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G2Grad-CAMRL: An Object Detection and
Interpretation Model Based on Gradient-Weighted

Class Activation Mapping and Reinforcement
Learning in Remote Sensing Images
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and Muhammad Faizan Khan

Abstract—Remote sensing images (RSIs) contain important in-
formation, such as airports, ports, and ships. By extracting RSI
features and learning the mapping relationship between image
features and text semantic features, the interpretation and de-
scription of RSI content can be realized, which has a wide range
of application value in military and civil fields, such as national
defense security, land monitoring, urban planning, and disaster
mitigation. Aiming at the complex background of RSIs and the
lack of interpretability of existing target detection models, and the
problems in feature extraction between different network struc-
tures, different layers, and the accuracy of target classification,
we propose an object detection and interpretation model based
on gradient-weighted class activation mapping and reinforcement
learning. First, ResNet is used as the main backbone network to
extract the features of RSIs and generate feature graphs. Then, we
add the global average pooling layer to obtain the corresponding
feature weight vector of the feature graph. The weighted vectors are
superimposed to output class activation maps. The reinforcement
learning method is used to optimize the generated region generation
network. At the same time, we improve the reward function of
reinforcement learning to improve the effectiveness of the region
generation network. Finally, network dissecting analysis is used to
obtain the interpretable semantic concept in the model. Through
experiments, the average accuracy is more than 85%. Experimental
results in the public RSI description dataset show that the proposed
method has high detection accuracy and good description perfor-
mance for RSIs in complex environments.
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I. INTRODUCTION

R EMOTE sensing image (RSI) interpretation is the core
and key link of RSI application. Efficient and accurate

interpretation technology is helpful to improve the applica-
tion level and expand the application field of remote sensing
[1], [2]. Currently, the remote sensing survey and update of
surveying and mapping, land, forestry, and other industries in
China still mainly adopt manual visual interpretation, which is
a time-consuming, laborious, costly, and long cycle. It cannot
meet the urgent needs of rapid extraction and update of natural
resource information in the current rapid economic and social
development [3], [4], [5].

In recent years, the pullulating of remote sensing technology
makes it no longer difficult to obtain remote sensing data. Under
the condition of sufficient data, the object detection methods of
natural images cannot be applied to RSIs because of the prob-
lems, such as single prediction scale, poor effect of horizontal
frame fitting to target, and lack of enhancement of target features
[6]. The problems in the field of remote sensing object detection
can be concluded as follows.

1) Scale change problem: RSI has large scene information.
The image reaches a resolution of millions of pixels.
Therefore, the target scale is small relative to the image,
which leads to the failure to obtain the fine features of the
target. In addition, the RSI target scale variation range is
wide, which is not conducive to single-scale multiclass tar-
get detection. Chen et al. [7] proposed a multiscale object
detection framework based on a context feature pyramid,
which improved the performance of multiscale object
detection by enhancing the connection between scene and
object. Zhao et al. [8] proposed a rotation-invariant CNN
model for learning rotation invariant, which introduced
and learned a new rotation invariant layer to increase the
detection effect. Obeso et al. [9] proposed a multiscale
object detection algorithm based on an attention mecha-
nism, which introduced the attention mechanism to redis-
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tribute the weights of feature maps in different channels.
Although some methods solve the scale problem, time
efficiency cannot be guaranteed.

2) Goal orientation problem: The objects in RSIs are oriented
and densely arranged, and the direction of the objects is
irregular. Therefore, the detection model needs to have ro-
tation invariance and a better-quality detection box. Aim-
ing at the problem that the object detection approaches are
difficult to distinguish the mixed pixels and the threshold
is difficult to select, the adversarial growth algorithm was
proposed in [10]. Feng et al. [11] proposed a single-stage
target detection algorithm with a dynamic receptive field.
Bottom-up short connection pathway and global context
up-sampling module were added to the RetinaNet struc-
ture to enhance the structural and semantic features of
the detection layer. The cascade R-CNN algorithm in [12]
continued the two-stage idea based on candidate regions
and adopted the cascade detection head structure, which
could improve the detection performance step by step and
had a good effect on small targets. However, there is still
the problem of incomplete feature extraction.

3) The background is complex and chaotic: The RSI back-
ground is complex and diverse, including a large amount
of redundant background information, such as mountains,
rivers, and so on. This leads to the blurred boundary
between background and target, which is not conducive
to the extraction of target features by the model. Avola
et al. [13] proposed to enhance features by capturing the
correlation between global scenes and local features. Sun
et al. [14] proposed nonmaximum suppression constrained
by aspect ratio to improve the quality of candidate regions,
and used a deformable convolutional neural network to
model geometric changes of objects, which effectively
improved object detection. Cheng et al. [15] proposed a
pixel attention mechanism to suppress image noise and
highlight target features, and introduced Intersection over
Union (IoU) constant factor into SmoothL1 loss to solve
the rotation box boundary problem, so as to make rotation
box prediction more accurate. Chen et al. [16] replaced the
traditional bounding box with a rotatable border embedded
in SSD, so that the algorithm could predict the direction
Angle of the target and had rotation invariance. These
algorithms are improved based on traditional CNN for
RSIs, which improves the performance of RSIs target
detection to a certain extent. However, there are still some
problems in RSIs, such as target detection angle offset,
more missed detection, and low recall rate.

4) Lack of interpretability: Deep learning is a “black box”
model, which lacks explanatory information about the
predicted behavior of the model. As remote sensing tech-
nology is related to national security issues, it is essential
to execute interpretable analysis on the model to a certain
extent to enhance the confidence of the prediction results.
For example, Li et al. [17] added a semantic graph module
to the pretrained CNN to obtain semantic information
of classification and enhance interpretability. Yan et al.
[18] proposed the method of gradient attribution, which

used the gradient of each pixel in the input model to
understand the association between the input and the
prediction results. In addition, there are also some visual-
ization methods [19], [20], such as visualizing the regions
with large activation values of the convolution kernel and
analyzing the information obtained by the model in the
image. These interpretable methods generally use human
subjective judgment and lack in-depth analysis.

