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Faster and Lighter Meteorological Satellite
Image Classification by a Lightweight
Channel-Dilation-Concatenation Net

Shuyao Shang , Jinglin Zhang , Xing Wang, Xinghua Wang, Yuanjun Li, and Yuanjiang Li

Abstract—With the development of satellite photography, mete-
orologists are inclined to rely on methods for the automatic and effi-
cient classification of weather images. However, many popular net-
works require numerous parameters and a lengthy inference time,
making them unsuitable for real-time classification tasks. To solve
these problems, a lightweight convolutional network termed the
channel-dilation-concatenation network (CDC-net) is constructed
for meteorological satellite image classification. When extracting
features, CDC-net utilizes depth-wise convolution rather than stan-
dard convolution. Additionally, a FeatureCopy operation was em-
ployed instead of a half-convolution operation. CDC-net extracts
high-dimensional features and contains a local importance-based
pooling layer, reducing the network’s depth, the number of network
parameters and inference time. Based on these techniques, the
CDC-net achieves an accuracy of 93.56% on the large-scale satellite
cloud image database for meteorological research, with a graphics
processing unit (GPU) inference time of 3.261 ms and 1.12 million
parameters. Because many weather images reveal multiple weather
patterns, multiple labels are necessary. Therefore, we propose a
prediction method and conduct experiments on multilabel data.
Experiments on single-label and multilabel meteorological satellite
image datasets demonstrate the superiority of the CDC-net over
other structures. Thus, the proposed CDC-net can provide a faster
and lighter solution in meteorological satellite image classification.

Index Terms—Convolutional neural network (CNN), deep
learning, lightweight, remote sensing, scene classification.
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I. INTRODUCTION

THE observation and identification of the weather on earth
have been critical and challenging problems for a long

time. Because of the independent nature of satellite remote-
sensing imaging and its capacity for continuous observation,
satellite cloud maps compensate for the lack of conventional
detection data. However, even though considerable cloud data
are acquired, its analysis and application have remained at the
manual qualitative analysis stage, which is a resource-intensive
and highly subjective approach. Therefore, how to automatically
and effectively extract and identify patterns from hyperspectral
image data obtained from satellites has become the hotspot of
meteorological and remote-sensing image research. With the
development of deep learning, convolutional neural networks
(CNNs) have gradually become the standard practice for image
classification in remote-sensing research. However, the current
famous CNNs have deficiencies in classification speed for satel-
lite weather images, which are rectified and optimized in this
study.

First, we obtained satellite images as hyperspectral multi-
channel images rather than RGB images, which are commonly
used in deep-learning studies. In most current methods, features
are extracted from multiple image channels, such as through
the principal component analysis method [1] and the Fourier
transform method [2]. However, these methods lead to a long
inference time and too many parameters in the network, resulting
in low classification speed and high demand for device storage
space. In satellite images, many channels are highly similar or
contain uninformative data. Therefore, we decided to combine
the three channels most effectively representing various mete-
orological features to form an RGB image. It facilitated the
visualization of the data and effectively reduced the network
inference time and the number of parameters.

Space-grade computing systems that capture and process
remote-sensing images must be real-time and lightweight. Be-
cause space-grade applications require high real-time processing
power, the embedded network structures must exhibit rapid
processing ability. In addition, because of the safety concerns
in space propulsion systems and the adverse effects of single-
particle inversions, the computer storage space and the number
of embedded network parameters must not be manageable. For
instance, Curiosity’s computer system has only 256 MB of
memory.
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Fig. 1. Part of the different categories of meteorological images obtained from a satellite image. Patterns framed by the red and blue circles are similar, and these
similar patterns are likely to pose classification difficulties.

Some of the common CNNs, such as ResNet [3] and
DenseNet [4], use a deep network structure to achieve high
accuracy, resulting in numerous network parameters and a
slow inference speed. To develop CNNs that can be easily
applied in spacecraft to process remote-sensing images, we de-
signed the channel-dilation-concatenation network (CDC-net)
in which depth-wise (DW) convolution is employed and pro-
posed a FeatureCopy operation to reduce the number of con-
volutional operations required during feature extraction. CDC-
net extracts high-dimensional features. The max-pooling layer
is replaced by a local importance-based pooling (LIP) layer,
which lowers the network’s depth. These operations effectively
reduce the number of network parameters and the inference
time.

Fig. 1 demonstrates that there are complex and diverse pat-
terns in meteorological satellite images, and different types of
meteorological satellite images share similar patterns, reveal-
ing that CNNs with high classification accuracy is required.
However, due to their lightweight nature, famous lightweight
networks, such as MobileNet and ShuffleNet, are not suffi-
ciently accurate. Therefore, to strike a balance between accuracy,

inference speed, and the number of parameters, we proposed the
CDC-block extraction method with a channel-dilation, feature-
extraction, and channel-squeeze structure, and introduced an LIP
layer to ensure high classification accuracy.

