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Abstract—Street tree extraction based on the 3-D mobile map-
ping point cloud plays an important role in building smart cities
and creating highly accurate urban street maps. Existing methods
are often over- or under-segmented when segmenting overlapping
street tree canopies and extracting geometrically complex trees. To
address this problem, we propose a method based on improved
3-D morphological analysis for extracting street trees from mo-
bile laser scanner (MLS) point clouds. First, the 3-D semantic
point cloud segmentation framework based on deep learning is
used for preclassification of the original point cloud to obtain the
vegetation point cloud in the scene. Considering the influence of
terrain unevenness, the vegetation point cloud is deterraformed
and slice point cloud containing tree trunks is obtained through
spatial filtering on height. On this basis, a voxel-based region
growing method constrained with the changing rate of convex
area is used to locate the stree trees. Then we propose a pro-
gressive tree crown segmentation method, which first completed
the preliminary individual segmentation of the tree crown point
cloud based on the voxel-based region growth constrained by the
minimum increment rule, and then optimizes the crown edges by
“valley” structure-based clustering. In this article, the proposed
method is validated and the accuracy is evaluated using three sets of
MLS datasets collected from different scenarios. The experimental
results show that the method can effectively identify and localize
street trees with different geometries and has a good segmentation
effect for street trees with large adhesion between canopies. The
accuracy and recall of tree localization are higher than 96.08%
and 95.83%, respectively, and the average precision and recall of
instance segmentation in three datasets are higher than 93.23%
and 95.41%, respectively.
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I. INTRODUCTION

A S A vital component of the street environment, street trees
play an important role in reducing noise [1] and improving

air quality and other aspects of the urban environment [2]. Three-
dimensional models of individual trees are used in road improve-
ment design, 3-D modeling of street trees, urban climate studies,
monitoring of road tree growth, and parameter extraction and
estimation of road tree biomass. These applications rely on the
accurate extraction of information such as the location, height,
and canopy width of trees in the street environment [3]. For
example, to create highly accurate navigation maps of cities, the
obstruction of the field of view (FOV) by trees must be accurately
calculated, which requires the accurate detection of tree contours
as well as locations [4]. In the power industry, vegetation easily
interferes with power lines due to its rapid growth, so obtaining
accurate information regarding the height, location, and other
characteristics of trees is crucial [5]. These and many other
applications illustrate the practical value of accurately extracting
individual trees in urban streets. With the rapid development of
3-D sensing, computer vision, and other technologies, laser scan-
ning is widely used for 3-D data acquisition in cities. Compared
with airborne laser scanning, the 3-D point clouds acquired by
MLS on the ground produce complete structures with a higher
level of detail and are, thus, widely used for high-quality urban
data collection and road modeling. Subsequently, a large number
of researchers are committed to extracting building facades [6],
vegetation element segmentation [7], street facilities extraction
and modeling [8], and semantic segmentation of 3-D scenes from
mobile scanning laser point clouds [9]. Segmentation and extrac-
tion of tree elements based on mobile scanning laser data is an
important process in the current high-precision map generation
and 3-D scene modeling in smart cities, but some challenges
remain.

1) In addition to vegetation elements, the vehicle’s 3-D point
cloud also contains a large number of other urban targets,
such as buildings, roads, and urban infrastructure. Remov-
ing such elements from the complex urban environment
and accurately segmenting vegetation elements remains
difficult.
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2) Existing algorithms tend to under-segment or miss trees
when 3-D point cloud data are incomplete due to
occlusions.

3) When vegetation on urban streets is too dense, resulting in
large adhesions between trees, existing algorithms are also
prone to problems such as inaccurate canopy segmentation
and large errors in tree parameter calculations.

Considering the above problems, this article proposes an
improved 3-D morphology analysis method for accurate extrac-
tion and parameter calculation of street trees in complex street
environments. This method compensates for the shortcomings
of existing methods and has significant advantages, particularly
in the extraction of trees with adhesion cases. The rest of this
article is organized as follows. In Section II, previous methods
of extracting individual street trees based on MLS point clouds
are presented. In Section III, the street tree extraction method
proposed in this article is introduced in detail. Three sets of data
are used to verify the accuracy and robustness of the proposed
method in Section IV. Finally, Section V concludes this article.

II. RELATED WORKS

In recent years, researchers have proposed many methods to
extract individual row trees from MLS point clouds, which can
be divided into three main categories: cluster-based methods,
graph cut-based methods, and contextual information-based
methods.