Object detection is to detect objects with different scales and
categories in images and give the predicted positions of objects
of different categories. In object detection methods, manual
selection is usually used in the feature extraction stage, such as
scale-invariant feature transformation and orientation gradient
histogram [21], [22]. The performance of feature extraction
methods largely depends on feature design, which requires a
lot of prior knowledge. Therefore, this kind of method has a
high design cost, poor feature robustness, and weak generaliza-
tion ability. Compared with the method of manually designed
features, object detection based on deep learning uses CNN
to extract image features [23], [24], which has automatic and
powerful feature extraction ability, better robustness, and higher
detection accuracy. Therefore, the traditional object detection
method has been gradually replaced by deep learning-based
methods.

Deep learning-based object detection algorithms can be
roughly divided into anchor-based algorithms and nonanchor-
free algorithms. The difference is whether to use anchor points
to extract candidate boxes.

Anchor-based algorithms include two-stage detection models,
such as region CNN (R-CNN) series, and one-stage detection
models, such as YOLOv2 (You Only Look Once2), SSD (Single
Shot MultiBox Detector), etc. [25]. R-CNN first generates can-
didate boxes for feature extraction and then puts classifiers in
these regions to correct and extract targets. Faster R-CNN uses
region proposal network (RPN) to deepen the detection task.
For a given image, SSD outputs the borders and categories of
the target using regression.

Nonanchor-based algorithms discard anchors and obtain box
descriptions through other methods, such as YOLOv1 (You
Only Look Once Version1), CornerNet [26], ExtrmeNet [27],
fully convolutional one stage (FCOS), etc. YOLOv1 performs
the regression of target position and category for each pixel of
the feature map. CornerNet and ExtremeNet use the key point
regression detection box. CornerNet transforms the regression
frame positioning problem into a detection and matching prob-
lem for the upper left and lower right points. ExtremeNet defines
key points as extreme points and groups key points according to
the geometric structure. FCOS uses dense prediction to predict
detection boxes, and the detector directly takes pixels as training
samples, so it does not need anchor points to restrict the selection
of features.

Most existing studies recognize and detect targets in RSIs
based on deep learning, and achieve high detection accuracy.
However, object detection methods cannot generate text descrip-
tions related to RSI content, and there is a semantic gap between
low- and high-level semantic features. It cannot realize sensing
and understanding of RSIs, and has certain limitations [28]. Wu
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et al. [29] proposed a novel global context-weaving network
(GCWNet) for object detection in RSIs to solve dense instance
stacking, large-scale variations, and complex background is-
sues. Wang et al. [30] proposed an end-to-end feature-reflowing
pyramid network (FRPNet), which had two advantages that
contributed to improving object detection accuracy. Wu et al.
[31] proposed a context-driven detection network (CDD-Net)
to improve the accuracy of multiclass object detection in RSIs.
For capturing the local neighboring objects and features, a local
context feature network was proposed to learn the local context
of the region of interest. Unlike object detection, image descrip-
tion methods combine computer vision and natural language
processing. Image description can extract the target area in
remote sensing images. The extracted features include spatial
feature, environmental feature and scenarios. It studies the con-
nection between the image features, text semantic features and
the mapping relationship.

Currently, most of the research on image description focuses
on natural scenes, and there are few studies on image descrip-
tion for remote sensing scenes. Zhou et al. [32] proposed a
description generation model based on multiscale and attentional
feature enhancement, which realized the description of RSIs.
Sun et al. [33] proposed an RSI description model based on deep
learning and CNN. Xue and Tong [34] proposed a deep multi-
modal neural network model, which could be used for the text
description of high-resolution RSIs. Lu et al. [35] constructed
a public RSI description dataset and used a multimodal method
and attention method to generate description of the content of
RSIs.

Although the above-mentioned researchers have realized the
description of RSIs, it is easy to be affected by the complex
background of RSIs, more noise information, and a small pro-
portion of targets, resulting in low accuracy of the generated RSI
description results, which cannot meet the requirements of RSI
description in complex environments. For example, if the back-
ground color is similar to the remote sensing target color, it will
be difficult to distinguish the remote sensing target, and clouds,
atmospheric particles, and fog will bring great difficulties to the
extraction of RSI features.

Our main contributions are as follows. This article presents
an object detection and interpretation model based on gradient-
weighted class activation mapping and reinforcement learning.
The backbone network based on ResNet is used to extract fea-
tures from RSIs. Then, the global average pooling (GAP)layer
is added to obtain the corresponding feature weight vector of
the feature graph. The weighted vectors are superimposed to
output class activation maps. The reinforcement learning method
is used to optimize the generated region generation network.
Meanwhile, we improve the reward function of reinforcement
learning to improve the effectiveness of the region generation
network.

This article is organized as follows. Related works are re-
viewed in Section II, including deep learning interpretability
approaches and Grad-CAM. Section III proposes image object
detection and interpretation. Several experiments are conducted
in Section IV to show the superiority of the presented method.
Finally, Section V concludes this article.

Fig. 1. Traditional visual interpretability method.

II. RELATED WORKS

With the rapid development of remote sensing technology,
high-resolution RSIs contain increasingly rich information,
which greatly promotes the applied research in the field of
remote sensing. RSIs contain important information such as
airports, ports, and ships. By extracting RSI features and learning
the mapping between image features and text semantic features,
RSI content can be interpreted and described. It has a wide
range of application value in military and civil fields such as
national defense security, land monitoring, urban planning, and
disaster mitigation [36], [37]. For example, in national defense
security, by extracting and capturing important information such
as airports and ships in RSIs, text descriptions related to the
content of RSIs with smooth semantics can be generated, which
can provide military information for military security managers,
assist them to make decisions quickly and deploy tasks. In the
civil field, the generated RSI text description can accurately
provide important information about disaster assessment, farm-
land utilization, vegetation cover, and urban change, and provide
decision support for relevant managers. Therefore, it is of great
significance to describe RSIs.

A. Deep Learning Interpretability Approaches

Currently, the interpretability of deep learning is divided into
several branches, among which the visualization method is one
of the important research directions. Zhang et al. [38] proposed
sensitivity analysis to quantify the sensitivity of the model to
input variables and visualize regions with high sensitivity, indi-
cating that this region mainly affected model decision-making.
Other visualization methods sample the image blocks with the
largest convolution kernel activation value [39], and then visu-
alize these activated image blocks to analyze how the networks
obtain information. Ke et al. [40] used two visualization tech-
niques (occlusion and guided backpropagation) to find relatively
important areas in the image.

