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Abstract—Although progress has been made in multisource data
scene parsing of natural scene images, extracting complex back-
grounds from aerial images of various types and presenting the
image at different scales remain challenging. Various factors in
high-resolution aerial images (HRAIs), such as imaging blur, back-
ground clutter, object shadow, and high resolution, substantially re-
duce the integrity and accuracy of object segmentation. By applying
multisource data fusion, as in scene parsing of natural scene images,
we can solve the aforementioned problems through the integration
of auxiliary data into HRAIs. To this end, we propose a multiscale
cross-layer interactive and similarity refinement network (MISNet)
for scene parsing of HRAIs. First, in a feature fusion optimization
module, we extract, filter, and optimize multisource features and
further guide and optimize the features using a feature guidance
module. Second, a multiscale context aggregation module increases
the receptive field, captures semantic information, and extracts rich
multiscale background features. Third, a dense decoding module
fuses the global guidance information and high-level fused features.
We also propose a joint learning method based on feature similarity
and a joint learning module to obtain deep multilevel information,
enhance feature generation, and fuse multiscale and global features
to enhance network representation for accurate scene parsing of
HRAIs. Comprehensive experiments on two benchmark HRAIs
datasets indicate that our proposed MISNet is qualitatively and
quantitatively superior to similar state-of-the-art models.

Index Terms—Cross-layer interaction, feature similarity, high-
resolution aerial images (HRAIs), multiscale fusion, scene parsing.

I. INTRODUCTION

THE scene parsing of high-resolution aerial images (HRAIs)
is a basic processing task for assigning category labels

to each image pixel [1]. It plays an important role in urban
planning, change detection, 3-D semantic modeling of cities, and
other applications [2], [3], [4], [5]. Recently, deep convolutional
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neural networks (DCNNs) have proven to be effective in many
computer vision tasks, such as detection, segmentation, and
classification [6], [7], achieving state-of-the-art (SOTA) per-
formance. A DCNN automatically extracts hierarchical feature
maps of various objects in an image. It can extract details in
shallow layers and complex semantic cues in deep layers of the
network. However, existing scene parsing methods for HRAIs
often identify only a few categories and process single-source
data, thereby limiting their applicability.

In addition to single-source data, scene parsing has benefited
from auxiliary aerial image data, such as digital surface mod-
els (DSMs) [8] and synthetic aperture radar images [9]. The
introduction of multisource data can effectively improve the
robustness of the segmentation method [10]. As different forms
of spectral data, these types of auxiliary aerial image data capture
specific attributes of the same geospatial object and provide
different insights for the overall learning of semantic objects
[11], [12]. Therefore, complementary information and auxiliary
aerial image data in a red–green–blue (RGB) representation can
be applied to optimize the performance of scene parsing [9], [13].
We focus on the scene parsing of infrared–red–green (IRRG)
images and DSMs, which have been extensively studied using
DCNNs [9], [14], [15], [16].

Although progress has been made in recent years, various
problems related to scene parsing and auxiliary aerial image
data persist. For instance, the high data diversity leads to low
interclass variance and high intraclass heterogeneity. Hence,
confusion between trees and low vegetation as well as misiden-
tification of human-made objects in urban areas can occur
[17]. Moreover, existing methods, particularly those based on
deep learning, suffer from two major problems: 1) insufficient
spatial information for inference and 2) lack of contextual in-
formation. These problems result in poor segmentation around
object boundaries and in other difficult areas such as shadowed
regions [18].

Over the past few years, numerous studies on DCNNs have
been conducted to improve the results of scene parsing in HRAIs.
These images typically display complex scenes and cover large
areas, posing challenges for scene parsing [10]. Similarly, very-
high-resolution (VHR) images, multisource data images, and
point clouds increase the complexity of scene parsing. For
instance, building roofs can appear to be complex and diverse
in urban areas captured in a VHR image. This is a typical issue,
in which similar roofs have different spectra, and their imaging
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is affected by occlusions and shadows. Consequently, accurate
labeling remains challenging in the segmentation of VHR aerial
images [19].