A. Cluster-Based methods

The cluster-based approach first preprocesses the original
point cloud. Then, the objects are segmented by instances using
various clustering algorithms, and individual trees are identi-
fied according to the size, height, location, and shape of the
clusters. The K-means clustering algorithm and density-based
spatial clustering of applications with noise (DBSCAN) cluster-
ing algorithm, as classical density-based point cloud clustering
methods, are widely used in single tree extraction. For example,
[10] and [11] first preprocessed original data using methods
such as principal component analysis to remove the ground
and buildings from the original point clouds, and then used
the improved K-means clustering algorithm and the DBSCAN
clustering algorithm to extract a single tree from the remaining
point cloud. In the K-means clustering algorithm, the number
of clusters must be determined artificially, and it is difficult
to detect nonspherical tree crowns when the crowns overlap.
Alternatively, the DBSCAN algorithm is more sensitive to the
threshold of density and tends to reject some crown points as
noisy point clouds, which results in incomplete crowns. To solve
this issue, [12] and [13] segmented trees from LiDAR data using
the mean drift method. However, the clustering method based on
adaptive density is prone to over- and under-segmentation in tree
crown extraction when the trees are mixed among other street
components. In contrast to direct tree segmentation methods,
some researchers have used progressive segmentation methods
to improve the accuracy of tree crown segmentation. These
methods first perform tree localization over the trunk and then
perform further individual segmentation of trees. The authors

in [14] used the constraints of the morphological characteris-
tics of trunks and crowns, including the horizontal positional
relationship between trunk and crown, cylindrical morphology,
and crown diameter, to distinguish the trunk from various road
poles and finish tree localization. Then, a voxel-based region
growth method could be used to segment tree crowns. This type
of method can effectively extract tree crowns when trees are
accurately located. However, it remains difficult to accurately
segment trees when crowns are sagging. In contrast, [15] first
utilized the super voxel-based clustering method to enhance
the robustness of tree localization, in which super voxels are
processed through principal component analysis (PCA) and
trunks are identified by regional growth on the super voxels.
Overall, the clustering method can typically segment individual
trees, but these methods are mainly used for tree extraction in
simple scenes due to difficulties in obtaining accurate extraction
results for scenes with challenging situations or complex tree
structures.

B. Graph Cut-Based Methods

Graph cut-based methods are effective and popular energy
optimization algorithms widely used in the field of computer
vision for image segmentation and stereo vision. In recent years,
such approaches also have been used to segment point clouds by
obtaining the topology relations between points using methods
such as the kdtree algorithm and then segmenting objects by
the feature vector of the weight matrix. The authors in [16]
and [17] individually segmented trees from laser point clouds
using the graph cut method, in which the radius parameter was
calculated based on the position of the tree crown and trunk.
These methods can greatly improve the detection of crowns
in the lower and middle heights of a tree, but the accuracy
of trunk identification is sensitive to laser point cloud density.
The authors in [18] located trees based on local maxima in
a horizontal histogram of point cloud octree nodes and their
shape features, and then used Voronoi diagrams and NCut
segmentation to achieve instance segmentation. Moreover, [19]
combined machine learning methods and graph-cut methods for
individual tree segmentation. They first constructed a global
graph model and then used graph-cut-based clustering to achieve
tree instance segmentation. The graph-cut-based approach can
generally achieve individual tree segmentation in nonadhesive
scenes, but this method relies on manually set parameters, such
as the tree radius. It therefore struggles to obtain robust tree
extraction results when tree features are highly variable or
contain different tree species in the scenes.

C. Contextual Information-Based Methods

Tree segmentation methods based on contextual information
use the nearest neighbor feature of each point in a point cloud
as the contextual feature of the corresponding point. As early
as 2006, Lalonde et al. [20] attempted to use 3-D descriptors
to characterize the local geometric features of point clouds
and classify the geometric tensor features of the target point
cloud into three categories: voluminous, which mainly represent
volumetric objects (e.g., grass, treetops); faceted, which mainly
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Fig. 1. Overview of the proposed method.