Because of the complexity of meteorological images, images
are often given multiple labels rather than being classified into
one category. Only a few studies have investigated multilabel
meteorological satellite image classification. Thus, we proposed
a method for multilabel classification and conducted network
performance experiments on a multilabel dataset. The results
indicated that CDC-net could provide higher classification per-
formance than other commonly used lightweight networks.

In summary, the contributions of this study are as follows.
1) To make the convolutional network more lightweight, we

transformed the original hyperspectral images into RGB
images via a direct channel selection operation.

2) To reduce the number of parameters and inference time
of the network, we used DW convolution and designed
a FeatureCopy operation. We also proposed a channel-
dilation structure to guarantee high accuracy and adopted
an attention-mechanism-based LIP layer.
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Fig. 2. Meteorological satellite images are first converted into RGB images, which are used as the input of CDC-net to obtain the category prediction results.

3) We created a classification method for multilabel im-
ages and conducted multilabel image classification ex-
periments on CDC-net. The results demonstrated that
CDC-net exhibited the highest multilabel classification
performance.

The rest of this article is organized as follows. Section II dis-
cusses related studies. Section III focuses on the composition of
the CDC-net and the CDC-block and introduces the DW convo-
lution, FeatureCopy operation, LIP layer, and method for train-
ing multilabel data. Section IV describes the large-scale satellite
cloud image database for meteorological research (LSCIDMR)
in detail and provides multilabel model prediction results and
details of the single-label and multilabel data experiments. It
also presents a comparison between different network parameter
numbers and inference times and highlights the visual analysis
results. Section V gives more discussion about CDC-net. Finally,
Section VI concludes this article.

II. RELATED WORK

Iandola et al. [5] presented SqueezeNet, a lightweight CNN
in which the fire module was used for parameter compression,
with the input layer first dimensionally compressed by a squeeze
layer (1 × 1 convolution) and then dimensionally expanded by
an expansion layer (a mixture of 1 × 1 and 3 × 3 convolution).
Howard et al. [6] proposed MobileNetV1, in which deeply
separable convolution was employed, which is a combination
of DW convolution and 1 x 1 convolution.

Sandler et al. [7] proposed MobileNetV2, in which an inverted
residual with linear bottleneck cells was used. The idea of chan-
nel expansion in CDC-net is also based on the inverted residual
block. In MobileNetV3 introduced by Howard et al. [8], an
additional squeeze-and-excitation (SE) layer was included and
a combination of AutoML techniques with manual fine-tuning
was used to obtain a lightweight network. Zhang et al. [9]
designed ShuffleNetV1, in which a channel shuffle operation
is employed to improve the performance of group convolu-
tion. Five guidelines for the design of lightweight networks

were brought forward by Ma et al. [10], and they put forward
ShuffleNetV2 based on these guidelines, offering a fine balance
between accuracy and speed.

To realize hyperspectral image classification, a global con-
text spatial attention deep learning network with a global self-
attentive mechanism module was designed by Chen et al. [11]
for image classification. This global attention mechanism can
significantly increase the classification accuracy of the network.
Fan et al. [12] introduced a multiscale learning and attention
enhancement network to range data fusion classification in an
end-to-end manner,simplifying the network structure and mak-
ing network training more efficient. Zhang et al. [13] proposed
a multimodal attention-aware CNN which used an attention
mechanism to enhance the classification performance of light
detection and ranging data. Tu et al. [14] designed a global–local
hierarchical weighted fusion architecture to do hyperspectral
image classification, effectively integrating spectral and spatial
features to improve classification accuracy.

Neural networks also participate in the analysis of weather
remote-sensing data. For instance, Huang et al. [15] proposed
multimodal spatiotemporal networks for processing hyperspec-
tral weather images and forecasted the trajectory and intensity
of tropical cyclones. Bai et al. [16] created a feature-extraction
balanced network termed Rainformer to perform precipitation
nowcasting. Hang et al. [17] invented an unsupervised feature
learning model which utilized multimodal data to extract fea-
tures without any label information. This strategy can explore
semantic information and intrinsic structure information. Bai
et al. [18] integrated images with meteorological elements and
used such various modalities for clouds and weather systems
to do satellite image classification tasks. Zhang et al. [19]
built a ground-based cloud dataset and proposed a new CNN
model called CloudNet for accurate ground-based meteorolog-
ical cloud classification. Hang et al. [20] constructed a mul-
tiscale progressive segmentation network that cascaded three
subnetworks for gradually segmenting objects into small-scale,
large-scale, and other scales, which effectively alleviated the
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Fig. 3. Channel selection process. The raw data were obtained from a 16-channel hyperspectral image, which was subjected to a channel selection operation to
obtain an RGB image.

limited learning capacity of each CNN. Hang et al. [21] de-
signed a spectral super-resolution network by taking advantage
of spectral correlation and projection property of hyperspectral
imagery. This network contained a decomposition subnetwork
and a self-supervised subnetwork to reconstruct hyperspectral
imagery.