For accurate segmentation, we introduce DSMs as auxiliary
data, whose elevation information allows us to reduce the seg-
mentation problems caused by high objects. Accordingly, we in-
troduce a multiscale cross-layer interactive and similarity refine-
ment network (MISNet) consisting of four modules: 1) feature
fusion optimization module (FFOM), 2) multiscale context ag-
gregation module (MCAM), 3) dense decoding module (DDM),
and 4) joint learning module (JLM). Considering the limitations
of single-source data, we use the FFOM to extract and filter
complementary information from multisource fused features. To
handle changes in object scales and complex scenes in HRAIs,
the novel MCAM captures multiscale background features and
guides decoding processing. In the decoder network, the DDM
fuses global information and cross-source high-level features
layer by layer to filter redundant cues. Finally, the JLM calculates
the cosine similarity of the auxiliary output and low-level fused
features to refine segmentation weights and improve low-level
information.

Our primary contributions can be listed and summarized as
follows.

1) We propose the MISNet to learn interactions and continu-
ity between image data and selectively merge complemen-
tary information extracted from the IRRG and normalized
DSMs (nDSMs) of multispectral images to improve scene
parsing.

2) The MISNet adopts an encoder–decoder architecture and
contains the FFOM, MCAM, DDM, and JLM. The FFOM
relates to cross-source hierarchies and cross-hierarchical
continuity. The MCAM fully uses dilated convolutions to
guide global context information. The DDM uses dense
connections to fuse multiscale features and global guid-
ance information. The JLM refines the decoding features
and adds auxiliary supervision for optimization.

3) Comprehensive experimental evaluations show that the
MISNet achieves higher scene parsing performance than
10 SOTA methods on the Potsdam and Vaihingen bench-
mark datasets.

II. RELATED WORK

A. Single-Source Scene Parsing

Long et al. [19] presented a novel framework for the scene
parsing task. Ronneberger et al. [20] used skip connections
to combine shallow features with deeper features and reused
low-level features to recover more data. Badrinarayanan et al.
[21] introduced an encoder–decoder architecture and applied
up-pooling with the recorded pooling method to recover distinct
data, such as edges and complex shapes. Chen et al. [22] pre-
sented the atrous spatial pyramid pooling, where parallel dilated
convolution operation with different rates extracts multiscale
cues. Xu et al. [23] proposed a context extraction architecture
based on a high-resolution module to solve the class scale
imbalance and uncertain boundary information problems. Mou
et al. [24] introduced two simple and effective architecture units,

spatial correlation block and channel correlation block, to learn
and analyze the global correlation between any two spatial posi-
tions or feature graphs and then generate the relation-augmented
feature representation. Aerial images contain a considerable
amount of detailed information about ground objects that result
in the images showing large inclass and small interclass vari-
ances. This makes it difficult for the images to be recognized.
Therefore, an attention mechanism was proposed to solve the
convolution locality limitation problem. Li et al. [25] proposed
an ABCNet based on a bilateral framework, using a context
path to capture global contextual cues and a spatial path to
retain spatial details, and designed new modules to integrate
and enhance features. Zhao et al. [26] presented a scene parsing
architecture based on end-to-end attention, in which a pyramid
attention pool module introduced the attention principle into
the multiscale block for feature refinement. Based on the char-
acteristics of aerial images, Zhao et al. [27] presented a model
based on the regional self-attention mechanism, which can mine
the relationships between pixels in the surrounding area. This
attention module can effectively decrease the noise of feature
mapping and the interference of redundant features.

B. RGB-D Scene Parsing

Unlike single-source scene parsing, RGB-D scene parsing
incorporates depth features into the RGB features to improve
scene parsing accuracy.