represent planar objects (e.g., ground, elevation); and linear,
which mainly represent linear objects (e.g., tree trunks, light
poles). Such methods can roughly classify scenes, but the clas-
sification results are often too coarse to be used. Subsequently,
[7] proposed a cylindrical fitting model by modifying the exist-
ing probabilistic relaxation model, which identifies cylindrical
objects as tree trunks (and voluminous features) and merges the
adjacent tree to construct the street model. However, this method
has poor extraction accuracy for tree crowns when there are large
areas of adhesions. The authors in [21] also proposed a new 3-D
segmentation algorithm for dominant tree detection by using the
symmetric structure of the tree, but the search radius parameter
in this method must be manually determined based on a priori
knowledge, and its generalizability must be improved. Although
context-based methods can roughly segment point clouds into
several types, they have difficulty with accurately extracting in-
dividual trees and can over- or under-segment in complex scenes.
The aforementioned state-of-the-art methods can successfully
identify and extract individual street trees in cases with simple
trunk shapes, large tree spacing, and small overlaps between
trees. However, when the distance between trees is too small, the
adhesion is severe, or the tree branching structure is complex,
the existing algorithms struggle to achieve accurate individual
tree segmentation and tend to poorly generalize parameter set-
tings and over- or under-segment. To address these issues, we
propose an improved 3-D morphological analysis-based method
for individual tree segmentation in complex street environments.
The main contributions of this work are as follows.

1) The data preprocessing phase involves 3-D deep learning
to presegment point clouds and reduce the impact of terrain
unevenness on individual tree segmentation through the
terrain filtering process.

2) A voxel-based region growing algorithm based on the rate
of change of the convex area is proposed to locate street
trees, which enables accurate positioning of trees with
complex geometry.

3) A coarse-to-fine canopy extraction method for adhesion
scenes is proposed, which integrates the area increment
rule and height change rule to achieve multiscale area
growth of crown point clouds.

III. METHODOLOGY

Fig. 1 shows the overall technical flow of this method. First,
the raw data are preprocessed to remove noise and perform
a preliminary classification of the point clouds to obtain tree
point clouds. The digital elevation model is then created by
filtering, and the total elevation of the point cloud is unified
to a datum before locating the trees. Based on these tree local-
ization results, a coarse to fine tree canopy extraction method
is used to accurately extract the individual tree canopies and
merge them with the branches to obtain individual tree point
clouds.

A. Data Preprocessing

Mobile mapping point cloud data includes vegetation, as well
as information about the ground, buildings, road infrastructure,
and other elements that require a large amount of memory [22],
[23]. This information affects the accuracy of vegetation extrac-
tion and causes problems such as long data processing times.
In this study, we preprocess original vehicle point cloud data
using mainly point cloud denoising and preliminary semantic
classification. First, the point cloud is denoised based on the
statistical outlier removal filter (SOR) algorithm to remove the
noise information. Furthermore, we use the RandLA-Net deep
learning 3-D point cloud network for semantic classification
based on [9] to classify the original point cloud into the ground,
vegetation, and man-made buildings (including human-operated
poles), and reserve the vegetation elements for individual tree
segmentation. The results of mobile mapping point cloud data
preprocessing are shown in Fig. 2.

B. Terrain Filtering and Trunk Filtering

Most studies [24], [25], [26] have used the spatial elevation
section method to obtain the main stem or part of the branch
point cloud of trees for use as the basic information for tree
localization. However, if a uniform height threshold is used in
a scene with hilly terrain, point cloud filtering tends to miss
numerous tree trunks, which leads to failed localization. Our
work therefore considers the influence of terrain ripple, and the
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Fig. 2. Data preprocessing. (a) Raw point cloud. (b) Classification result
by deep learning. (Brown: Ground points; Green: Vegetation points; Yellow:
Artificial construction points).

point clouds of vegetation are unified to the same height level to
eliminate this influence before height-based point cloud filtering.
The details are as follows. 1) Ground points are interpolated
according to the ground point cloud obtained by preprocessing
to create a digital elevation model (DEM) using the inverse
distance-weighted interpolation method (1), (2). The vegetation
point cloud is then subtracted from the DEM elevation according
to (3) to unify it to the same horizontal plane

Z =

∑n
i=1

zi
pi∑n

i=0
1
pi

(1)

pi =
(
(X − xi)

2 + (Y − yi)
2
) q

2

(2)

zi−deterr = zi − zg r i d. (3)