As shown in Fig. 1, the interpretable visualization algorithm
described above visualizes network feature maps or activation
maps without further analysis of these visual features. These
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Fig. 2. Structure of Grad-CAM.

methods use human visual observation analysis to obtain the
interpretability of network models, which is prone to human
subjective judgment errors.

B. Gradient-Weighted Class Activation Mapping (Grad-CAM)

Grad-CAM belongs to the method based on class activation
mapping in local interpretation [41]. According to the predic-
tion results of a single image, the heat map highlighting the
important region is obtained by combining its feature maps as
the interpretation result image. Grad-CAM can also be used for
weakly supervised localization problems, that is, only the label
information of the image is given, and then the object referred
to by the label in the image is located.

The idea of Grad-CAM is to calculate the gradient of the
feature map of the last convolutional layer, which is used as
the weight to obtain the thermal map for a specific category.
Since the thermal map is coarse-grained, the method can also
be combined with the visual interpretation method based on
backpropagation to get the interpretation map with clear seman-
tics, that is, the high-resolution, pixel-level saliency map. This
method is simple and intuitive and can be flexibly applied to
models of different tasks, such as image classification, image
understanding, and visual question answering, as shown in
Fig. 2.

The shallow feature maps of deep neural networks usually
encode basic concepts such as color and texture. Deep feature
maps encode more advanced concepts of semantic and spatial
information. The fully connected layer discards most of the
concept of spatial information. Therefore, Grad-CAM selects
the feature map output by the last convolutional layer as the
original information to provide interpretation. Taking the model
performing the classification task as an example, to obtain the
thermal map Lc

Grad−CAM about class c, the gradient of the output
yc of the fully connected layer concerning the kth feature map
Ak of the convolution layer, namely ∂yc

∂Ak , is first calculated.
Then, GAP is performed to obtain the importance score αc

k of
the feature map for category c, namely

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
. (1)

Finally, all the feature maps of this convolutional layer are
summed by αc

k weighting and ReLU activation is performed to

obtain the saliency map Lc
Grad−CAM about category c, namely

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
. (2)

ReLU activation is performed to screen out regions that have
a positive impact on category c, that is, these regions can in-
crease the output yc of the fully connected layer on category c.
However, regions with negative influence may be related to other
categories, and displaying both positive and negative regions at
the same time may lead to relatively chaotic positioning results.
The final interpretation result image is obtained by up-sampling
and normalization of the thermal map Lc

Grad−CAM.
Guided feature inversion [42] is a visual interpretation method

based on class activation mapping in local interpretation. In other
words, based on the prediction results of a single image, the
thermal map of prominent important areas can be obtained by
combining its feature maps as the interpretation result image.

First, the original image Ia is fed into the model to obtain the
feature map output by each layer. Also, based on the deep feature
map, high-level semantic and spatial information are encoded,
and the feature map output by the last convolutional layer is
selected as the original information to provide interpretation.
Then, a weight vector ω is initialized with a constant. An
intermediate thermal mapm is obtained by weighting the feature
map, namely

m =
∑
i

ωif
l1
i (Ia) (3)

where f l1
i (Ia) represents the ith feature map of the l1th layer

of the model. m is upsampled and normalized, and a perturbed
image Φ is generated using m guidance, i.e.,

Φ(Ia, ω) = Ia �m+ p� (1−m) (4)

where p is a noisy background image. It can be a gray image,
a white Gaussian noise image, or the original image after the
Gaussian blur image. The last method is used in the document to
minimize artifacts from sharp edges. For such unnatural images,
it is impossible to judge how much the model is altering its
predictions because of artificial traces. The perturbed image Φ
will retain the region highlighted by the intermediate thermal
map m.

In this way, a generation can be selected to optimize the weight
vector ω so that the distance between the original image and the
feature map output by the perturbed image in the last convolution
layer of the model is as small as possible, namely

Linv (Ia, ω) =
∣∣∣∣f l0 (Φ (Ia, ω))− f l0 (Ia)

∣∣∣∣2 + γ||ω||1. (5)

The second term is the L1 constraint, which is to keep the
number of importance scores greater than 0 in the weight vector
ω as small as possible. Because the model does not need to use
all the feature maps to identify an object, and even only needs
the corresponding feature map of a part of the object to make a
correct prediction, that is, the feature map used for a prediction is
sparse. The significance of using the original image is to ensure
that the noise of the optimized intermediate thermal map is as
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small as possible on the one hand, and to reduce the number of
parameters to be optimized on the other hand.

At this time, after the first step of optimization, the obtained
intermediate heat map does not have class discrimination. It is
just a linear superposition of the feature maps, so it highlights all
the foreground objects. To make the interpretation result image
class-discriminative, an objective function should be added to
fine-tune the weight vector ω. The aim is to make the probability
of the model predicting the perturbed image into the specified
category as high as possible and the probability of its comple-
mentary image as low as possible. The complementary image is
defined as follows:

Φbg
= (Ia, ω) = Ia � (1−m) + p�m. (6)

So, the objective function for the second stage is

Ltarget (Ia, ω) = −fL
c (Φ (Ia, ω) + λfL

c Φbg
(Ia, ω) + δ||ω||1

(7)
where fL

c is the prediction probability of model output. Thus,
the first term improves the prediction probability of the specified
category for the prominent region of the intermediate thermal
map, whereas the second term reduces the prediction probability
of the complementary region for the specified category.

The thermal map can be obtained by the superposition of
random masks. The importance of the region λ retained by mask
Q is defined as the prediction probability of the perturbed image
obtained by its element-level multiplication with image I . Then,
the final interpretation of the importance of the prominent area
in the resulting image is the expectation obtained by all masks,
namely

SI,f (λ) = EQ [f (I �Q) |Q (λ)] . (8)

After the multiplication of mask and image elements, if the
prediction probability of model f is greater, the area retained by
this mask is more important.

It expands the above equation according to the expected
definition and rewrites it using conditional probability

SI,f (λ) =
∑
q

f (I �Q)P [Q = q|Q (Q) = 1]

=
1

P [Q (λ)=1]

∑
q

f(I�Q)P [Q = q,Q (Q) = 1].

(9)

The second term is

P (Q = q,Q (λ) = 1) =

{
0 if q (λ) = 0
P [Q = q] if q (λ) = 1

.

(10)
So

P (Q = q,Q (λ) = 1) = q (λ)P [Q = q] . (11)

On substituting it into (9), we get

SI,f (λ) =
1

P [Q (λ)] = 1

∑
q

f (I � q) q (λ)P [Q = q] .