In a previous study on RGB-D scene parsing, Couprie et al.
[28] first used the depth cues in the feature learning method
to mark the whole scene, laying the foundation for the field
of RGB-D indoor scene parsing. Gupta et al. [29] presented
a height-above-ground, angle-with-gravity image-learning, and
horizontal-disparity DCNN, which differs from the depth image
and found that the feature learning effect was better than that of
the depth image.

In existing research, the application of depth images in RGB
image scene parsing is relatively mature, but there are many
aspects that can be improved. Lin et al. [30] presented a multi-
branch DCNN, which segmented available depth images into
feature layers with a common resolution, enriched context in-
formation with feature cascade, and improved scene parsing
performance. Jiang et al. [31] presented the residual encoder and
decoder architecture (RedNet) for the indoor scene analysis task.
The effective combination of the long skip connection between
the decoder and encoder and the short skip connection in the
residual unit enables RedNet to achieve efficient performance.
Hu et al. [32] proposed the complementary attention network
(ACNet), which selectively collects the features of two different
RGB and depth modes to extract weighted features. Chen et al.
[33] presented a separation and aggregation gate (SA-Gate)
operation to calibrate RGB features and multistage depth in-
formation extraction and aggregated the two alternately. Zhou
et al. [34] presented a three-branch self-attention architecture
(TSNet), which obtained RGB and depth inputs from the two
backbone networks. Seichter et al. [35] presented the efficient
scene analysis network (ESANet), which has high robustness
and achieves fast inference. Qian et al. [36] presented a gated
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Fig. 1. Overall framework of the proposed MISNet.

residual block to effectively fuse RGB and depth signals and
achieved excellent segmentation performance through comple-
mentary features calculated by the gate mechanism and specific
features aggregated by residual blocks. Zhou et al. [37] designed
a coattention fusion module that fused RGB and depth infor-
mation into channel and spatial dimensions. Zhou et al. [38]
presented a kind of collaboration of low-level and high-level
cues optimized by depth enhancement and progressive guided
fusion networks for indoor scene analysis.

C. Multisource Scene Parsing of HRAIs

Unlike RGB-D scene parsing, multisource scene parsing of
HRAIs requires further development for fusing multisource
features. However, only few studies are available on this topic.

Considering the automatic extraction of representative fea-
tures and intensive image classification, Bittner et al. [39] pre-
sented a fully convolutional network (FCN), which includes
three parallel modules combined at a late stage. The FCN applies
three upper inputs, namely, a panchromatic image, RGB image,
and nDSM, to combine height and spectral information from
different image data. In addition, full-resolution binary build-
ing masks are automatically generated, helping propagate fine
details from lower to higher layers to obtain accurate building
profiles. Peng et al. [40] proposed a dual-branch DP-DCN based
on dense connections and FCNs to automatically obtain fine-
grained scene parsing maps. The network prevents both gradient
explosion as the network deepens and overfitting with scarce
labeled aerial image data. It handles the differences between
aerial and natural images efficiently. Zheng et al. [41] proposed

a gather-to-guide network to improve the fusion of RGB and
auxiliary aerial image data. The key part of this model is a
gather-to-guide block, including a guider and a gatherer. The
gatherer captures complementary cues from the RGB and auxil-
iary data and generates cross-source descriptors. The guider uses
guide weights extracted from the descriptor to calibrate RGB
by reducing redundancy and noise while retaining feature data.
However, during final feature mapping fusion, the final semantic
prediction output is directly obtained by simple addition and
not combined with the differences of the two kinds of image
data, thereby introducing too much noise and affecting the seg-
mentation effect. In contrast, the proposed MISNet uses feature
extraction and optimized filtering to ensure proper multisource
interactions and cross-layer continuity; it establishes dependen-
cies between global information and cross-source features for
refining multisource complementary features.

