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Abstract—Image super-resolution (SR) is widely used in remote
sensing because it can effectively increase image details. Neural
networks have shown remarkable performance in recent years,
benefitting from their end-to-end training. However, remote sens-
ing images contain a variety of degradation factors. Neural net-
works lack flexibility in dealing with these complex issues compared
with reconstruction-based approaches. Traditional neural network
methods cannot take advantage of prior knowledge and lack in-
terpretability. To develop a flexible, accurate, and interpretable
algorithm for remote sensing SR, we proposed an effective SR
network called YSRNet. It is performed by unfolding a traditional
optimization process into a learnable network. Combining conven-
tional reconstruction-based methods and neural networks can sig-
nificantly improve the algorithm’s performance. Since the gradient
features of remote sensing images contain valuable information,
the total variation constraints and the deep prior constraints are
introduced into the objective function for image SR. Furthermore,
we propose an enhanced version called YSRNet+, which can apply
attention weights to different prior terms and channels. Compared
with the YSRNet, the YSRNet+ enables networks to focus more
on useful prior information and improve the interpretability of
networks. Experiments on three remote sensing datasets are per-
formed to evaluate the algorithm’s effectiveness. The experimental
results demonstrate that the proposed algorithm performs better
than some state-of-the-art neural network algorithms, especially in
the scenario of the multidegradation factors.

Index Terms—Double prior, interpretability, multidegradation,
remote sensing images, super-resolution (SR), total variation (TV),
unfolding.

I. INTRODUCTION

R EMOTE sensing images are widely used in target recog-
nition and detection [1], [2], [3], [4], [5], [6], land classi-

fication [7], [8], [9], [10], [11], [12], resource exploration [13],
etc. However, due to remote sensing images mostly covering a
large area of the ground, the image resolution is usually low,
degrading real-world applications’ performance. Such problem
can be improved by two aspects: hardware [14], [15], [16], [17]
and algorithms [18], [19], [20], [21]. Considering the sharp
increase in cost by improving resolution through hardware, it
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is more widely used to optimize algorithms for remote sensing
images super-resolution (SR).

The original remote sensing images degrade to varying de-
grees due to natural noise, motion blurring, and hardware lim-
itations, resulting in loss of information [22], [23], [24]. These
three degradation factors constitute a task of multidegradation
image SR. Image SR aims to reconstruct a high-quality image
from one or more low-quality images. SR algorithms need to
restore as much detail as possible and present target information.
This process is the inversion of image degradation. Degradation
models can be represented as

y = Ax+ n (1)

whereA denotes the comprehensive effect of the downsampling
matrix and the blurring kernel. x and y represent high-quality
images and low-quality images, respectively.n is white Gaussian
noise.

Remote sensing image SR is divided into single-image SR
(SISR) [25], [26], [27] and multi-image SR (MISR) [28], [29],
[30]. MISR algorithms utilize the relationships between mul-
tiple images to obtain additional information. Neural networks
have also been utilized for MISR. DeepSUM is a deep neural
network for unregistered multitemporal images SR, which ex-
ploits both spatial and temporal correlations to combine multiple
images [31]. Liu et al. proposed a novel MISR network called
progressive multiscale deformable residual network. It aimed
to improve the spatial resolution of sea ice passive microwave
images, according to the characteristics of both passive mi-
crowave images and sea ice motions [32]. However, compared
with MISR methods, SISR algorithms are more widely used. It is
a more direct and effective image quality improvement method
with no need for other information. SISR can be divided into
interpolation-based, reconstruction-based, and learning-based
methods. Interpolation-based methods include nearest neighbor
interpolation, bilinear interpolation, cubic interpolation, etc.
Some scholars proposed improved interpolation-based SR al-
gorithms such as [33], [34], [35].