In (1) and (2), (X,Y, Z) are the coordinates of the interpolation
points; (xi, yi, andzi) are the coordinates of the neighboring
points; p is the weight; q is the power; i is the index of the
neighbor points; and n is the number of neighboring points
in the search area. In (3), Zi−deterr is the normalized height
value of any vegetation point, Zi is the original height value
of the point, and Zgrid is the corresponding height value of the
DEM grid in which the point is located. After eliminating the
influence of terrain undulation, all vegetation point clouds are
unified to the same horizontal plane. By iterating the vegetation
point cloud data, the lowest value of elevation Zb is determined
and the elevation threshold Th is set. As shown in Fig. 3, the
vegetation point cloud is intersected based on the height filter-
ing within [Zb, Zb + Th] to obtain the local trunk point cloud.
Fig. 3 shows the point cloud after terrain filtering and trunk
filtering.

Fig. 3. Terrain filtering and trunk filtering. (a) Vegetation point cloud. (b)
Vegetation point cloud after terrain filtering. (c) Vegetation point cloud after
filtering with height.

C. Tree Localization

The trunk is an important feature to distinguish street trees
from other objects. When investigating the individual segmen-
tation of street trees, most studies [27], [28], [29] have tended to
first identify and extract the trunk structure from the target point
cloud as the basis for localization. However, the existing methods
are prone to inaccurate localization of trees with complex struc-
tures, such as those with nonvertical trunks, multiple branches,
and low branches. We thus propose a method to localize street
trees with complex trunk geometry. The method first performs
Euclidean distance clustering on the trunk point clouds obtained
by filtering and then voxelizes each clustered point cloud cluster.
The seed points in the voxels are subsequently selected for
voxel area growth to obtain the stem candidate point clouds
as constrained by the convex packet area change rate. Finally,
possible low shrubs in the candidate trunks are removed by a
point cloud filtering algorithm based on surface variability. Each
step in this process is described in greater detail below.

1) The trunk point cloud is clustered based on the adaptive
Euclidean clustering method proposed by [24]. To obtain the op-
timal clustering effect, the three thresholds d(p1, p2), dNN (p1),
and dNN are calculated using (4)–(6) to obtain d(p1, p2), where
d(p1, p2) represents the 3-D spatial distance between points (p1
and p2), dNN (p1) represents the average spatial distance from
the point (p1) to its n nearest neighbors, and dNN represents
the average distance from all points in point cloud P to their
nearest neighbors, which is generally used to measure the point
cloud density. To obtain the fine trunk point cloud, the single
cluster point cloud Z obtained after clustering is filtered, and
the point cloud data less than 0.5 m from the ground are retained
(as shown in Fig. 4) to obtain the point cloud cluster PCstrunk

d (p1, p2) =

√
(xp1

− xp2
)2 + (yp1

− yp2
)2 + (zp1

− zp2
)2

(4)

dNN (p1) = min
{pi∈P :pi �=p1}

d (p1, pi) (5)
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Fig. 4. Slice point cloud clustering processing. (a) Slice cloud. (b) Clustering
point cloud clusters. (c) Clustered point cloud containing tree trunks.

Fig. 5. Schematic diagram of the tree trunk growth process. (a) Voxelization
of a candidate trunk cluster. (b) Horizontal convex hull of the trunk and crown
layers.

dNN =
1

N(p)

N(P )∑
i=1

dMN (pi) . (6)

2) The point cloud cluster PCstrunk is voxelized, and all
voxels are organized hierarchically from bottom to top as
Layer0,Layer1, . . . ,Layern. The layer with the lowest number
of voxels is selected as the location of the stem seeds (Layerseed).
Considering that a single point cloud cluster may contain more
than one stem, we cluster LayerSeed to obtain multiple subclusters
and compute the horizontal convex envelope area AreaCH of
each subcluster corresponding to the point cloud if it is smaller
than the specified threshold TArea, where if TArea = 1.5, then the
subcluster represents a trunk seed seedTrunk.

3) As shown in Fig. 5(a), for each subcluster seedTrunk, the
upward and downward growth methods are used to obtain
the overall trunk point cloud. The upward growth method obtains
the overlapping voxels in the layer LayerSeed + 1 with SeedTrunk

in the X,Y plane and grows in the horizontal region of the
layer such that the growth of the layer ends when no adjacent
voxels are added. As seen in Fig. 5(b), the growth of the current
layer is analogous to that of the previous layer. If the ratio of
the horizontal convex packet area Areacur to the upper layer
area Areapre is greater than TRArea, then the current layer is the

canopy layer and the growth ends. The bottom of the tree trunk
is reached by similar downward growth.