III. PROPOSED MISNET

A. Overview

The encoder–decoder framework of MISNet is shown in
Fig. 1. We use an IRRG image and the corresponding nDSM
image as inputs and Res2Net-50 instead of the conventional
ResNet as the backbone. In Res2Net, the hierarchical residual
connection in a single residual block enables a change in the
receptive field at a finer granularity to capture both details and
global characteristics [42]. We remove the pooling operation and
all the fully connected layers of the original Res2Net, thereby
increasing the network performance. We use Res2Net pretrained
on the ImageNet dataset [43].
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We extract five multilevel features, Ri (i = 1, 2, 3, 4, 5) and Di

(i = 1, 2, 3, 4, 5), in source-specific encoders for the IRRG and
nDSM images, respectively. The input resolution of the source-
specific encoder is W × H. Thus, H/4 × W/4 is the resolution for
the first and second layers, and H/2m ×W/2m is the resolution for
layer m > 2. In addition, the number of channels of the features
in the ith layer is given by Ci (i = 1, 2, 3, 4, 5) and C = [64,
256, 512, 1024, 2048].

For the encoder, we use the FFOM to fuse the two kinds of
image data (i.e., IRRG and nDSM images) features of each layer.
Then, the MCAM extracts multiscale context features. For the
decoder, the MCAM extracts global information for guidance,
and the DDM gradually integrates high-level features added to
the global cues. Moreover, we add the output of the last DDM as
an auxiliary output, and the JLM further refines the initial fused
feature to obtain the final scene parsing map. For prediction, we
discard the first-layer fused features because they are noisy and
may undermine segmentation.

B. Feature Fusion Optimization Module

There are two main problems related to the fusion of the
IRRG spectral and nDSM elevation features. One is the inherent
morphological differences that cause feature incompatibility,
and the other is the noise and redundancy in low-quality elevation
data. Inspired by the method in [44], we introduce the FFOM
to optimize the compatibility of multisource features and mine
spatial information from elevation features. As shown in Fig. 1,
the FFOM includes two parts that are detailed in the following.

Feature Extraction and Optimized Filtering: In MISNet, we
apply feature extraction and optimized filtering to the multi-
source data at each layer, as shown in Fig. 1. Let features Ri and
Di represent feature maps of the ith layer (i = 1, 2, 3, 4, 5) from
the IRRG and nDSM branches, respectively. First, Ri and Di are
simply fused by elementwise addition. Then, we extract shared
information using elementwise multiplication to highlight the
similarity between the two kinds of image data, focusing on the
common elements between the original features Ri and Di and
the fused feature [45], and thus, obtaining Ri

D (i = 1, 2, 3, 4,
5) and Di

R (i = 1, 2, 3, 4, 5). The corresponding formulation is
represented as follows:

Ri
D = Ri × (Ri +Di) (1)

Di
R = Di × (Ri +Di) (2)

where × and + represent elementwise multiplication and addi-
tion, respectively.

The optimized features Ri
D and Di

R are concatenated along
the channel dimension, but simple concatenation causes redun-
dancy. Thus, we use two gating units for feature filtering and
purification. The gate unit is depicted in Fig. 1(a) and includes the
following parts: one 3×3 convolution and one 1×1 convolution
connected in series with a rectified linear unit (ReLU) operation
activated by a sigmoid function after passing through batch
normalization (BN). Gi

RD (i = 1, 2, 3, 4, 5) denotes the outputs
of the gate unit that are multiplied by the original features Ri

Fig. 2. Architecture of FGM.

and Di. The gate unit is described as follows:

Gate(x) = σ(BN(Conv1×1(RELU(Conv3×3(x))))) (3)

where Convn×n represents a convolution operation with an n ×
n kernel, RELU denotes ReLU activation, BN represents batch
normalization, and σ represents the sigmoid function. Hence,
Gi

RD can be obtained as follows:

Gi
RD = Gate(Cat(Ri

D, Di
R)) (4)

where Cat represents the channelwise concatenation and Gate
represents the gate unit.

Finally, we purify and filter the original information through
pixel-level multiplication and concatenate the two purified fea-
tures to obtain ai (i = 1, 2, 3, 4, 5) as follows:

ai = Cat((Gi
RD ×Ri), (G

i
RD ×Di)). (5)

Feature Guidance Module (FGM): Inspired by the method in
[46] and [47], we introduce the FGM, as shown in Fig. 2, to
optimize the compatibility of multisource features. The FGM
contains channel and space attention mechanisms. Channel
attention uses the relation between feature channels, whereas
spatial attention aims to find locations with informative cues.