(12)

Fig. 3. Proposed G2Grad-CAMRL model.

Fig. 4. Mask proposal network.

Since the mask m is distributed in [0-1], P [Q(λ)] = 1 =
E[Q(λ)], i.e.,

SI,f =
1

E [Q (λ)]
sumqf (I � q) · q (λ) · P [Q = q] . (13)

According to (12), the thermal map can be obtained by weight-
ing the mask obtained by random sampling. The weight is the
prediction probability of the disturbed image. When uniformly
sampled, P [Q = q] = 1/N , i.e.,

SI,f = MC
≈

{
1

E [Q]N

N∑
i=1

f (I �Qi)

}
·Mi (λ)

}
. (14)

Because the pixel-level mask may have a great impact on
the model, a small part of pixels may be occluded, which may
cause a great change in the prediction of the model. In addition,
sampling a pixelwise mask computationally takes an exponential
amount of space. Therefore, when generating masks to ensure
smoothness, smaller masks are first generated, and then they are
upsampled back to the image size.

III. PROPOSED G2GRAD-CAMRL

The proposed method is shown in Fig. 3. It includes three main
learning stages: mask proposal network (MPN), reinforcement
learning, and network dissecting analysis (NDA).

A. Mask Proposal Network Based on Grad-CAM

We propose an object MPN combined with Grad-CAM to
achieve the purpose of adjusting the proportional relationship
between target and background information as shown in Fig. 4.
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In this article, GAP is chosen instead of global max pooling
(GMP), because the algorithm requires the MPN to obtain the
maximum possible feature region to distinguish target cate-
gories. GMP can only output the area with the highest iden-
tification of the target and completely abandon the feature area
with low identification.

We use ResNet to build the MPN combined with Grad-CAM.
First, it adjusts the image size to 224 × 224 pixels and inputs it
into ResNet [43]. The image is transferred to the convolutional
layer in the network, and the output size of this layer is [77 512].
This output is also known as the eigenmap vector. Let fk(w, h)
represent the activation response of kernel unit k at any position
(w, h) in the eigenvector graph, where k represents the kth [77]
feature map in the vector. Then it inputs fk(w, h) into the GAP
layer and obtains the output

F k =

(w0+wl,h0+hl)∑
p=(w0,h0)

fk (p) (15)

where p = (w, h). (w0, h0) represents the upper-left coordinate
of the image, (w0 + wl, h0 + hl) represents the coordinate at the
lower right corner of the image, wl is the width of the image,
and hl is the height of the image.

For the image with category c label, Grad-CAM can be
calculated by the following formula:

Sc =
∑
k

ωk
cF

k. (16)

Substituting (15) into (16), the following equation can be
obtained:

Sc =

(w0+wl,h0+hl)∑
p=(w0,h0)

∑
k

ωk
cF

k (p) . (17)

When the image is predicted to be class c, the Grad-CAM
value of any coordinate position in the image can be calculated
by the following formula:

Pc (p) =
∑
k

ωk
cF

k (p) , p = (w, h) . (18)

Combining (17) and (18), it can be seen that Grad-CAM is
used to calculate the value of Pc at all pixel positions in the
image, which is the basis for ResNet to determine the target
category.
Ic is obtained by projecting Pc into the RGB space with the

value range [0, 255]. The final thermodynamic map of Grad-
CAM is obtained by superimposing Ic with the original image
Io through the following equation:

Ih = αIo + βIc + γ, α+ β + γ = 1. (19)

According to the following formula, an output value of the
MPN is calculated as

Imask (p) =

{
1 if Pc (p) ≥ τ
0 if Pc (p) < τ

. (20)

Taking Sc as the input of formula (21), the quality score Smask

of the MPN is obtained as

Smask =
exp (Sc)∑
c exp (Sc)

. (21)

According to the following formula, the original image, the
target initial positioning mask, and the mask score are used to
generate the target initial positioning map Iout:

Iout (p) = Io (p) Imask (p)Smask (p)Smask. (22)

B. Attention Region Deformation in Grad-CAM

To further fully and comprehensively learn the subtle features
of the key regions, the deformation sampling method is intro-
duced to generate extended data. Traditional deformation-based
data enhancement methods usually distort images randomly
[44]. But its effects are not guaranteed. The deformed image
in this article can highlight the attention part and suppress the
remaining part, so as to help the model continue to learn the
differences of subtle features.

First, the deformed image D should be sampled by the input
image I . They have the same size. It can be formalized as
D(x, y) = I(f(x, y), g(x, y)), where x and y represent the
position coordinates of the deformed image, that is, the pixel
value of the deformed image D at (x, y) is equal to the pixel
value of the original image I at a certain position. The horizontal
and vertical coordinates of this position are determined by the
mapping relations f and g, respectively. The goal of f and
g is to adaptively sample the original image according to the
size of each pixel value in the Grad-CAM image, that is, the
pixel position in the attendance area of the Grad-CAM image is
oversampled, and the pixel position in other noncritical areas is
reduced or not sampled. According to [14], f and g should be
satisfied ∫ f(x,y)

0

∫ g(x,y)

0

A (x′, y′) dx′dy′ = xy (23)

wherex andy represent the horizontal and vertical coordinates of
the deformed image. f(x, y) and g(x, y) represent the horizontal
and vertical coordinates of the original graph to be sampled.
x, y, f(x, y) and g(x, y) are the normalized coordinate values.
Assuming that the Grad-CAM graph does not reflect the key
attention area, that is, the Grad-CAM graph conforms to a
uniform distribution with a pixel value equal to 1, then (23) can
be satisfied by only setting f(x, y) = x and g(x, y) = y, which
is equivalent to the original image (no attention area needs to be
deformed). However, if the Grad-CAM graph can reflect a key
attention area, that is, the pixel value conforms to the nonuniform
distribution, then we want to find f and g, it is equivalent to
solving for a change that transforms the Grad-CAM graph from
an uneven distribution to a uniform distribution. However, in
this case, the left side of (23) needs to calculate the integral of
the discrete function, which cannot be solved in the higher data
category [45], [46], [47]. Therefore, it is very difficult and costly
to calculate these two mapping functions accurately.