4) Based on the above results, the local surface varia-
tion in trunk growth Psv is used to distinguish trees from
shrubs.The parameters are first calculated by s (7) and (8),
where λ1, λ2, λ3(λ1 ≥ λ2 ≥ λ3) are the point pineighborhood
eigenvalues; Psv(pi) is the degree of surface variation of the
neighboring point cloud; and Psv(P ) denotes the degree of
local surface variation of the point cloud P . If the degree of
local surface variation in this growth result exceeds the specified
threshold Tsv, the result is considered a shrub and removed

Psv (pi) =
λ3

λ1 + λ2 + λ3
(7)

Psv(P ) =
1

N(P )

N(P )∑
i=1

Psv (pi) . (8)

D. Coarse Extraction of Tree Crowns

Based on the trunk information obtained in Section III-C, the
tree crown is then extracted using the coarse-to-fine process.
The point cloud for the tree crown is obtained by Euclidean
clustering at the local region and the initial point cloud of the
tree crown by region growth, after which the crown point cloud
is optimized based on the “valley” structure as follows. 1) All
trunk points are removed from the vegetation point cloud, and the
trunk centroid Tbc is used as the seed point. The average distance
DNeT between this trunk and neighboring trunks is used as
the initial radius to perform a Euclidean clustering operation
in this region, and the resulting clustered point cloud PCroCd

is used as the initial candidate crown point cloud. To obtain a
more complete point cloud of the tree crowns, a growth method
similar to that of trunk extraction is used to further extract
the tree canopies. The distance d(P i

CroCd, P
j
CroCd) between

each point cloud of the candidate regions is calculated, and if
d(P i

CroCd, P
j
CroCd) = 0 it is assumed that the point clouds of

the candidate regions P i
CroCd, P

j
CroCd overlap with those of the

candidate regions P i
CroCd, P

j
CroCd. If there is an overlap, the

overlapping region point clouds are obtained and voxelized. 2)
Fig. 7(a) shows the voxelization results for two tree crowns and
that the algorithm grows from the initial layer marked in blue.
When two adjacent trees grow simultaneously in the same layer
and a voxel is marked at the same time, the mapping is judged
based on the minimum increment rule in which Abefore and
Aafter are the horizontal convex envelope areas corresponding
to the tree crown growth results before and after adding the
voxel, respectively. As shown in (9) and Fig. 6, the increase in
the horizontal convex parcel area of Area1grow,Area2grow (10) is
first calculated after adding Tree1,Tree2 to the point cloud of this
voxel. If Area1grow < Area2grow, the voxel goes to Tree1, while if
Area1grow > Area2grow, it goes to Tree2

Areagrow = Area1grow − Area2grow. (9)

Fig. 7 shows the crown growth process in two adjacent layers,
where green voxels represent Tree1, blue voxels represent Tree2,
red voxels represent the point clouds to be grown, and yellow
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Fig. 6. Schematic diagram of the minimum increment rule (yellow voxels are
repeat labeled voxels). (a) Schematic diagram of the change of the horizontal
convex hull before and after adding repeated label voxels. (b) Schematic diagram
of the increase in the area of the horizontal convex hull after adding repeated
labeled voxels.

Fig. 7. Growth process of crowns in Layeri+1. (a) Side view of voxelization
results of Tree1 and Tree2 (b) Point cloud of the canopy to be grown in Layeri+1
of Tree1 and Tree2 (c) Preliminary growth results and repeat labeling of voxels
(d) Reassignment of duplicate marker voxels using the minimum increment rule.

Fig. 8. Valley structure in overlapping regions.

voxels represent adherent point clouds. Fig. 7(a) shows the side
view of the initial voxels of two trees, and Fig. 7(b) shows the
top view of the canopy point cloud to be segmented after the
upward regional growth of Layeri+1, Fig. 7(c) shows the voxel
adhesion between two trees in the current layer, and Fig. 7(d)
shows the canopy point cloud of two trees obtained using the
minimum increment rule.