We apply the FGM to extract the features, optimize filtering,
and optimize the fused feature ai along the channel and spatial di-
mensions. The FGM is primarily divided into two parts. The first
part uses channel attention to perform weighted optimization
along the channel dimension of ai. The second part uses spatial
attention to perform weighting along the spatial dimension of the
features after channel optimization. Let CA and SA denote the
channel and spatial attention mechanisms, respectively. In ad-
dition, we define the convolution block CBRn×n that includes a
convolutional layer with n× n kernel, BN, and ReLU activation,
as follows:

CBRn×n(x) = RELU(BN(Convn×n(x))). (6)

Hence, the feature bi (i = 1, 2, 3, 4, 5) after channel attention
adjustment can be formulated as follows:

bi = CA(CBR3×3(ai))× CBR3×3(ai). (7)

The fused feature output is denoted as fi and given by

fi =

⎧⎨
⎩
(bi × SA(bi)), i = 1
(bi × SA(bi)) + fi−1, i = 2
(bi × SA(bi)) + CBR3×3(Avg(fi−1)), i = 3, 4, 5

(8)
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Fig. 3. Architecture of MCAM.

where Avg represents adaptive average pooling.

C. Multiscale Context Aggregation Module

Considering cross-source fused features, we capture the cross-
source complementary information by selectively fusing single-
source features using the MCAM (see Fig. 3). Inspired by the
method in [48], we obtain multiscale single-source features by
adding the fused features of the fifth layer and the two kinds of
single-source features. Then, multiscale single-source features
with different scales are fused to extract multiscale cross-source
features. First, we add the single-source features and fused
features to obtain multiscale single-source features Mfr and Mfd

as follows:

Mfr = f5 +R5 (9)

Mfd = f5 +D5. (10)

Then, features Mfr and Mfd are operated with dilated con-
volutions at different scales and added together. The multiscale
fusion results are concatenated, and the MCAM is formulated
as follows:

M1 = ACU(Mfr) +ACU(Mfd) (11)

M2 = Dconv1(Mfr) +Dconv1(Mfd) (12)

M3 = Dconv6(Mfr) +Dconv6(Mfd) (13)

M4 = Dconv12(Mfr) +Dconv12(Mfd) (14)

M5 = Dconv18(Mfr) +Dconv18(Mfd) (15)

M = Cat(M1,M2,M3,M4,M5) (16)

where Mi (i = 1, 2, 3, 4, 5) represents summation at scale
i, ACU represents the adaptive average pooling followed by
1 × 1 convolution and upsampling, Dconvi represents dilated
convolution with dilation rate i, and M represents the MCAM
output.

Fig. 4. Architecture of DDM.

D. Dense Decoding Module

Recent scene parsing methods use encoder–decoder archi-
tecture to generate pixel-level predictions. For instance, in the
decoder, DeconvNet [49] uses stacked deconvolution operations
to gradually recover a full-resolution prediction. SegNet [21]
used indices in the encoder pooling block to guide the recovery
of image resolution in the decoder, and DeepLabV3+ [22]
implements a cascaded decoder. Although decoder improvement
is being pursued, the limitations on the resolution of fused
features and difficulties of feature aggregation are challenging
to address. In addition, fusing low and high-level features and
resolving resolution limitations between them are difficult prob-
lems. High-level features containing rich semantic cues allow
object location and background noise elimination, but they lack
details such as object contour and texture. Conversely, low-level
features can capture spatial details, but are noisy and unsuitable
for accurate segmentation.

We propose the DDM with the architecture shown in Fig. 4.
It aims to provide a multiscale receptive field with cascaded
dilated convolution to handle changes in the object scale during
decoding. The DDM only fuses the features of adjacent layers,
avoiding interference caused by large resolution differences.
Furthermore, it extracts complementary information to enhance
multiscale multilevel features.