III. METHODS

Our proposed classification method is based on an end-to-end
architecture. For a given meteorological satellite image, the three
channels that best characterize the information in the image are
selected and combined into an RGB image, which is then fed
into a trained CNN to obtain classification results directly. The
process is illustrated in Fig. 2.

A. Channel Selector

Generally, the primary classification method is based on mul-
tichannel hyperspectral images obtained from remote-sensing
satellites. However, because the image information is similar
among some channels or unhelpful for the classification, the
network trains numerous redundant parameters. Therefore, in
this study, we propose a channel selector operation in which
only the three channels that optimally characterize the image
information are selected and combined into RGB images.

In the LSCIDMR dataset, the raw satellite image data contains
16 channels. According to the official guidelines provided by
the Meteorological Satellite Center of the Japan Meteorological
Agency, we match the albedo_5, albedo_4, and albedo_3 chan-
nels to the R, G, and B channels, respectively, which helps to
synthesize color images suitable for extracting satellite image
meteorological features. This process is presented in Fig. 3.

For snow and ice-covered areas and clouds, the albedo_3 and
albedo_4 channels have high reflectivity. The land appears dark,
and the ocean appears the darkest. Cloud reflection depends on
the optical thickness and density of cloud particles. Low clouds

and land and sea surfaces can be observed through thin, high
clouds. Clouds can be distinguished by their texture, as stratus
clouds have a smooth texture, and convective clouds have a
rough texture. Because of the high reflectivity of chlorophyll
in plants, the distribution of vegetation can be determined. In
addition, high clouds composed of ice particles, snow, or ice
can be observed in the albedo_4 and albedo_3 channels, despite
their low reflectance in the albedo_5 channel. This information
is reflected in RGB images, in which low clouds with high
reflectivity (water clouds) appear white-gray, and vegetation
appears green.

The reflectance properties of the albedo_5 channel are related
to the phase and size of the cloud particles. Large clouds and ice
particles have low reflectivity, whereas high clouds composed
of ice particles, snow or ice, and sea ice have darker colors. In
summary, the three channels, albedo_5, albedo_4, and albedo_3,
can be used to characterize image information. The channel
selection operation filters out the rest of the channel information,
and these three channels are combined into an RGB image.

B. Channel-Dilation-Concatenation Network

The main structure of the CDC-net is elaborated in Fig. 4.
The main body of the network is divided into two parts: 1)
an extracted feature network; 2) a classification network. The
extracted feature network firstly uses a 3× 3 convolutional
layer with a step size of 2 for downsampling, followed by
a pooling layer for further downsampling, two CDC-blocks
(see Section III-E) for feature extraction, a pooling layer for
further downsampling, and finally two additional CDC-blocks
for feature extraction. Subsequently, the feature map is gradually
up-dimensioned by two CDC-blocks for feature extraction. In
the classification network, the bulky fully connected (FC) layer
is dropped, and a 1 × 1 convolutional layer is used to reduce
the number of feature map dimensions such that it matches the
number of categories (10 in this case) and to obtain the feature
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Fig. 4. General structure of the CDC-net. Size of the feature map is expressed as channel ×W ×H . The number below the feature map indicates its number
of channels. For the input RGB images, a convolutional layer with a step size of 2 is used for feature extraction and downsampling, and then CDC-blocks and
LIP-pooling layers are used to extract features. Finally, a 1x1 convolution layer and a global average pooling layer are used to obtain a 10-dimensional vector, and
the prediction results are obtained by SoftMax operation.

map T ∈ R10×W×H . A global average pooling layer with no
parameters is then used to obtain the output vector v ∈ R10,
which can be expressed as follows:

vm =

∑W−1
i=0

∑H−1
j=0 Tm,i,j

W ×H
(0 ≤ m < 10). (1)

If the FC layer is used, the network parameter ratios become

1× 1× 512× 10

32× 32× 512× 10
= 0.09% (2)

and the calculated volume ratios are converted to
32× 32× 512× 10 + 32× 32× 10

32× 32× 512× 10
≈ 1. (3)

Therefore, the global average pooling layer used for classifica-
tion has almost zero parameters compared with the commonly
used FC layer. Thus, it does not affect the computational require-
ments. Lin et al. [22] suggested that global pooling layers have a
regularization-like effect. According to the ablation experiments
reported in Section IV-E, the global pooling layer classification
accuracy is higher than that of FC layer classification.

Once the vector v has been obtained, its value needs to be
transformed into a probability distribution for training purposes,
which is achieved by using a SoftMax operator as follows:

pi = SoftMax(vi) =
evi∑9

k=0 e
vk

. (4)

The output pi is the probability of the ith category predicted by
the network, where

∑9
i=0 pi = 1.