E. Tree Crown Refinement

As shown in Fig. 10(a), the results of coarse segmentation
have some degree of over- or under-segmentation due to possible
size differences or excessive adhesion between adjacent trees. To
further improve the tree crown segmentation results, this work
optimizes adjacent tree crowns based on the “valley” structural
feature such that the point cloud in the overlapping region of
adjacent street trees has a height change from high to low and
then low to high, as shown in Fig. 8. 1) Equation (10) calculates
the deviation degree Pd of each point such that if Pd < 0.2,
the point occurs in the point cloud of the middle region of the
adherent canopy. Euclidean clustering is performed on the point
cloud of this middle region, and the overlapping canopy point
clouds that must be reassigned are clustered into two classes,
CR1 and CR2, as shown in Fig. 10(b) and (c)

Pd =

∣∣dxy
(
pi, ptrunkj

)− dxy (pi, ptrunkk)
∣∣

dxy
(
pi, ptrunkj

)
+ dxy (pi, ptrunkk)

(10)

where dxy(pi, ptrunkj ) denotes the 2-D distance between point
pi and the principal point ptrunkj of trunk j. 2) The tree canopy
point clouds CR1 and CR2 with a lower mean height CR1 are
used as initial points, while their edge points are used as the seed
point set Pseeds for clustering, which is iteratively optimized by
the following method.

1) First, the highest point pseedh of the seed point Pseeds

in CRx is obtained as the nearest neighbor (R-nearest
neighbors, Rnn).

2) If the highest point palready of CRf in Rnn is higher than
the highest point pyet in CRx, and the lowest distance dmin

from CR1 to CR2 in Rnn is small than double the average
distance dNN in Rnn, then the seed point is added to the
clustered set CR1 and the other points in Rnn are added
as new seed points to Pseeds. If the above condition is not
satisfied, the seed point is removed from the seed set.
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Fig. 9. Refine crown extraction pipeline. (a) Coarse crown extraction.
(b) Crown point cloud to be reassigned in the middle area. (c) Clustering results
(green: clustered points; grey: unclustered points). (d) Refined crown extraction.

3) Repeat the above steps until there are no more seed points.
As shown in Fig. 9(d), the remaining unfinished labeled
point clouds are merged into CR2 to complete the tree
crown optimization

When multiple street trees adhere to each other in multiple
directions, we first arbitrarily select two adherent street trees for
processing and then iteratively traverse each pair of adherent
street trees and use the same method to complete the single
canopy extraction.

IV. EXPERIMENTATION AND ANALYSIS

A. Experimental Data and Evaluation Criterion

To verify the feasibility and effectiveness of the proposed
monomerization extraction method for street trees, experiments
were conducted using three MLS point cloud datasets, fol-
lowed by qualitative and quantitative analyses. Datasets I [see
Fig. 10(a)] and II are mobile laser scanning point clouds of cam-
pus streets. The street trees in Dataset I are mostly lychee trees
with complex trunk geometry, and the topographic elevation of
the area is hilly. The trees in Dataset II [see Fig. 10(b)] have
serious problems with canopy adhesion, and clearly identifying
boundaries between canopies is difficult. These two datasets
were used to test the effectiveness of the proposed method
for individual segmentation of trees with complex geometric
structures or strong adhesion. Dataset III [see Fig. 10(c)] is a
public point cloud dataset (part of the Oakland 3-D point cloud
dataset), which has a lower point cloud density than the first two

TABLE I
DETAILS OF THE EXPERIMENTAL DATASETS

TABLE II
RECALL AND PRECISION OF TREE LOCALIZATION IN THREE DATASETS

datasets. For accuracy validation, the ground truth of individual
trees was obtained by manual segmentation and labeling. Table I
shows a basic overview of the three experimental datasets. For
quantitative analysis, we used Recall and Precision as detec-
tion and evaluation metrics for the results of the segmentation
of individual trees (11). Recall represents the completeness or
quantity of tree segmentation, while precision is a metric of
precision or quality. The experiment was divided into two parts:
tree localization and individual tree segmentation, the results of
which were analyzed in comparison with those of existing tree
segmentation methods

⎧⎨
⎩

Recall = TP
TP+FN × 100%

precision = TP
TP+FP × 100%.

