shown in the second row of Figs. 8 and 9(b), respectively.
One can see that higher AUC values are achieved using larger
r values for Datasets 2, 4, and 5. However, lower AUC values
are obtained with larger r values for Datasets 1 and 3. When r
is 3 or 4, our method can achieve higher AUC values for all the
datasets robustly. Consequently, taking both detection accuracy
and robustness into account, r is set to be 4 for the experiments
below.

Fig. 10. Numbers of STs in different parts. Column 1 shows the raw represen-
tative images. Columns 2 through 5 show the results for BGM, SHTST, LRCST,
and GVDM. The number of ST is indicated in the upper left of each image.

C. Ablation Experiments

In this section, we design two experiments to analyze the
contribution of each step of our method by ablation study.

First, to demonstrate the performance of GVDM intuitively,
we count the numbers of STs in BGM, SHTST, LRCST, and
GVDM for different infrared maritime images with a com-
plicated background as shown in Fig. 10. One can see that
SHT and LRC can reduce the number of false-alarm targets
to some extent, however, the number of STs in GVDM is the
lowest together with well preservation of all the real targets,
which indicates that GVDM is conducive to filtrating STs more
accurately.

In the second experiment, in order to demonstrate the ef-
fectiveness of GVDM and GMHLD, we compare the results
of the proposed method with different processing models as
shown in Fig. 11. Thereinto, (a1)–(e1) show the processing
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Fig. 11. Results of GMHLD for infrared maritime images A-E in Fig. 10. (a1)–(e1) Enhanced results of the proposed method without GVDM. (a2)–(e2) Enhanced
results of the proposed method.

Fig. 12. Single target scenes and corresponding results. Rows 1 and 2 show
the original images and detection results, respectively. (a) Scene 1. (b) Scene 2.
(c) Scene 3.

Fig. 13. Multiple target scenes and corresponding results. Rows 1 and 2 show
the original images and detection results, respectively. (a) Scene 1. (b) Scene 2.
(c) Scene 3.

results of the proposed method without GVDM, that is, we
only implement GMHLD on GVF. It can be seen that GMHLD
performs well in target enhancement while unsatisfactorily in
background clutter suppression. Particularly, some clutter is
salient, which even resembles real target. Fig. 11(a2)–(e2) shows
the enhanced results of the whole proposed method that contains
GVDM followed by GMHLD. One can see that residual clutter is

Fig. 14. Complicated scenes and corresponding results. Rows 1, 2, and 3 show
the original images, corresponding 3-D gray distributions, and detection results,
respectively. (a) Scene 1. (b) Scene 2. (c) Scene 3.

suppressed distinctly and robustly, and real targets are enhanced
simultaneously. The comparative results indicate the effective-
ness of the integration of GVDM and GMHLD.

D. Validity of the Proposed GVFC Method

In this section, we demonstrate the robustness of the GVFC
method combined with the characteristics of images in various
scenes.

1) Robustness to Single Target Scene: First, we test the pro-
posed GVFC method on real single target scenes. The represen-
tative images and detection results are shown in Fig. 12, in which
the real targets are labeled in red rectangular boxes. The results
in Fig. 12 validate that the targets are detected successfully and
strong ocean wave clutters are well suppressed.

2) Robustness to Multiple Target Scene: Actually, there may
be multiple targets in the same scene. Therefore, we demonstrate
the validity of the proposed GVFC method on real maritime
scenes with diverse targets. Fig. 13 shows the representative
images and corresponding results. Thereinto, scenes 1 and 2



YANG et al.: SMALL MARITIME TARGET DETECTION USING GVFC OF INFRARED IMAGE 1837

Fig. 15. Enhanced results processed by the considered methods for Datasets 1 to 8.

both contain two targets, the intensity and contrast of three
targets in scene 3 are different. The detection results in Fig. 13
demonstrate that the proposed method can effectively enhance
targets’ saliency and suppress the interferences of island and
ocean wave clutters.

3) Robustness to Dim Target and Complex Background
Scene: In the marine scene, strong wave edge, cloud, and is-
land are the key factors that affect the detection performance.
Thus, we test the robustness of the proposed GVFC method in
complicated scenes. Fig. 14 shows the representative images and
results. It is worth noting that scenes 1 and 2 are synthetic images
according to the real infrared maritime background and target
by a similar method introduced in [31]. In scene 1, the small
dim target is submerged in heavy waves. In scene 2, there are
thick cloud and heavy waves that cause great difficulties to target

detection. In scene 3, the intensity of target is low, by contrast, the
islands in background have the high radiation intensity, which
also makes challenges to small dim target detection. We use
3-D gray distributions to further display the characteristics of
each image intuitively, which is shown in the second row of
Fig. 14. It can be seen from the third row of Fig. 14 that the pro-
posed method can perform satisfactory detection results, which
demonstrates the robustness of the proposed GVFC method to
dim target and diverse complicated scenes.