So, we need to find another approximate solution. When the
Grad-CAM graph is not uniform, the goal of the solution formula
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can be visually understood as the original image pixel I(x, y)
is spreading to other pixels with F (x, y) force during sampling.
Therefore, f and g can be approximated as⎧⎨

⎩
f (x, y) ,

∑
x′,y′ A(x′,y′)k((x,y),(x′,y′))x′

∑
x′,y′ A(x′,y′)k((x,y),(x′,y′))

g (x, y) ,
∑

x′,y′ A(x′,y′)k((x,y),(x′,y′))y′
∑

x′,y′ A(x′,y′)k((x,y),(x′,y′))

(24)

where k((x, y), (x′, y′)) represents the distance measurement
between two points. At this time, the sampling results are related
to two factors: 1) the pixel value of each point in the Grad-CAM
graph; and 2) the distance between the points to be sampled
and each point in the Grad-CAM graph. If the value of a pixel
in the Grad-CAM graph is larger, and the distance between the
point to be sampled and the point is closer, and the possibility
to select the point position in the original graph for sampling
is greater. Therefore, this method can finally get a deformation
effect similar to the expansion of the attention region, and the
existence of distance measurement k also prevents selecting the
point corresponding to the maximum position of Grad-CAM in
the original image for each sampling. Finally, both the numerator
and denominator in (24) can be realized by a convolution oper-
ation. In this case, k corresponds to one convolution operation
(input and output channels are 1).

If the input image is I ∈ RC×H×W , then the mapping func-
tions f and g correspond to a flow field grid G ∈ RH×W×2. G
represents the sampling coordinate of output image I at (x, y).
D[x, y, 0] represents the index of the width dimension of I .
D[x, y, 1] represents the index of the height dimension of I .
The output sampling value is the bilinear interpolation result of
the four closest corner points of the sampling point. The final
sampling resultD can be used as an expanded image for training.

C. Reinforcement Learning Strategy

In the training stage, the traditional image description method
adopts the backpropagation algorithm to maximize the proba-
bility of the next real pixel given the previous real pixel. In the
test phase, the probability of the next pixel is predicted based on
the pixels previously generated by the model. This method will
cause a mismatch between the training phase and the test phase,
and lead to the phenomenon of exposure deviation, which causes
an easy error and continuous accumulation in the test phase,
and reduces the quality of the generated description image. In
addition, the cross-entropy loss function optimizes the model in
the training stage. In the test phase, discrete and nondifferen-
tiable indicators can assess the quality of the generated images.
This method will have the defect of inconsistent optimization
direction, which leads to the inability of the network to directly
use BLUE and other evaluation indicators for optimization
training. When the cross-entropy loss function is minimum, the
best evaluation result may not be produced.

To eliminate the defects of exposure bias and inconsistent
optimization direction, this method introduces a reinforcement
learning strategy [48]. The gradient algorithm in reinforcement
learning strategy can train the nondifferentiable discrete vari-
ables end-to-end, and directly optimize the model according to
BLUE and other indicators to improve the training effect of the

model. The reinforcement learning strategy treats ResNet as an
agent that interacts with the image and the external environment
and defines the learning strategy p to guide the model to predict
the next pixel. After generating the image description, the re-
inforcement learning strategy uses BLUE and other indicators
to measure the fit and similarity between the image description
and manually annotated reference statements, assigns ResNet
an expected reward, and takes minimizing the negative expected
reward as the goal to optimize the model, which can be expressed
as

L (θ) = −Ews∼pθ
[r (ws)] (25)

where θ is the model parameter, ws is the sequence of each
pixel, r(·) is the reward function, and E(·) is the expectation
function. In practice application, L(θ) is generally obtained by
single sampling with strategy pθ, and can be expressed as

L (θ) ≈ −r (ws) , ws ∼ pθ. (26)

Reinforcement learning adopts the policy gradient algorithm
to calculate the gradient of L(θ), which can be expressed as

∇θL (θ) = −Ews∼pθ
[r (ws)∇θlogpθ (w

s)] . (27)

In practice, to facilitate the solution, Monte Carlo single
sampling is used for approximate estimation, which can be
expressed as

∇θL (θ) = −r (ws)∇θlogpθ (w
s) . (28)

Due to the randomness of sampling and the lack of context
normalization, the reinforcement learning strategy is used to
calculate the gradient resulting in large variance and instability
of the training process. To reduce the variance, a benchmark
factor b is introduced to constrain and correct the expected
reward function, which can be expressed as

∇θL (θ) = −Ews∼pθ
[r (ws)− b)∇θlogpθ (w

s)] . (29)

To maintain an unbiased estimate of the gradient, the bench-
mark factor b can be any function that does not depend on ws.
When Monte Carlo single sampling is used for approximate
estimation, the gradient ∇θL(θ) can be expressed as

∇θL (θ) = −[r (ws)− b]∇θlogpθ (w
s) . (30)

Using the chain derivative rule, the final gradient expression
is obtained as

∇θL (θ) =

T∑
i=1

∂L (θ)

∂st

∂st
∂θ

(31)

where st is the input of the Softmax function. When Monte Carlo
single sampling is used for approximate estimation, ∂L(θ)

∂st
in (31)

can be expressed as

∂L (θ)

∂st
≈ [r (ws)− b] [pθ(wt|ht)− l′] (32)

where l′ is the one-hot vector representation of pixels. wt and
ht are the pixel and internal vector representation at time t,
respectively.

The reward function is improved according to the features of
RSIs to obtain more accurate regional proposals. At each time
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Algorithm 1: MPN Based on Reinforcement Learning.
Input: feature map to form the initial state quantity S0

At each iteration step t, the agent decides the next action
based on one policy;

for Fixate action do
Visit a new pixel position Zt, calculate fixate reward,
RoI observation quantity Rt;
Update the location;
Send Rt to the pooling layer;
The probability vector of a specific category is inserted
into the history quantity merged with S0 to form a
new state St and jump to the fixation action;

end for
for Done action do

Break out of the loop;
End the search;
Calculate the reward;
Detection and Classification;

end for
Return results.

step, the agent of MPN of reinforcement learning will calculate
whether to terminate the search according to the policy. The
strategy is determined by the probability of fixate action and
done action. The agent represents the reinforcement learning
model designed in this article. Fixate action means that after
a large number of interest regions are extracted from features,
these regions are screened. If a certain area is selected to calcu-
late the reward, it is to focus on that area. As long as the search
is not over, a fixate action is issued to visit the new location.
Region of interest (ROI) observations are updated in the domain
centered around this new location. To indicate that this area of
interest has been selected, it sets all entries in this domain to 1.
All ROIs are sent to the pooling layer for class-specific bounding
box offset prediction. Nonmaximum suppression [49] is applied
to the classified ROI to obtain the most significant information.
Since the remaining regions of interest have the final bounding
box prediction, they are mapped to some spatial location of the
observed history for a particular class. A class-specific proba-
bility vector is inserted into the history quantity merged with the
base state quantitySt. With the new state, it takes a new action at
t+ 1 and repeats the process until the action is complete. Then
it collects all the selected predictions in the entire trajectory.
The RPN pseudocode of reinforcement learning is shown in
Algorithm 1.