(11)

B. Performance of Tree Localization

An initial classification of the entire point cloud based on the
RandLA-Net point cloud classification network was performed
in this work before individual tree segmentation. To achieve
better classification results, we used a 3 km road point cloud
obtained from Shenzhen University for RandLA-Net model
training. We performed manual segmentation of the point cloud
and labeled the different point clouds with vegetation, roads,
buildings, and light poles. Fig. 11 shows the tree localization
results for Dataset I. From Fig. 11(a), we see that deep learning
semantic classification removed most of the elements that were
unrelated to vegetation and maintained the vegetation informa-
tion. We use a resolution of 0.05 m for the DEM. Fig. 11(b)
shows the point cloud of vegetation obtained after removing the
terrain and cutting the tree trunks. All the vegetation is on one
plane after terrain removal, and the tree trunk information can
be obtained by height filtering. Based on the filtered trunk point
cloud, the proposed method performed accurate tree localization
as shown in Fig. 11(c). As shown in Table II, 72 tree trunk
structures were identified in Dataset I, with 69 correctly identi-
fied and 3 incorrectly identified, while Recall = 100.00% and
Precision = 95.83%. Fig. 12 shows the tree location results for
Dataset II. Similar to Dataset I, this method yielded excellent
tree localization results: 193 trunk structures were identified,
with 190 correctly identified, 3 incorrectly identified, and 7 not
identified. Therefore, Recall = 96.44.00% and Precision =
98.44% in Dataset II. As shown in Fig. 13, in Dataset III,
48 trunk structures were identified, all of which were done
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Fig. 10. Experimental datasets. (a) Dataset I. (b) Dataset II. (c) Dataset III.

correctly, but three were missed such thatRecall = 96.08% and
Precision = 100%.

Fig. 14 shows two incorrect identification results of tree
localization. Mislocalization mainly occurred because some of
the point clouds of the street lights near the street trees were
semantically labeled as vegetation point clouds during deep
learning classification, which led to confusion between street
lights and tree trunks. These street lights have a high degree of
similarity with tree trunks, it is not considered in our current
method. We will further optimize in our further research to
improve the accuracy of trunk detection. In addition, some trees
were missed during localization mainly due to the trunks being
obscured by shrubs or elements such as cars, which resulted
in a substantial lack of trunk point clouds. Nonetheless, this
method performed well for tree localization in three datasets of
different complexity, as its Recall accuracy exceeded than 96%
and Precision exceeded 95%, thus, providing a good basis for
subsequent tree crown segmentation.

C. Performance of Individual Tree Segmentation

The complete tree crown was obtained using the tree localiza-
tion results and the proposed segmentation algorithm. Individual
trees are obtained by merging them with the trunk point cloud.
Notably, all parameters in the crown segmentation phase are
computed adaptively and do not require human adjustment. We
compared the accuracy of the proposed method with the ex-
isting tree monomerization algorithms TreeSeparation [30] and
TreeSeg [24].To be fair, all three methods are implemented in
Windows OS and the experiments were performed on a computer
with 3.6 GHz CPU and 64 GB RAM. Figs. 15–17 compare the
tree crown segmentation results for the three datasets across
methods.

Fig. 15 illustrates that the proposed method extracted the indi-
vidual tree model well according to the tree localization results.
Fig. 15(b)–(e) shows the ground truth and the segmentation
results of the proposed method, TreeSeparation, and TreeSeg,
respectively. The proposed tree canopy segmentation method
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Fig. 11. Localization results of Dataset I. (a) Vegetation point cloud after deep learning classification. (b) Vegetation point cloud after terrain filtering and trunk
cutting. (c) Locations of individual trees.

Fig. 12. Localization results of Dataset II. (a) Vegetation point cloud after deep learning classification. (b) Vegetation point cloud after terrain filtering and trunk
cutting. (c) Locations of individual trees.

achieved highly precise individual tree segmentation. Compared
with the results of the other two methods, the segmentation error
(red point cloud of segmentation errors in (c)–(e) is the lowest
and optimal tree crown segmentation results were achieved. The
TreeSeparation method achieved better individual extraction
for scenes with small adhesion areas but tended to under- and
over-segment when trees strongly adhered, mainly because the

method tends to discard the point cloud of the region as it obtains
the individual tree by growing downward. In contrast, TreeSeg
effectively extracted the main parts of street tree crowns in
complex scenes with strong adhesions, but the extracted tree
crowns had missing point cloud edges. To further quantify the
results of individual tree extraction, we selected individual trees
from different regions and calculated the precision and recall
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Fig. 13. Localization results of Dataset III. (a) Vegetation point cloud after deep learning classification. (b) Vegetation point cloud after terrain filtering and trunk
cutting. (c) Locations of individual trees.