Reconstruction-based methods aim to study the degradation
process from high-resolution (HR) images to low-resolution
(LR) images. For instance, Li et al. proposed maximum a poste-
riori based on a universal Hidden Markov Tree (HMT) model for
remote sensing image SR [36]. The HMT theory sets up a prior
model to reconstruct SR images from a sequence of warped,
blurred, subsampled, and noise-contaminated LR images. And
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Schultz et al. [37] proposed a Bayesian approach method to
reconstruct LR images by maximum a posteriori estimation.

Learning-based methods are mainly based on sparse repre-
sentation and neural networks. Yang et al.[38] first proposed an
image SR method based on sparse representation. This method
establishes the relationship between LR and HR images for
image SR by learning a redundant dictionary. Then, Zheng
et al. [39] first applied the sparse representation to remote
sensing image SR. After that, Hou et al. [40] proposed a sparse
representation and global union dictionary model. It utilizes
nonlocal self-similarity to obtain global constraints and improve
the performance of image SR.

In recent years, neural networks have been widely used for
image SR. Dong et al. [41] introduced a convolution neural
network into image SR in 2015 and achieved good results.
Liebe et al. [42] proposed SRCNN network for remote sens-
ing image SR. Furthermore, Dong et al. [43] proposed the
FSRCNN based on SRCNN. After that, Lei et al. [44] sug-
gested the LGCnet. The LGCnet exchanges local and global
information by cascading shallow and deep feature mappings.
Since He et al. [45] proposed residual network, it has been
widely used for SR tasks. Kim et al. [46] proposed VDSR
algorithm, which solves the problem that deep networks are
challenging to train. For remote sensing images, Haut et al.
[47] proposed an attention mechanism called RSRCAN, which
can improve network performance with a small number of
calculations.

Recently, an unfolding method combining traditional opti-
mization algorithms with neural networks has been proposed
for image reconstruction [48], [49], [50], [51], [52], [53]. It
unfolds the traditional optimization process into a network, and
the parameters in the algorithm can be obtained through training
without artificial design. Zhang et al. [54] proposed USRNet
for multidegradation tasks and obtained good results. However,
in [54], it only uses the deep prior information for image SR.
Luo et al. proposed DAN network for image SR. The algorithm
completes kernel estimating and image restoring through an
end-to-end learning process, which improves the accuracy of
the algorithm.

Different algorithms have their characteristics. Fast recon-
struction is the advantage of interpolation-based SR algorithms
while the performance is limited. The reconstruction-based
methods and sparse representation can fully use the prior in-
formation, but they also have the drawbacks of a large number
of calculations. The neural network has a good performance.
However, it lacks interpretability and is not flexible enough to
utilize the traditional experience and knowledge due to its unique
structure [54]. The deep unfolding network has a strong fitting
ability of the neural network and is flexible to utilize prior knowl-
edge. Thus, the unfolding method can handle multidegradation
tasks well. However, as far as we know, the unfolding method has
not been widely used in remote sensing. And some hyperparam-
eters and prior information are not well combined with neural
networks.

The number of remote sensing images is limited for re-
mote sensing image SR. The interpretability is essential for

Fig. 1. Effects of different blurring kernels on images. Column 1–3 denote
the isotropic Gaussian kernel, the anisotropic Gaussian kernel and the motion
blurring kernel, respectively.