The output of the MCAM is the input to the first DDM, which
proceeds as follows. First, as concatenation causes redundancy
in the feature space, we use the spatial attention module to
optimize the hierarchical features along the spatial dimension.
Then, we introduce three cascaded dilated convolutions to ex-
pand the receptive field for K1, K2, and K3, and multiply the
results layer by layer to extract common elements, obtaining
e. Subsequently, a residual connection and upsampling provide
the DDM output, ddmi (i = 1, 2, 3). The input of the first DDM
is M (i.e., the MCAM output), and the input of the remaining
DDMs is the output of the previous decoder block, Yi-1 (i = 2,
3). For convenience, let x represent the DDM input. The DDM
is formulated as follows:

K1 = Dconv1(SA(x)) (17)

K2 = Dconv2(x) (18)

K3 = Dconv4(x) (19)
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Fig. 5. Architecture of JLM.

e = θ(K1 ×K2)×K3 (20)

ddmi = Up2(CBR3×3(K1 + e) + e) (21)

where θ represents the softmax function and Upn represents n
times upsampling.

Output Y1 of the first decoder block is given by

Y1 = Cat(ddm1(x), f4) + ddm1(x) (22)

where ddm1 represents the first DDM output. The remaining
decoder blocks are formulated as follows:

Yi = Cat(ddmi(Yi−1), f5−i) + ddmi(Yi−1)i = 2, 3 (23)

where Yi represents the output of the ith decoder block and ddmi

represents the ith DDM output. Moreover, we get our auxiliary
output Outaux as follows:

Outaux = Conv1×1(Y3). (24)

E. Joint Learning Module

To suppress noise in low-level detailed features, we present
the JLM based on cosine similarity, as shown in Fig. 5. First,
we calculate the cosine similarity of the auxiliary output and the
low-level fusion feature to segment the redundancy of detail in-
formation, and the similarity weight SDF obtained is as follows:

SDF = Cos(Conv1×1(f2), Outaux) (25)

where Cos denotes the cosine similarity function. We then use
a pair of reverse similarity weights to denoise and enhance the
cross-source feature maps of the lower levels as follows:

JL = Conv1×1(Cat((f2 × SDF ), (f2 × (1− SDF )))).
(26)

In the JLM, the SDF calculates the similarity between the
Outaux and f2, whereas the reverse weight (1 − SDF) measures
the difference between them. We found that the low-level fusion
feature contains redundant information or interference noise in
the mixed details. Hence, the reverse weight can be multiplied by
the low-level cross-source feature to suppress noise in the details.
The features refined by the JLM are denoted as JL. Outaux and
JL are combined to obtain the final full-resolution prediction
map Outprim after upsampling four times using a convolution

operation with a 3 × 3 kernel as follows:

Outprim = Conv3×3(Up4(JL×Outaux +Outaux)). (27)

F. Loss Function

The loss function used by MISNet is the most extensively
applied cross-entropy loss function L, used to supervise the
auxiliary and final outputs

L = −
Q∑
i

Vi× log(Pi), i = 0, 1, 2, 3, 4, 5 (28)

where Vi is used to indicate whether the predicted class is consis-
tent with the sample class and Q denotes the number of classes; if
so, it is 1; otherwise, it is 0. Pi denotes the predicted probability
that the sample belongs to class i. The total loss functions include
the primary loss function Lprim and the auxiliary loss function
Laux, which jointly supervise the model output

Ltotal = (Lprim + Laux)/2. (29)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section describes the experimental setup and results of
quantitative and qualitative evaluations and an ablation study.