Fig. 14. Tree localization errors.

after segmenting the trees based on the ground truth. In this case,
TP, FP, and FN no longer represent the number of street trees but
rather the number of correct, incorrect, and missing points from
individual trees, respectively. As shown in Table III, this analysis
produced an average precision of 97.80% and an average recall
of 97.83%. While the average precision and recall of individual

tree segmentation by TreeSeparation were 92.02% and 87.37%,
respectively, TreeSeg achieved 95.24% precision and 64.85%
recall. The proposed method achieved the best average recall
and precision, with all trees attaining more than 93% precision
and more than 94% recall. It also demonstrated good robustness
for individual tree segmentation in different scenes, while the
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Fig. 15. Individual tree segmentation results from Dataset I. (Best accuracy in red). (a) Overall crowns segmentation results. (b) Ground truth. (c) Results from
the proposed method. (d) Results from treeseg method. (e) Result from tree separation method.

Fig. 16. Individual tree segmentation results from Dataset II. (a) Overall crowns segmentation results. (b) Ground truth. (c) Results from the proposed method.
(d) Results from treeseg method. (e) Result from tree separation method.

TABLE III
QUANTITATIVE COMPARISON OF THE EXTRACTED INDIVIDUAL TREES IN DATASET I (BEST ACCURACY IN RED)

TreeSeparation and TreeSeg algorithms were less robust. For
example, TreeSeparation achieved a segmentation precision of
only 67.18% for the eighth tree, and TreeSeg achieved a recall
of less than 70% for most trees. The low recall of the TreeSeg
algorithm is mainly due to inconsistency between the search ra-
dius of the cylindrical filter and the real crown width of the street
trees, which leads to substantial missing data in tree crown edges.
Figs. 16 and 17 shows the segmentation results of individual trees
for Datasets II and III, respectively, while Tables IV and V also

provide quantitative evaluations of the segmentation accuracy of
a single tree. The proposed tree segmentation algorithm achieved
optimal results across all of the experimental datasets, especially
Dataset II in which optimal segmentation accuracy was achieved
for all eight trees, with an average precision of 96.37% and an
average recall of 97.46%. In the results of Dataset III, an average
precision of 93.23% and an average recognition of 95.41% were
achieved. Tables VI also shows a comparison of the time cost by
the three methods for different data sets. It can be seen that the
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Fig. 17. Individual tree segmentation results from Dataset III. (a) Overall crowns segmentation results. (b) Ground truth. (c) Results from the proposed method.
(d) Results from treeseg method. (e) Result from tree separation method.

TABLE IV
QUANTITATIVE COMPARISON OF THE EXTRACTED INDIVIDUAL TREES IN DATASET II (BEST ACCURACY IN RED)

TABLE V
QUANTITATIVE COMPARISON OF THE EXTRACTED INDIVIDUAL TREES IN DATASET III (BEST ACCURACY IN RED)

TABLE VI
QUANTITATIVE COMPARISON OF TIME CONSUMPTION OF THREE METHODS IN

DATASETS (BEST ACCURACY IN RED)

method proposed in this work achieves the highest processing
efficiency on Datasets II and III. The above results illustrate
that the proposed method achieves better results in terms of
segmentation accuracy and robustness than the other methods.

V. CONCLUSION

To achieve highly precise individual segmentation of street
trees, an effective individual tree extraction method with im-
proved 3-D morphological analysis is proposed in this article.
The method was optimized and improved based on existing tree
localization and tree crown segmentation algorithms to achieve
individual tree segmentation of a large number of street trees
and effectively solve the problem of inaccurate segmentation
in regions with strong tree adhesion. Three sets of MLS point
clouds from different areas, which contain point clouds of trees
with different geometric features, were used for experimental
validation and accuracy analysis. The experimental results show
that this method achieved superior segmentation accuracy for
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street trees in all three datasets compared to other existing meth-
ods. The average precision and recall accuracy of the proposed
method exceeded 93.23% and 95.41%, respectively. In terms
of algorithm robustness, the proposed method displayed good
performance on most single tree extractions, which indicates
that the algorithm functions in scenes of varying complexity,
achieving good robustness in cases of tree adhesion. In future
research, we will optimize and improve this work in two aspects.
First, the color features of the point cloud will be added to
help segment different tree species. Second, the shrub rejection
and clutter rejection (e.g., light poles) will be optimized and
improved with the deep learning method, and the 3-D semantic
point cloud segmentation method with deep learning will be
optimized to further improve the effect of scene classification.
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