remote sensing SR algorithms. Moreover, remote sensing SR
contains multidegradation factors, which requires the algorithm
to be highly adaptable. To improve the algorithm’s flexibil-
ity and increase its interpretability, we propose YSRNet for
multidegradation remote sensing image SR. Compared with
the traditional neural network method for remote sensing im-
age SR, we utilize the variable splitting method to unfold the
optimization process into a network, which significantly im-
proves the algorithm’s performance while still maintaining its
interpretability. In addition, most deep unfolding algorithms
have only one prior term. Thus, plenty of the knowledge in
traditional optimization algorithms has not yet been utilized.
Considering that the gradient domain of remote sensing im-
ages contains plenty of details [55], [56], [57], we utilize total
variation (TV) priori for image SR. TV feature is essentially
the image gradient features along row direction and column
direction. For an image, the edge gradient contains more in-
formation than the smooth region. Therefore, we extract the
gradient information separately, making it easier for the network
to obtain and facilitate image reconstruction. And this approach
also increases the number of feature maps in the network. The
network consists of two interpretable modules, which perform
different functions, respectively. TV features are introduced into
the network as the prior knowledge. Furthermore, we propose
an enhanced version of YSRNet+ by introducing an attention
module. Unlike traditional attention modules, this attention
module can also assign weights to different prior constraint
terms. The attention weights can be interpreted as the penalty
factors for additional prior terms in traditional algorithms. It
improves the network performance while further increasing
the interpretability of the network. It is worth noting that
this improvement only requires a small amount of computa-
tion. The main contributions of this article are summarized
as follows.

1) In this article, we propose a deep unfolding strategy aiming
at a new optimization problem, which consists of a recon-
struction term, a deep prior term, and a TV prior term. We
map the optimization algorithm to a network and build a
bridge for TV priori and neural networks.

2) A new network module called Ynet is designed to perform
the noise removal task. TV priori are introduced into this
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module for feature enhancement, which can help the net-
work extract image information more efficiently. Then, by
introducing the attention module, we propose an enhanced
version, which has a more reasonable explanation for
combining the hyperparameters with neural networks. At
the same time, it can make the network pay more attention
to essential feature maps.

3) Considering various degradation factors, we implement
image SR under comprehensive factors, which makes the
task more universal.

The rest of this article is organized as follows. In Section I, we
briefly introduce the degradation models and principles of the
deep unfolding networks. We propose the remote sensing SR
algorithm in Section II and the enhanced version is described
in Section III. Section IV shows the experimental results and
analysis. Finally, Section V concludes this article.

II. RELATED WORK

A. Degradation Models

In the process of remote sensing image acquisition, the image
is usually accompanied by various degradation factors due to the
influence of equipment and the environment. This article consid-
ers several typical degradation factors, including image blurring,
random noise, and image downsampling, to make the SR model
realistic. Image blurring is divided into the following three
categories: isotropic Gaussian blurring, anisotropic Gaussian
blurring, and motion blurring. Motion blurring is caused by the
relative motion of the aircraft and ground, and the Gaussian blur
is caused by the inaccurate focus of the camera and atmospheric
turbulence. Hence, the degradation model can be expressed as:
y = (k ⊗ xh)↓S + n, wheren denotes the white Gaussian noise.
The loss function can be expressed as follows:

loss = argmin
x

∥∥∥(k ⊗ x)↓S − y
∥∥∥2
F

(2)

where xh denotes the HR image, k denotes the blurring kernels,
and S is the downsampling factor, usually being 2, 3, or 4. y
denotes the observed LR image. Fig. 1 shows various kinds of
blurring kernels, where (a), (b), and (c) denote the isotropic
Gaussian kernel, anisotropic Gaussian kernel, and motion blur-
ring kernel, respectively.

The blurring kernel makes the image structure overlap. The
noise can bring fake information, and the downsampling can
cause the loss of image details. In this article, we perform
image SR under these three degradation conditions. This article
contains isotropic Gaussian kernels of various sizes, anisotropic
Gaussian kernels of multiple directions, and motion blurring
kernels of different tracks.

B. Deep Unfolding Networks

Unfolding methods are the combination of reconstruction-
based and learning-based algorithms. The principle of deep un-
folding is to decompose complex problems into simple subprob-
lems. Different subproblems are solved independently. It uses
traditional methods to solve the subproblems such as deblurring
and scaling because these problems have closed-form solutions.

There is no closed-form solution for the noise removal problem,
and the noise removal results of traditional reconstruction-based
methods are limited. Thus, we utilize neural networks to com-
plete the noise removal task. The calculation process of the
closed-form solution and the denoising networks constitute the
unfolding network. Each part of the unfolding network has
definite functions and meanings. Different closed-form solutions
can solve problems under different conditions. Therefore, net-
works have great flexibility and interpretability. It is suitable
for solving multidegradation issues and problems with high
interpretability requirements, such as remote sensing image SR.