For the loss function, we select a commonly used cross-
entropy loss function. Let the true label be ŷ ∈ R10, let i be
the true category with ŷi = 1, and let the remaining values be
0. Here, the probability distribution of the network prediction is
p ∈ R10 and the cross-entropy loss function can be written as

loss(p, ŷ) = −
9∑

k=0

ŷk × log(pk) = −log(pi). (5)

From the previous calculation, we can get

log(pi) = −log

(
evi∑9

k=0 e
vk

)
= −vi + log

(
9∑

k=0

evk

)
. (6)

Therefore, the loss function can be expressed as

loss(p, ŷ) = log

(
9∑

k=0

evk

)
− vi. (7)

C. DW Convolution

DW convolution, first used in the Alexnet [23], is the group
convolution with the number of groups equal to the number of
channels (i.e., each convolution kernel is responsible for feature
extraction from one channel).

Let the size of the input feature map be C ×W ×H , where
C,W and H are the number of channels, width, and height of
the feature map, respectively. The DW convolution kernels used
in this study are all of the size 3× 3. By the definition of DW
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TABLE I
DIFFERENT NETWORKS WITH CORRESPONDING GPU INFERENCE TIME FOR

ONE IMAGE (SEE SECTION IV-B FOR THE HARDWARE ENVIRONMENT)

convolution, the number of convolution kernel channels is 1,
and the number of kernels is C. Let the input feature map be
X ∈ RC×W×H and the convolution kernel be K ∈ RC×1×3×3,
then the output feature map Y ∈ RC×W×H is provided by

Ym,a,b =
∑

1≤i≤3,1≤j≤3

Km,0,i,j ×Xm,a+i−1,b+j−1

(0 ≤ m < C, 0 ≤ a). (8)

The number of convolution kernel parameters for DW convolu-
tion is C × 1× 3× 3 = 9C. However, if a normal convolution
kernel is used, the number of parameters is C × C × 3× 3 =
9C2, with the following parameter ratio:

9C2

9C
= C. (9)

Therefore, DW convolution reduces the number of parameters
by a factor of C.

According to the aforementioned equation, DW convolu-
tion has a computational complexity of 3× 3× C ×W ×H =
9CWH , whereas ordinary convolution has a computational
complexity of 3× 3× C × C ×W ×H = 9C2WH , with a
ratio of

9C2WH

9CWH
= C. (10)

Therefore, DW convolution can reduce computational complex-
ity by a factor of C.

DW convolution can learn convolutional kernels with strong
correlation in a structured manner. When the number of parame-
ters in the network is reduced in this manner, overfitting becomes
difficult. This provides regularization-like effects to obtain a
more accurate and efficient network. However, Wu et al. [24]
noted that DW convolution is unsuitable for graphics processing
unit (GPU) computation because the DW convolution kernel
reuse rate is much lower, and the in-memory substitution rate is
higher compared with those in standard convolution. In addition,
because DW convolution is performed for each channel, the
operation matrix of each convolution is extremely small, and
obtaining complete parallelism with such a small matrix is not
easy. As shown in Table I, the MobileNet and ShuffleNet families
employing DW convolution do not have favorable GPU infer-
ence speeds. Therefore, only one DW convolution is assigned to
each block in CDC-net, and the initial downsampling layer is a
standard convolution layer.

D. FeatureCopy

In lightweight networks, operations with small parameters
and fast inference are critical, but extracting high-dimensional
features inevitably increases the number of parameters and
computational requirements. Han et al. [25] found that many
convolution kernels are similar in high-dimensional convolu-
tional operations, which implies high parameter redundancy.

Therefore, to reduce the number of redundant parameters,
some cheap transformation operations can replace some of the
convolution operations.

In this study, we redesigned the high-dimensional feature
extraction method by adding a FeatureCopy operation to re-
place half of the channel’s high-dimensional DW convolution
operations with a feature map copy, as illustrated in Fig. 5.

Let the high-dimensional feature map be X ∈ RC×M×N and
the output of the transformation be X ′ ∈ RC×M×N , in which
the FeatureCopy operation is

X ′ = X. (11)

Let the input feature map beX ∈ RCin×M×N . If 1× 1 convolu-
tion is directly used to ascend to dimension Cexp and then 3× 3
DW convolution is used to extract the features, the number of
parameters required becomes

Cin × Cexp + 3× 3× Cexp. (12)

Here, the required amount of computation is

W ×H × Cin × Cexp +W ×H × 3× 3× Cexp. (13)

If the FeatureCopy method is used instead of half of the DW
convolution, the number of required parameters is altered to

Cin × Cexp

2
+ 3× 3× Cexp

2
. (14)

Here, the amount of computation required is

W ×H × Cin × Cexp

2
+W ×H × 3× 3× Cexp

2
. (15)

Hence, the ratio of the number of parameters is

Cin × Cexp

2 + 3× 3× Cexp

2

Cin × Cexp + 3× 3× Cexp
= 50% (16)

and the ratio of computational complexity is calculated as

W ×H × Cin × Cexp

2 +W ×H × 3× 3× Cexp

2

W ×H × Cin × Cexp +W ×H × 3× 3× Cexp
= 50%.