A. Datasets

The Vaihingen and Potsdam benchmark datasets from the
ISPRS 2-D Semantic Labeling Contest [40] were used to vali-
date the MISNet. These benchmark datasets contain six scene
parsing classes: buildings (blue), impervious surfaces (white),
clutter/background (red), low vegetation (cyan), trees (green),
and cars (yellow). The Vaihingen benchmark dataset contains
33 VHR images showing 9 cm/pixel in images with a 2500
× 2000 resolution. Each HRAI shows the IRRG bands and
corresponding nDSMs [18]. As the dataset is publicly available,
we considered the settings used in the contest. Specifically, 17
ground-truth images were applied as the test set, five HRAIs (ID
11, 15, 28, 30, and 34) were applied as the validation set, and
the remaining 11 HRAIs were applied as the training set.

The Potsdam benchmark dataset contains 38 HRAIs showing
5 cm/pixel in images with a 6000× 6000 resolution. Each HRAI
shows the IRRG bands and corresponding nDSMs. The ground-
truth images of the Potsdam dataset were applied as the test set,
and the remaining seven HRAIs (ID 2_11, 2_12, 4_10, 5_11,
6_7, 7_8, and 7_10) were applied as the validation set.

B. Performance Measures

To quantitatively verify the effectiveness and robustness of the
proposed MISNet, we selected intersection over the union (IoU),
mean intersection over the union (mIoU), class accuracy (Acc),
and mean class accuracy (mAcc) as the performance measures
[50], [51], [52].

C. Implementation Details

All relevant experiments were conducted on the PyTorch
framework and a 12 GB NVIDIA TITAN Xp GPU. In the
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TABLE I
SCENE PARSING RESULTS ON THE VAIHINGEN DATASET

TABLE II
SCENE PARSING RESULTS ON THE POTSDAM DATASET

experiment, the weights of the encoder of the proposed MISNet
used Res2Net-50 [42] to initialize. The input size of the proposed
method is 256 × 256. The ground truth and input images
are then enhanced by applying cropping and random scaling,
a counterclockwise 90°, 180°, 270° rotation, and vertical and
horizontal flipping [53], [54], [55].

During the training stage, we apply the Adam method for
optimization. Its initial learning rate is 0.0001, weight decay is
0.0005, and momentum parameter is 0.9, which is reduced to
0.1 times of the original every 20 epochs. It took approximately
100 epochs for the proposed MISNet to converge.

D. Comparisons With SOTA Models

The proposed MISNet was compared with 10 SOTA scene
parsing models: FCN [19], U-Net [20], DeepLabV3+ [22],
SegNet [21], RedNet [31], HRCNet [23], ACNet [32], SA-Gate
[33], ESANet [35], and TSNet [34]. For a fair comparison, the
scene parsing results were retrieved from the original papers or
generated by running the available source codes. FCN, UNet,
SegNet, DeepLabV3+, and HRCNet belong to single-source
scene parsing, and the rest belong to RGB-D scene parsing. We
chose these models for comparison, given the scarcity of scene
parsing models for HRAIs and because existing models do not
have publicly available codes.

Quantitative Experiments: Tables I and II list the obtained
Acc, mAcc, IoU, and mIoU for the evaluated methods. The
measurements for the proposed MISNet in the multiclass labels
indicate excellent performance, demonstrating the effectiveness

of our proposal. In general, single-source scene parsing is in-
ferior to the multisource approach. Therefore, auxiliary data
nDSM are introduced to capture 3-D spatial information for
scene parsing of HRAIs, and the scene parsing performance is
significantly improved.

Qualitative Experiments: To further evaluate the excellent
performance of our proposed MISNet, we show the results
of scene parsing in Fig. 6. Owing to the limitation of space,
we chose HRCNet [23] as the typical representative single-
source approach and selected all multisource approaches for
comparison. The results in lines 4 and 6 in Fig. 6 show that
the multisource approach using nDSM data can easily extract
staggered buildings; the single-source approach identifies large
impervious surface areas as buildings. The results in lines 1 and
7 show that the proposed MISNet is superior to other approaches
because the other approaches tend to confuse similar areas,
such as low vegetation and trees; moreover, it can easily extract
small objects, such as cars that were hidden under the shadows
of buildings. Furthermore, our method of segmentation has a
sharper profile, as listed in lines 2 and 3.