The agent of reinforcement learning should first balance two
RoI selection criteria. 1) High object instance overlap should be
generated; 2) The RoI number should be as small as possible to
reduce the number of false positives and maintain a manageable
processing time. On this basis, two action rewards are set to
evaluate the actions issued by the agent: fixate action reward
and done action reward.

Considering that RSIs have the characteristics of large image
size and small target instances, the original reinforcement learn-
ing reward function has simple content and less data volume,

which does not perform well on some datasets. Three datasets
are explored in the MPN of reinforcement learning. According to
the fixation reward and done reward, it is found that the fixation
reward obtained by searching an image on the NWPUVHR-10
dataset is relatively dense, and the done reward is generally
between −20 and −1. However, the fixation reward obtained
by searching an image on DOTA and VisDrone2018 datasets is
very sparse, and the done reward ranges from−50 to−20. In the
DOTA and VisDrone2018 datasets, the output detection boxes
of the instances are few and the target is small, so they are easy
to be discarded in the training, which is unable to obtain more
fixation rewards and done rewards in the image. It is difficult to
converge.

For each object instance, the fixation reward first gives a small
negative reward for each fixation action, but the agent also gains
a positive reward for increasing IoU with any truth instance of
the current image. At each time step t, the difference between
the IoU of the instance and the true value and the maximum
IoU value (IoUi

t) of that instance over the entire time step are
computed. Trajectory data are collected for all the regions where
IoU is calculated within this time step. At the same time, when
the IoU threshold is appropriately reduced, the positive reward of
fixate action can be increased to encourage the agent to continue
searching and obtain the prediction box that may be missed
because the target instance is small. It obtains the adjusted fixate
reward at time t given as

rft = −β +
1

τ

∑
i

(
IoUi

t − IoUi
)

(33)

where i indicates the ith object instance. The done action reward
is calculated based on the IoU for each instance and truth value.
The larger covered area denotes the reward closer to zero, oth-
erwise, it becomes more and more negative. Upon termination,
the agent receives a done action reward that reflects the quality
of the search trajectory

rdt =
1

τ

∑
i

(
IoUi − τ

)
. (34)

The pseudocode of the reward function is shown in
Algorithm 2.

D. Loss Function

The weakly supervised network mainly uses the method of
weak semantic segmentation to generate the attention weight.
It uses the weak semantic mask to guide the learning of the at-
tention weight. The loss function of the weak semantic attention
network is the cross-entropy loss, and the specific form is shown
in the following equation:

L1
(
uij , u

′
ij

)
= − 1

H ×W

H∑
i

W∑
j

uij logu′
ij (35)

where H and W represent the length and width of the weak
semantic mask. uij and u′

ij represent the weight value of the
output point (i, j) of the attention network and the pixel value
of the point (i, j) on the weak semantic mask.
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Algorithm 2: Reward Function.
for Fixate action do

The maximum IoU between each object instance and
the truth value is calculated, denoted as IoU i;
In each time step t, the maximum IoU between ROI
and object instance is calculated, denoted as IoU i

t ;
end for

for IoUi
t > IoUi ≥ IoU do

Cumulative fixate reward;
IoUi

t = IoUi

Jump to fixate action;
end for
for Done action do

Calculate IoUi;
Cumulative done reward;

end for
Return results.

The regression classification network contains two branches,
so it is necessary to calculate the loss of the classification network
and the loss of the regression network, respectively. Focal loss
[50] is used for classification loss, as shown in the following
equation:

p (t) =

{
pn, if tn = 1
1− pn, otherwise

(36)

L2 (pn, tn) = − 1

N

N∑
n = 1

α(1− pt)
γ log (pt) (37)

where N indicates the total number of prediction boxes, pn
represents the probability distribution of multiple categories, and
tn represents the category label of the target. In focal loss, α and
γ are hyperparameters, which are set to 0.2 and 1, respectively.

In addition to the classification loss, smoothL1 loss is also
used as the loss function for regression tasks in the classification
regression network, as shown in (37)

L3
(
v′nj , vnj

)
=

{
1
N

∑N
n=1 t

′
n ·A, if

∣∣v′nj − vnj
∣∣ < 1

1
N

∑N
n=1 t

′
n ·B, otherwise

(38)
where A =

∑
j∈(x,y,w,h,θ) 0.5(v

′
nj − vnj)

2
, B =∑

j∈(x,y,w,h,θ) |v
′
nj − vnj | − 0.5. N indicates the total number

of prediction boxes, t
′
n indicates confidence ( t

′
n = 1 indicates

the foreground, and t
′
n = 0 indicates the background), v

′
nj

represents the predicted coordinate vector, and vnj presents the
true label coordinate vector.

Therefore, the multitask loss in the model training process in
this article is shown in the following equation:

Lfinal = σ1 L1 + σ2L2 + σ3L3 (39)

where σ1, σ2, and σ3 are the balance parameters of multitask
loss, L1 is the regression loss, L2 is attention loss, and L3 is the
classification loss.

Fig. 5. Network dissecting analysis (NDA).

Fig. 6. Process of experiment.

E. Network Dissecting Analysis

Neural networks achieve superior performance at the cost of
low interpretability of their black-box representation. However,
in fields related to human or social security, such as medical
treatment, driving, and remote sensing, deep learning models
not only need excellent effects but also need to provide a certain
basis for decision-making. In recent years, some interpretable
visualization algorithms visualize network feature maps or ac-
tivation maps and then perform interpretable analysis on model
decisions. These methods make use of the subjective analysis
of human vision and are prone to errors in judgment. In this
article, the method of NDA [51] is improved. The basic principle
of NDA is to explore the distribution of activation value of
the feature map by using the feature map left by image for-
ward propagation in the convolutional network according to a
set of predefined human interpretable semantics and a dataset
containing these interpretable semantic annotations. Then, the
interpretable semantic information of the convolution kernel in
the network is obtained by calculating the similarity between
the distribution and the interpretable semantic annotation in the
dataset.