(17)
Therefore, instead of half of the DW convolution, the Fea-
tureCopy operation can reduce the number of parameters and
computational requirements by half, simplifying the network.

E. Channel-Dilation-Concatenation-Block

A network block with a down-dimension, a feature-extraction,
and an up-dimension structure is used in numerous deep CNNs,
such as ResNet [3] and ResNeXt [26]. This block is based
on the a priori assumption that picture features are organized
as low-dimensional streams in a high-dimensional space. In
small networks, obtaining sufficient decoding parameters for
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Fig. 5. (a) Original high-dimensional extraction of features and (b) high-dimensional extraction of features with FeatureCopy. Instead of increasing the dimension
and then operating on the high-dimensional feature map, FeatureCopy only needs to increase the dimension to half of the original one, copy the feature map at the
same time, and perform feature extraction on the feature map. Finally, it concatenates the two feature maps in the channel dimension.

such compression (encoding process) may be difficult, result-
ing in insufficient network fit. In addition, as mentioned in
SqueezeNeXt [27], the lower dimensionality means lower com-
putational performance and requires more layer operations con-
centrated in the higher-dimensional blocks. Therefore, in this
study, we use a structure involving up-dimensioning, feature ex-
traction in higher-dimensional space, and down-dimensioning.
However, the utilization of 1× 1 convolution to ascend to higher
dimensions and the extraction of features in extremely high
dimensions inevitably increase the number of parameters and
computational requirements, which disobeys lightweight net-
work principles. Therefore, we use the FeatureCopy operation
outlined in Section III-D and utilize 1× 1 convolution at the end
to reduce the dimension to the specified output dimension. The
CDC-block structure is illustrated in Fig. 6.

The CDC-block forward propagation algorithm is displayed
in Algorithm 1.

F. LIP-Pooling

Downsampling is essential for CNNs, and pooling layers
are typically a favorable choice. However, whether average
or max pooling layer cannot prevent image information loss.

Algorithm 1: CDC-Block Forward Propagation.

Input: The input feature map X ∈ RCin×M×N , the
dimension Cexp to which it wishes to rise, the final output
dimension Cout

Output: The output feature map X̃ ∈ RCout×M×N .
1: Xexp = 1× 1ConvCin,C exp

2(X)

2: // Perform a dimensional lift
3: Xexp = BN(ReLU(Xexp))
4: X ′ = 3× 3DWConvC exp

2
,C exp

2(Xexp)

5: // Extract features with 3x3 DW convolution
6: X ′ = BN(ReLU6(X ′))
7: X ′′ = FeatureCopy(Xexp)
8: // Copy operation on Channel dimension
9: X ′′ = BN(ReLU6(X ′′))

10: Xcat = ChannelConcatenate(X ′, X ′′)
11: // Concatenate on Channel dimension
12: Xcat = ReLU(Xcat))

13: X̃ = 1× 1ConvCexp,Cout
(Xcat)

14: // Downscale to the required channel
15: X̃ = BN(ReLU(X̃))

16: return X̃
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Fig. 6. CDC-block architecture. (a) CDC-block. (b) Simplified CDC-block structure. The 3x3 convolution for extracting information is a DW convolution, and
a FeatureCopy operation is used instead of half of the DW convolution operation.

In large networks, such information loss can be compensated by
depth. However, in lightweight networks with fewer parameters,
an inappropriate pooling strategy may cause the network to
lose details, thus hindering the learning process and ultimately
leading to a suboptimal model. Therefore, we use LIP [28]
to increase the network’s accuracy (see Section IV-E for the
ablation experiments).

The process of LIP follows the idea of an attention mech-
anism in which pooling is treated as a weighted sum of each
window. Suppose the input is X ∈ RC×W×H and the learned
attention weights W = F (X) ∈ RC×W×H . To learn the atten-
tion weights, the logarithm of the weights g(X) = log(W ) =
log(F (X)) should first be determined [in forward propagation,
W = F (X) = exp(g(X))].

Let (|�x|, |�y|) = (3, 3), consider a step size of 2, the output
Y ∈ RC×W

2 ×H
2 after the LIP pooling layer, let the pooling

mapping be

[x : x+�x, y : y +�y] �→ (x̃, ỹ). (18)

Here, the LIP pooling is calculated as follows:

Yx̃,ỹ =
∑

x≤i<x+�x,y≤j<y+�y

(W
⊙

X)i,j
Wi,j

. (19)

As indicated by the calculation process illustrated in Fig. 7, to
learn the g function, the following structure is employed: A1× 1
convolutional layer for up-dimensioning, a 3× 3 convolutional
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Fig. 7. Schematic of the local importance-based pooling algorithm. The attention parameters are learned from three convolutional layers and then calculated by
weighted pooling.