E. Ablation Studies

We performed ablation studies on the Potsdam and Vaihin-
gen benchmark datasets to investigate the contribution of the
different modules to this approach, as listed in Table III.

1) Effectiveness of FFOM: Based on the backbone network,
the FFOM is added to the encoding part. The DDM and JLM
are replaced by a simple convolution operation and upsampling
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Fig. 6. Scene parsing maps obtained from the MISNet and SOTA approaches.

TABLE III
RESULTS OF ABLATION STUDIES ON MISNET

operation in the decoding part, where the convolution kernel
is 1 × 1. It is used to adjust the channel number to discard
the interactivity between cross-layer features, so that decoding
blocks and fusion features are concatenated in series layer by
layer, and the prediction graph is finally obtained. The cyan
low vegetation and green trees in the forecast diagram of the
scenario analysis shown in Fig. 7 are similar in color. Without
the FFOM to fuse IRRG and nDSM, incorrectly classifying trees
as low vegetation would be easy. In addition, in the hyperspectral
image, the top area of the building resembles the shaded area.

Fig. 7. Scene parsing maps obtained from backbone, backbone add
FFOM(B+FFOM) and complete MISNet.

The addition of the FFOM can make the contour of the building
flat and smooth.

2) Effectiveness of MCAM: Based on the backbone network,
we use simple addition instead of the FFOM in the encoder to
merge the two kinds of image features and retain the MCAM.
In the decoder, we use convolution and upsampling instead of
the DDM and JLM to obtain the final output. Fig. 8 shows
that if the global multiscale context information processing of
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Fig. 8. Scene parsing maps obtained from backbone, backbone add
MCAM(B+MCAM) and complete MISNet.

Fig. 9. Scene parsing maps obtained from backbone, backbone add
DDM(B+DDM) and complete MISNet.

the MCAM is omitted, objects of different scales cannot be
completely divided, for example, details such as the zigzag
texture of a building cannot be accurately divided. Further, with
the addition of the MCAM, some areas of the impervious surface
can be segmented. As shown in Table III, the MCAM facilitates
accurate scenario resolution.

3) Effectiveness of DDM: Based on the backbone network,
we replace the FFOM with simple element addition at the
corresponding nDSM and IRRG flow level, add the DDM in
the decoding part, retain the decoding operation in the original
model, and eliminate the JLM at the same time. Fig. 9 shows
that the segmentation effect becomes significantly worse after
the DDM is removed. We use the DDM to integrate and refine
multiscale features from top to bottom, solving segmentation
errors and incomplete problems, such as confusion of low veg-
etation and trees and unclear segmentation of jagged textures of
buildings.

4) Effectiveness of JLM: Based on the backbone network, the
FFOM is replaced by simple element addition in the encoding
part; 1× 1 convolution and upsampling are used in the decoding
part to replace the original DDM, and the JLM and its related
operations are retained. Fig. 10 shows that without the addition
of the JLM, the area of the trees and impervious surfaces could
not be completely and correctly segmented, and segmentation
errors occurred, such as impervious surfaces and buildings. The

Fig. 10. Scene parsing maps obtained from backbone, backbone add
JLM(B+JLM) and complete MISNet.

JLM can be seen to improve the integrity and correctness of
segmentation.

V. CONCLUSION

We propose the MISNet, a cross-source interaction model
that exploits the dependence between two kinds of aerial image
data in different convolution layers. The FFOM performs cross-
source fusion and guides interactive features layer by layer.
The MCAM establishes a transition between the encoder and
decoder, and the DDM refines and denoises details in low-level
contextual features based on high-level semantics. To further
improve the MISNet, the JLM based on similarity learning
is introduced, and auxiliary supervision is added to optimize
the scene parsing performance. Experimental results indicate
that the proposed MISNet is superior to 10 SOTA approaches
in terms of various evaluation measures on two benchmark
datasets.
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