First, the human-interpretable semantic concepts of the scene,
object, component, material, texture, and color defined in the
traditional method are divided in a way that conforms to human
understanding. Scene, object, and component are considered
high-level semantic concepts, whereas material, texture, and
color are considered low-level semantic concepts. Second, the
scoring value of the semantic concept is calculated by NDA
shown in Fig. 5. Finally, the interpretability is quantified and
used to encode the convolution kernel. Taking the second-layer
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Fig. 7. Bar chart of Table III.

Fig. 8. Data graph of Table IV.

convolution C5_conw2 of the fifth stage in the backbone net-
work ResNet as an example, assuming that the input image
is I(x), the feature map F (x) output from 512 convolution
kernels in Conv_2 (second-layer convolution) is saved after a
forward propagation and used for subsequent interpretability
calculation. F (x) contains 512 feature maps, and each feature
map corresponds to the semantic distribution of a convolution
kernel. For Fk(x) (k is the convolution kernel index), the
segmentation threshold g is used to filter the weak semantic
information, and the strong semantic information is retained as
the semantic feature of the convolution kernel. In this article, the
method of calculating threshold using probability distribution
in traditional network analysis is improved, as shown in the
following equation:

g =
1

H ×W

H×W∑
i = 1

pi (40)

where H and W represent the height and width values of Fk(x)
and pi represents the value of the ith pixel. The average value
of the activation value is calculated as the threshold g because
a value higher than the average value can better represent the
semantics of its convolution kernel. The strong semantic feature
graph after filtering is Tk(x), and the filtering method is shown
in the following equation:

T i
k (x) =

{
T i
k (x) , if T i

k (x) ≥ g
0, otherwise

(41)

where T i
k(x) represents the pixel value of the ith point on

the feature map Tk(x). Tk(x) of each convolution kernel is
compared with the marked semantic mask. First, a binarization
preprocessing is carried out on Tk(x), and the retained feature
activation value is differentiated from the filtered weak semantic
information to obtain a binary semantic map Mk(x). Then, it is
upsampled to facilitate the calculation of the semantic graph and
the semantic mask. Using the IoU calculation method in [52], for
mask Lc(x) with different semantic C, the obtained IoU value
is the interpretability score of convolution kernel k and semantic
c. Finally, the interpretability scores of all convolution kernels
in this layer for different semantic concepts are obtained. In this
article, the overall average level is used as the scoring threshold
f , and the specific calculation method is shown as follows:

f =
1

K

K∑
k = 1

C∑
c = 1

|Mk (x) ∩ Lc (x)|
|Mk (x) ∪ Lc (x)| (42)

where K represents the total number of convolution kernels in
this layer. The threshold f can be used to obtain the semantic
concept whose score of each convolution kernel is greater than
the threshold.

IV. EXPERIMENTS AND ANALYSIS

To realize RSI object detection and interpretation, the public
RSI description dataset DOTA [53] is used to train and learn
the method. It is also compared with other current methods with
good image description performance to verify the effectiveness
of this method. The experimental process is shown in Fig. 6.

A. Datasets

To verify the effectiveness of the proposed method, a compar-
ative experiment is conducted on the DOTA V1.0 dataset. DOTA
dataset is a large public dataset annotated by a rotating box,
which is mainly used for RSI object detection tasks. The dataset
consists of 2806 RSIs from different sensors and platforms,
ranging in size from 800 × 800 to 4000 × 4000 pixels, which
contains 188282 target instances of different scales, orientations,
and shapes. It mainly includes 15 common categories: Plane
(PL), Helicopter (HC), Swimming Pool (SP), Roundabout (RA),
Harbor (HA), Baseball Court (BC), Soccer Ball Field (SBF),
Tennis Court (TC), Ground Track Field (GTF), Baseball Dia-
mond (BD), Storage Tank (ST), Bridge (BR), Ship (SH), Small
Vehicle (SV), and Large Vehicle (LV). In this article, 3/5 of this
dataset is selected as the training set, 1/5 as the validation set,
and 1/5 as the test set. All images are uniformly cropped into
1024 × 1024 pixels.

B. Evaluative Criteria

Average precision (AP) and mean average precision (mAP)
are used to evaluate the detection accuracy of the model. Frames
per second (FPS) is used to evaluate the detection speed of the
model.

The AP can be calculated as follows:

AP =

∫ 1

0

p (r) dr. (43)
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Fig. 9. PR curve.

Fig. 10. ROC curve.

It calculates the area enclosed by the curves drawn in the range
of precision and recall and the coordinate axes, The value range
is [0, 1]. Precision and recall are defined as{

Precision = TP
TP+FP

Recall = TP
TP+FN

(44)

where TP represents the true positive sample, FP represents
a false positive sample, and FN represents the false negative
sample.

MAP can be calculated as follows:

mAP =

∑20
i=1 APi

20
. (45)

The FPS can be calculated as

FPS =
Stest

T
(46)

where Stest is the number of samples in the test set, and T is the
time consumed for the testing set.

TABLE I
INTRODUCTION OF EXPERIMENT PARAMETERS

TABLE II
COMPARISON OF ABLATION EXPERIMENTS

TABLE III
COMPARISON OF ABLATION EXPERIMENTS

C. Experiment Process

The experiment is carried out on the PyTorch framework, and
the specific parameters are shown in Table I.

D. Ablation Experiments

To verify the effectiveness of the G2Grad-CAMRL algorithm,
three ablation experiments are designed. ResNet network is used
as the benchmark method, and the proposed three modules
in this article are used for the comparison experiment. The
ablation experiment is performed on the DOTA dataset, and
the experimental results are shown in Table II. � indicates that
the model contains this module. RLS is a reinforcement learning
strategy.

Table II shows the effectiveness of each module proposed in
this article on the object detection task in the RSI dataset. Since
the background occupies a large part in RSIs, Grad-CAM can
solve this problem which has a better effect on accuracy improve-
ment. It can be seen from Table II that the G2Grad-CAMRL in
this article improves the IoU threshold due to the introduction
of reinforcement learning, making the object detection effect
better.