Algorithm 2: Lip-Pooling Forward Propagation.

Input: The input feature map X ∈ RC×M×N .
Output: The output feature map Y ∈ RC×M

2 ×N
2 .

1: W = 1× 1ConvCin,2×Cin
(X)

2: // Up-dimension
3: W = 3× 3Conv2×Cin,2×Cin

(W )
4: // Using 3x3 convolution to extract weights
5: W = 1× 1Conv2×Cin,Cin

(W )
6: // Downscaling to original dimensional values
7: W = exp(σ(W ))
8: // Transform to get the attention weights
9: for [x : x+�x, y : y +�y] ∈ Ω do

10: Yx,y =
∑

x≤i<x+�x,y≤j<y+�y
(W

⊙
X)i,j

Wi,j

11: endfor
12: return Y

layer for high-dimensional feature extraction, a 1× 1 convo-
lutional layer for down-dimensioning, and finally a sigmoid
activation function for attention weight mapping between 0
and 1.

The specific algorithm used for the LIP layer is displayed in
Algorithm 2.

G. Mutilabel Training

Multilabel training does not change the model. Rather, it
requires only the transformation of the final SoftMax layer (to
obtain the maximum probability label) into a sigmoid layer (for
activation with a fixed threshold). Let the final network output
value be v ∈ R10 and the output of single-label training be

argmax(SoftMax(v)). (20)

Here, the multilabel training output is

{i|σ(vi) > α} (21)

where α is the activation threshold, with the value of 0.5.

To select the loss function, we treat each label as a binary
classification. Here, each input sample corresponds to more than
one label, and each label corresponds to a binary classification.
Therefore, we select a binary cross-entropy (BCE) loss function.
Let the network prediction and the actual label value be X ∈
RN×M and X̂ ∈ RN×M , where N is the batch size and M is the
total number of categories. Then, the loss function is

BCELoss(X, X̂) =
∑

0�i<N

loss(Xi, X̂i)

N
(22)

where

loss(Xi, X̂i) =
∑

0�j<M

l(Xi,j , X̂i,j)

M
(23)

and

l
(
Xi,j , X̂i,j

)
= −

[
X̂i,j × log(Xi,j)

+
(
1− X̂i,j

)
× log(1−Xi,j)

]
. (24)

Therefore, the BCE loss function is expressed as

BCELoss(X, X̂)= − 1

NM

∑
0�i<N

∑
0�j<M

[
X̂i,j×log(Xi,j)

+
(
1− X̂i,j

)
× log(1−Xi,j)

]
. (25)

IV. EXPERIMENTS

A. LSCIDMR Dataset

The LSCIDMR dataset built by Bai et al. [29] is the first pub-
licly available benchmark database of satellite cloud images for
meteorological research. It can be treated as a crucial guide for
using deep-learning methods in satellite meteorological image
classification. The dataset contains satellite images classified by
meteorological experts into 11 categories (including a label-less
category).
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Fig. 8. Samples of single-label data in ten classes. (a) Desert. (b) Extratropical cyclone. (c) Frontal surface. (d) High ice cloud. (e) Low water cloud. (f) Ocean.
(g) Snow. (h) Tropical cyclone. (i) Vegetation. (j) Westerly jet.

Fig. 9. Samples of multilabel data in several categories. The captions indicate the categories.

Based on the method outlined in Section III-A, Bai et al.
generate 104 390 high-resolution images (256 × 256) by two
annotation strategies: 1) LSCIDMR-s with single-label annota-
tion; 2) LSCIDMR-m with multilabel annotation. By manually
annotating the labels, Bai et al. obtained 414 221 multilabel
data and 40 625 single-label data for the following experiments.
Example images are displayed in Figs. 8 and 9.

B. Experimental Configuration

We use the LSCIDMR dataset for training, in which 20%
is set as the test set. The model training is performed in an
Ubuntu environment by a single NVIDIA 3090 GPU. The model
is initialized using Xavier uniform initialization with the Adam
optimizer, the initial learning rate is set to 0.001, and the learning
rate decay strategy is used. The batch size used for training is
128, and 30 epochs are trained.

Table II lists the experimental parameters.

C. Single-Label Data Experiments

1) Comparison of Classification Performance on Single-
Label Data: The accuracy obtained in the experiments is listed

TABLE II
EXPERIMENTAL ENVIRONMENTAL PARAMETERS

in Table III, and their test accuracy during the training procedure
is shown in Fig. 10.

CDC-net is superior to the other three commonly used
lightweight networks in inference time, and provides an extra
3% to 6% accuracy enhancement, indicating the effectiveness
of CDC-net in balancing accuracy and lightweight.
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Fig. 10. Different networks’ test accuracy during the training procedure for single-label datasets.