E. Comparison to State-of-the-Art Methods

1) Qualitative Analysis: Fig. 15 shows the raw representative
infrared maritime images and 3-D gray distribution of enhanced
results on Datasets 1 to 8. For Dataset 1, we can see that
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TABLE III
QUANTITATIVE COMPARISON OF 10 METHODS ON THE EIGHT DATASETS

Fig. 16. ROC curves and AUC values of the 10 methods for Datasets 1 to 8. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. (e) Dataset 5. (f) Dataset 6.
(g) Dataset 7. (h) Dataset 8.

Fig. 17. AUC curves of the considered methods for all the eight datasets.

LCM and MSLSTIPT cannot eliminate the interference of
islands. MPCM, NLCD, PSTNN, TLLCM, ADMD, and
FAMSIS struggle to suppress heavy wave clutter. LIG can
achieve target enhancement and clutter suppression compared
with the other baseline methods. It is remarkable that our

method performs the best with respect to target enhancement
and background suppression. Enhanced results for Dataset 2
demonstrate that FAMSIS and our method outperform the other
considered methods. For Dataset 3, LIG misses real target;
LCM, PSTNN, ADMD, FAMSIS, MSLSTIPT, and our method
achieve the satisfactory performance while MPCM, NLCD, and
TLLCM are hard to handle heavy ocean waves with strong edges.
For Dataset 4, there is residual strong clutter in enhanced results
by MPCM, NLCD, and TLLCM; LIG, PSTNN, ADMD, and
MSLSTIPT fail to enhance saliency of all the three small infrared
targets. By comparison, FAMSIS and our method enhance all the
three targets and suppress background clutter simultaneously.
Moreover, FAMSIS and our method perform better in back-
ground suppression on Dataset 5 than other baseline methods.
For Dataset 6, NLCD, PSTNN, and our method perform well in
enhanced result while the other baseline methods are deficient in
suppressing the interference of strong ocean wave clutters. For
Dataset 7, the thick cloud edge and heavy waves cause great chal-
lenge for target detection; however, our proposed method can
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TABLE IV
RUNNING TIME (IN SECONDS) OF 10 METHODS ON THE EIGHT DATASETS

achieve the preferable performance in both target enhancement
and clutter suppression. From the last column of Fig. 15, one
can see that LCM, MPCM, PSTNN, FAMSIS, and MSLSTIPT
perform poorly in suppressing background clutter relatively.
The performance of LIG, NLCD, TLLCM, ADMD, and our
method are satisfactory in enhancing target and suppressing
background for Dataset 8. On the whole, our method achieves
preferable and robust performance on all the eight infrared
maritime images with strong ocean waves and interference.

2) Quantitative Analysis: To further illustrate the perfor-
mance of our method objectively, the LCG and BSF are mea-
sured for eight representative images in each dataset. From the
definition, the higher the values of LCG and BSF are, the better
performance of the corresponding method achieves. And the
results by different methods are listed in Table III. It is clear
that our method obtains the highest values of LCG, and almost
gets higher BSF. That is, our method is superior to others.
Furthermore, we provide the ROC curves of various methods
on eight datasets to demonstrate the performance in terms of
detection accuracy. It can be intuitively seen from Fig. 16 that
the ROC curves of our method is closest to the upper left corner.
In order to objectively validate the result, we provide the AUC
values of various methods in the legend of each graph. For visual
convenience, Fig. 17 shows the AUC curves of different methods
on all the eight datasets, which intuitively illustrates the robust-
ness and effectiveness of considered methods. It can be seen
that our method is superior to the baseline methods for almost
datasets. In addition, the running time of different methods on
the eight datasets is listed in Table IV. One can see that our
method can accomplish infrared maritime target detection in
around 0.5 s. And our method can be accelerated through GPU
to meet the needs of practical engineering applications.

IV. CONCLUSION

In this article, an effective and robust method using GVFC of
infrared image is proposed to detect small maritime targets under
intricate scenarios, simultaneously combining gradient property,
directionality, and local dissimilarity. GVDM is applied to elim-
inate strong ocean wave interference, which makes full use of
distribution characteristics of gradient direction angle and gra-
dient modulus. Therein, an SHT based on K-S test with ADSD
is designed to test the uniformity of direction angle, which
conduces to further filtrate RSTs combined with regression anal-
ysis of gradient modulus. Furthermore, GMHLD is introduced
to achieve satisfactory performance of target enhancement and
residual ocean wave clutter suppression. Extensive experiments

illustrate that the proposed GVFC achieves preferable and robust
detection performance compared with the baseline methods,
which presents not only in target enhancement and background
suppression but also in detection accuracy. However, in our
model, only directional dissimilarity is employed to enhance
target saliency, which may be unsatisfactory for enhancing
multiple targets with diverse intensity and contrast. More at-
tributes need to be excavated to enhance targets. Furthermore,
parallel acceleration will be implemented to achieve real-time
performance.
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