III. PROPOSED SCHEME

Based on the degradation model in Section II-A, this unfold-
ing network can be divided into two parts, i.e., the establishment
of the optimization model and the design of unfolding networks.
Most unfolding methods use only one kind of prior information
as the regularization term in the objective function. Equation (3)
shows the basic unfolding networks, whereR(x) denotes the im-
age degradation process and ϕ(x) denotes the prior information
of images, such as sparse priori or deep priori. Only using one
kind of prior information cannot fully mine the information of
the images. Therefore, we propose reconstructing the target im-
age with more than one kind of prior information in the proposed
network. The utilization of prior information essentially adds
more input features to neural networks. This method improves
the network performance and provides a bridge between the
traditional prior term and the neural networks

argmin
x

‖R(x)− y‖2F + ϕ(x). (3)

It is worth noting that the article aims to solve nonblind remote
sensing image SISR. Blurring kernels can be estimated by other
estimation algorithms or hardware devices.

In this section, we first introduce the decomposition of the
multidegradation problem and the solving methods of the sub-
problems. Then, this article shows the design of the deep un-
folding network framework. Finally, the algorithm flow chart of
unfolding networks based on end-to-end training is presented.

A. Optimization Methods

Among traditional optimization algorithms, TV regulariza-
tion is a remarkable prior term. It utilizes the gradient infor-
mation of the target images, which can make the results of the
SR reconstruction clearer. Combining with (2), the objective
function can be expressed as

argmin
x

∥∥∥(k ⊗ x)↓S − y
∥∥∥2
F
+ α · ϕ(x) + β · ψTV(x) (4)

where the first term denotes the reconstruction term, ϕ(x) de-
notes the deep prior term, andψTV(x) denotes the TV prior term.
And we have ψTV(x) =

∑w
1 (xi+1 − xi) +

∑h
1 (yj+1 − yj),

where h and w denote the height and width of the image,
respectively. α and β are the tradeoff parameters. Since (4)
contains implicit terms, we cannot solve it directly. Thus, we can
use variable splitting algorithms to solve it such as ADMM [58].
By introducing the auxiliary variables z and m, (4) can be
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redefined as

argmin
x

∥∥∥(k ⊗ x)↓S − y
∥∥∥2
F
+ α · ϕ(z) + β · ψTV(m)

s.t. z = x,m = x. (5)

Therefore, Lagrange function can be defined as

Lα,β,μ1,
μ2,μ3

(x, z,m) =
∥∥∥y − (k ⊗ x)↓S

∥∥∥2
F
+ α · ϕ(z)

+ β · ψ(m) + μ1

2 · ‖x− z‖2F
+ μ2

2 · ‖z −m‖2F + μ3

2 · ‖x−m‖2F
(6)

where ‖x− z‖2F , ‖z −m‖2F , and ‖x−m‖2F denote the penalty
functions to guarantee the variable z, m, and x being approxi-
mate. μ1, μ2, and μ3 are the corresponding penalty parameters,
which should be large enough to guarantee the convergence of
the algorithm. Here, z and m denote the reconstructed images
obtained through different kind of prior knowledge in traditional
optimization-based methods. Different priori terms can impose
different constraints on the final image. Finally, through the dual
rising method, we can make the auxiliary variables close enough
to the solution variables to get the final reconstructed images.
Such problem can be solved by calculating x-subproblem, z-
subproblem, andm-subproblem alternately. Therefore, it can be
divided into these three subproblems

xk+1 = argmin
∥∥∥yk+1 − (k ⊗ xk)↓S

∥∥∥2
F
+ μ1

2 ‖xk − zk‖2F
+ μ3

2 ‖xk −mk‖2F (7)

zk+1 = argmin μ1

2 ‖zk − xk+1‖2F + αk+1 · ϕ(zk)
+ μ2

2 ‖zk −Mk‖2F (8)

mk+1 = argmin μ3

2 ‖mk − xk+1‖2F + βk+1 · ψ(mk)