TABLE III
ACCURACY OF CDC-NET AND COMMONLY USED LIGHTWEIGHT NETWORKS

The training curve indicates that CDC-net rapidly converges at
the beginning of the training process. The accuracy remains con-
sistently higher than the other networks, confirming that CDC-
net has excellent convergence speed. Because of its favorable
generalization ability, CDC-net does not reach a bottleneck until
approximately the 20th epoch, while other networks become
stuck at approximately the 15th epoch.

2) Confusion Matrix: To further investigate the classification
capability of CDC-Net, we plotted the classification confu-
sion matrix of ShuttleNetv2, MobileNetv3, SqueezeNet1_0, and
CDC-net, as shown in Fig. 11.

As observed in the confusion matrix, the desert, snow, ocean,
and vegetation categories are all accurately identified because
the samples for these categories have distinctive features.

However, FrontalSurface is the most challenging category to
be distinguished and is often confused with Ex-tropicalCyclone.
The reason is that the sample size for FrontalSurface is only
1.56%, but 12.27% for ExtropicalCyclone. Such sample imbal-
ance will make our classification model tend to predict samples
with more data.

According to the confusion matrices of the four networks,
CDC-net is the most accurate one, and in the most challenging
categories, it gains improvement of 20% to 25%.

D. Multilabel Data Experiments

1) Evaluation Approach: We assume that the dataset com-
prises N images. We denote L̂k to be the set that contains all the
predicted label(s) for theKth sample, and denoteLk to be the set
that contains all the label(s) for the Kth sample. The multilabel
model can be evaluated using the following three measures.

a) F1-score: Precision is the percentage of correctly pre-
dicted labels relative to all predicted labels, which is calculated
as follows:

Precision =
1

N

N∑
k=1

(
||Lk ∩ L̂k||

||Lk||

)
. (26)

Recall is the percentage of correctly predicted labels relative to
all true labels, which is calculated as follows:

Recall =
1

N

N∑
k=1

(
||Lk ∩ L̂k||

||L̂k||

)
. (27)

Because of the mutual exclusivity of precision and recall in
some cases, it is impossible to use these two methods directly
to evaluate network performance. However, it is feasible to take
their harmonic mean to denote the F1 score

F1− score =
2× Precision×Recall

Precision+Recall
. (28)

b) Accuracy: Accuracy is the percentage of correctly pre-
dicted tags relative to the total tags, which is calculated as
follows:

Accurary =
1

N

N∑
k=1

(
||Lk ∩ L̂k||
||Lk ∪ L̂k||

)
. (29)

c) AbsoluteTrue: AbsoluteTrue is the most stringent met-
ric and the optimal indicator of a network’s multilabel classifi-
cation performance. For the kth image, the AbsoluteTrue value
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Fig. 11. Comparison of the the confusion matrices between CDC-net and other commonly used lightweight networks: (a) ShuffleNetV2_x0.5. (b) Mo-
bileNetV3_small. (c) SqueezeNet1_0. (d) CDC-net.

TABLE IV
COMPARISON OF DIFFERENT EVALUATION METRICS BETWEEN COMMONLY

USED LIGHTWEIGHT NETWORKS AND CDC-NET WITH MULTILABEL DATASETS

is 1 if and only if Lk = L̂k; otherwise, it is 0. The AbsoluteTrue
value is calculated as follows:

AbsoluteTrue =
1

N

N∑
k=1

I

(
Lk = L̂k

)
(30)

where I is the indicator function (i.e., 1 when Lk = L̂k and 0
otherwise).

2) Comparison of Classification Performance on Multilabel
Data: Table IV and Fig. 12 present the results of the experi-
ments conducted on the performance of various networks with
multilabel datasets.

TABLE V
COMPARISON OF THE PERFORMANCE OF CDC-NET AND ALEXNET

As shown in Fig. 12, CDC-net has the highest performance
on the three evaluation metrics (i.e., F1 score, accuracy, and
AbsoluteTrue), indicating its effectiveness in multilabel tasks.

By contrast, SqueezeNet performs worst. Its reason lies in
its adoption of the channel squeeze operation causes a large
amount of feature information to be lost, adversely affecting its
performance in multilabel classification.

To investigate the effect of the number of parameters on
multiclassification tasks, we tested AlexNet [23] with up to 57
million parameters. The results are presented in Table V.

Although AlexNet, with a sufficient number of parameters,
achieves satisfactory results in the multi-classification task,
CDC-net has higher accuracy with only 2% of its parameters,
again confirming the effectiveness of CDC-net.
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Fig. 12. Different networks’ evaluation metrics during the training procedure for multilabel datasets. (a) F1-score. (b) Accuracy. (c) AbsoluteTrue.