To verify the universality of the proposed algorithm on dif-
ferent backbone networks, a set of comparison experiments
are designed. The G2Grad-CAMRL is compared on different
backbone networks, and the experimental results are shown in
Table III. Fig. 7 is the formal bar chart of Table III to give the
reader a more objective understanding.
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Fig. 11. Enlargement of Fig. 9.

Fig. 12. Enlargement of Fig. 10.

In the comparison experiment, ResNet50, ResNet101, and
ResNet152 are used in the backbone network. Table III shows
that simply increasing the network depth has a limited effect on
improving the object detection effect of RSIs. Because small
objects in RSIs have a large proportion, and the features of
small targets mostly exist in shallow semantic information, so
blindly deepening the network depth is of limited help to dealing
with RSI object detection tasks. The mAP of ResNet152 is
92.45%, it has a slight improvement compared to ResNet101
(91.79%) and ResNet50 (91.28%). Meanwhile, FPS values of
ResNet50, ResNet101, and ResNet152 are 10.25, 11.67, and
12.78, respectively. Owing to the fewer layers in ResNet50,
the FPS is less than ResNet101 and ResNet152. So to save the
number of parameters, we use ResNet50 in this article.

Different loss functions can affect the convergence speed of
the model and further affect the accuracy. Therefore, we conduct
comparative experiments under different loss functions, and the
results are shown in Table IV. Its data graph is shown in Fig. 8.

TABLE IV
COMPARISON OF LOSS FUNCTION

TABLE V
COMPARISON WITH CLASSICAL METHODS (AP/%)

TABLE VI
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS (AP/%)

The combined loss function achieves better results, it obtains
93.58% mAP. Even if the effects of these combinations are
not too different, the proposed method still has the least FPS.
Therefore, the loss function method in this article is competent
for the task of object detection.

E. Comparison Experiments With Other Methods

The G2Grad-CAMRL in this article is compared with four
classical object detection algorithms, including Faster R-CNN,
R-FCN, YOLOv2, and SSD. Faster R-CNN is the benchmark
model of the original DOTA dataset. The backbone network
used in YOLO is DarkNet19. The backbone networks of other
comparison algorithms are ResNet50 as in this article. Then,
we select three other state-of-the-art algorithms for comparison
including CWDL [54], GAN [55], and SDGH-Net [56]. The
experimental results are shown in Tables V and VI, respectively.

Table V shows that the two-stage algorithm Faster region-
based convolutional neural network (RCNN) has the worst ef-
fect. For the object selected in this article, the highest recognition
rate of PL is only 82.05% with Faster RCNN, and the recognition
rate of SV is 52.96%. The recognition rate of PL based on
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Fig. 13. Part test results with the proposed method.

R-FCN is 89.63%, which is 7.58% higher than that based on
Faster RCNN. The recognition rate of BR is 53.37%. The
highest recognition rate of the first-stage algorithm YOLOv2
and SSD does not exceed 90% because the interference of
background features is ignored. In G2Grad-CAMRL, among the
three objects with the highest recognition rate, SH, TC, and PL
achieve 95.67%, 95.78%, and 94.58%, respectively, which are
improved by 6.5%, 3.33%, and 5.67% than that by SSD method,
respectively.

From Table VI, all methods have good identification results.
For example, the recognition rate of SBF is 70.28% based on
CWDL, the recognition rate of SP is 83.01% based on GAN,
and the recognition rate of SBF is 74.15% based on SDGH-
NET. Based on G2Grad-CamRL, the recognition rate of SBF
and SP are 77.39% and 85.88%, respectively. It has a certain
improvement over the other three methods.

As can be seen from the comparison in the above tables, the
G2Grad-CAMRL remote sensing object detection method is
superior to other methods. Good detection results have been
achieved on aircraft, small vehicles, large vehicles, ships, etc.,
indicating that the proposed method has more advantages for
the detection of such scenes. Figs. 9 and 10 are the PR and ROC
curves for the comparison of GAN, SDGH-Net, and G2Grad-
CAMRL.

Fig. 9 is the PR curve trend chart. We only selected three
effective methods, including GAN, SDGH-Net, and G2Grad-
CAMRL. The area under curve of G2GRAD-CAMRL is
88.64%, which is improved by 1.47% and 0.49% higher than
that of SDGH-NET (87.17%) and GAN (88.15%). In terms
of the ROC curve, G2GRAD-CAMRL also shows a certain
improvement compared with the other two methods. Figs. 11
and 12 are partial enlargements of Figs. 9 and 10, respectively,
so that the reader can see the curve trend more clearly. Fig. 13
shows some detection results.

F. Visual Interpretation Effect

To verify the effectiveness of the attention mechanism, Fig. 14
shows the visual interpretation effect of Grad-CAM in the
process of generating RSI description text. It can be found

Fig. 14. Partial image interpretation results. First row: original images. Second
row: generated intensity map. Third row: results.

Fig. 15. Histogram of the first row of Fig. 14.

Fig. 16. 2-D histograms of the first row of Fig. 14.

that GRAD-CAM, by screening image features, focuses on the
highly salient features of the target region, rejects other redun-
dant features and noise information, enhances the perception and
understanding of the content of RSIs by the model, and improves
the accuracy of description results.

We perform the histogram processing on the first and third
rows of Fig. 14 to obtain the results shown below (see Figs. 15
–18). From the point of view of the pixel distribution of the
histogram, the pixel distribution of the histogram is denser than
that of the original image after processing by the proposed
method. This indicates that the sensitive areas of the image can
be focused on.
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Fig. 17. Histogram of the third row of Fig. 14.

Fig. 18. 2-D histograms of the third row of Fig. 14.

V. CONCLUSION

To realize the description of RSIs, an RSI description method
is proposed by using ResNet to construct the basic network archi-
tecture, introducing Grad-CAM, and adopting a reinforcement
learning strategy. To verify the effectiveness of the proposed
method, the publicly available RSI description dataset is used
for training and verification. The experimental results show that
the proposed method achieves high accuracy and has good image
description performance for RSIs under complex environmental
backgrounds, and can realize the interpretation and description
of RSIs. In the next step, the model will be improved and
optimized to further improve the description performance of
RSIs. By specific engineering practice, it will be applied to the
aerospace direction.
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