TABLE VI
COMPARISON OF CDC-NET WITH OTHER COMMONLY USED LIGHTWEIGHT

NETWORKS REGARDING INFERENCE SPEED AND THE NUMBER OF PARAMETERS

(SEE SECTION IV-B FOR THE HARDWARE ENVIRONMENT)

E. Comparison of Network Parameters

We compared the GPU inference times and model parameters
for three commonly used lightweight networks with CDC-net,
as shown in Table VI.

CDC-net was discovered to have the fewest parameters and
shortest inference time.

The reason lies in that it uses DW convolution and Feature-
Copy operations, it has lower depth and uses fewer blocks than
the other networks.

F. Ablation Experiments

The results of the ablation experiments are presented in
Table VII. Groups 1 and 3 revealed that a global average pooling
layer considerably improved the network’s accuracy. Therefore,

TABLE VII
RESULTS OF ABLATION EXPERIMENT, WHERE A TICK INDICATES THAT THIS

METHOD WAS USED

a global average pooling layer was used instead of a FC layer. As
shown in Groups 2 and 3, ordinary convolution did not consider-
ably improve the performance. Therefore, DW convolution was
used for the purpose of lightweight. Finally, as shown in Groups
3 and 4, LIP layers lead to a relatively significant increase in
accuracy.

G. Visual Analysis

Class activation mapping (CAM) [33] is a critical tool in
analyzing networks and their performances. In this study, we
performed global average pooling on the CDC-net’s last feature
map, calculated each channel’s mean value, and mapped each
value to the corresponding values of all classes through FC
layers.

Then, the gradient of class output with the highest probabil-
ity of network prediction relative to the last feature map was
calculated and visualized on the original map.
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Fig. 13. CAM visualization results. The image shown on the left is the original image, whereas that shown on the right is the result of the CAM visualization.
(a) Desert. (b) Snow. (c) Extra-tropicalCyclone. (d) FrontalSurface. (e) HighIceCloud. (f) LowWaterCloud. (g) Ocean. (h) TropicalCyclone. (i) Vegetation.
(j) WesterlyJet.

Subsequently, all ten categories were selected for visualiza-
tion and analysis, and the strongly highlighted parts represent
what the network is more concerned about. The results are
presented in Fig. 13. CDC-net correctly focuses on the true cat-
egory regions and pays less attention to the remaining irrelevant
regions, providing a high classification performance.

V. DISCUSSION

In this section, another criterion is utilized to evaluate the
performances of CDC-net and several lightweight networks.

Besides, the application in object detection and semantic seg-
mentation with our CDC-net will be discussed below.

Tan et al. [34] used reinforcement learning for network archi-
tecture search, and their reward was defined as

maximize
m

ACC(m)×
[
LAT (m)

T

]−0.07

(31)

where m is the given network, ACC(m) denotes its accuracy,
LAT (m) denotes the inference latency, and T is the target
latency which is additionally defined. It can be seen that the
larger the reward for different networksm, the better the balance
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Fig. 14. Curve of Reward versus T value. It can be seen that the curve of our CDC-net is higher than that of other lightweight networks.

between precision and accuracy. For different values of T , we
plot the T values against the reward (Fig. 14). It can be seen
that the curve of our CDC-net is much higher than that of
other well-known lightweight networks, which demonstrates
the superior performance of the CDC-net over other famous
lightweight networks.

A lightweight backbone is essential for target detection or
semantic segmentation tasks requiring high real-time perfor-
mance. Our CDC-net meets the lightweight requirement and can
generate feature maps of different sizes during downsampling,
which can easily realize the feature fusion required in target
detection or semantic segmentation. In addition, our proposed
CDC-block can also replace the convolutional blocks in target
detection or semantic segmentation networks, speeding up their
inference and reducing their number of parameters for easy
deployment in end devices.

VI. CONCLUSION

This article presents a lightweight network termed CDC-net
for faster and lighter meteorological satellite image classifica-
tion. It helps process remotely sensed images and solve the
problem of real-time single-label and multilabel meteorologi-
cal satellite image classification. A lightweight convolutional
network module termed CDC-block is designed to compose
CDC-net, which extracts features in a high-dimensional space
and utilizes the FeatureCopy operation. Meanwhile, to further
improve the network accuracy, we introduce the LIP pooling
layer based on the attention mechanism. The results indicated
that the accuracy of CDC-net is 3% to 6% higher than that of the
commonly used lightweight networks in single-label classifica-
tion. When it comes to multilabel classification, CDC-net also
performs best among all the networks. Similarly, in inference
speed, CDC-net is the fastest, with only 1.12 million parameters,
which is lower than other lightweight networks. These results

reveal that CDC-net can be embedded in a spacecraft with
little memory to process remotely sensed images and perform
real-time classification of weather satellite images. It can also
be served as a backbone network for real-time target detection
and semantic segmentation models of satellite remote-sensing
images.
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