+ μ2

2 ‖zk+1 −mk‖2F . (9)

Equation (6) is decoupled into three subproblems, and the
reconstruction items and two regularization terms can be solved
separately. Thus, (6) involves three subtasks, i.e., denoising,
deblurring, and scaling. Deblurring and scaling is solved by (7),
which has a closed-form solution. The solution of (7) is

xk = F−1

(
2F (k)F (y↑S)+μ1 · F (zk−1)+μ3 · F (mk−1)

2F (k)F (k)+(μ1+μ3)

)
.

(10)
In (10), F (·) and F−1(·) denote the operation of fft and

ifft. ↑ S denotes the s-fold upsampler.

B. Unfolding Network Framework

Inspired by the abovementioned deep unfolding methods,
we propose a new network to solve (5), called YSRNet. The
overall framework of the network follows the process of variable
splitting algorithms. Equation (7) can be solved efficiently by
(10). In traditional optimization algorithms, z and m need to be
calculated by the threshold shrinking method, such as singular

value thresholding [59], [60], [61]. Instead, in this article, we use
a network instead of threshold shrinking algorithms to achieve
a better reconstruction performance.

The framework of YSRNet under N iterations is shown in
Fig. 2. The upper part of Fig. 2 mainly shows the calculation
process of the modules. y denotes the degraded image. LR
images are the input from the left, and SR imagesx are generated
after N iterations. The algorithm flow strictly follows the itera-
tive process of the variable splitting optimization method. The
whole iteration is an end-to-end learnable process. Each layer of
the iteration process has different parameters, which makes the
network have a strong mapping ability. Since the target recon-
struction module is accomplished by (7), the network only needs
to perform simple tasks by solving (8) and (9). In traditional
optimization algorithms, the effect of the prior constraint is
mostly used to remove the noise, so the function of this network
is also to perform the noise removal function. As shown in (4),
ϕ(x) denotes the deep prior term. The second regularization
we selected is the TV term, which can extract the gradient
information of the images. Traditional TV regularization can
be obtained by multiplying the image by the gradient matrix
Dx in (11) and then calculate the sum of all values in the ∇x

and ∇y to get L_1 norm values, which means ‖x‖TV = ‖∇x‖1.
And the optimization objective is to make the sum minimize
for denoising tasks. However, because calculating L_1 norm
will lose the structure information. So the gradient matrices
∇x and ∇y are used as the network’s input. And L_1 norm
of TV regularization term becomes an implicit TV norm in deep
unfolding network, which can be expressed as ψTV(x)

Dx =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0

0 0
. . .

. . . 0
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ (11)

{∇x = Dx ⊗ x
∇y = x⊗Dx.

(12)

The gradient of the image along the row and column directions
can be obtained by (12). ∇x and ∇y denote the gradient features
of TV term. Then, the details about the deconvolution module
D and the prior module P are provided.

1) Deconvolution (D) Module: D module is a deconvolution
module, which is presented as green blocks in Fig. 2. This
module is corresponding to (7). The input image is initialized
as the nearest interpolation degraded image. Utilizing (10),
x-subproblem can be calculated by the last iteration results of
P module and related parameters, where μ1 and μ2 in (10) can
be obtained by back propagation method. It is the solution of
‖y − (k ⊗ x)↓S‖2F after variable splitting. The input parameters
of this module are variables z,m, convolution kernelk, sampling
factor S, weight coefficient μ1, μ2, and the last reconstructed
image xk−1, as shown in Fig. 3. The output of D module is the
reconstructed image, which is also the input of P module in the
next iteration stage.

2) Prior (P) Module: P module is the prior module, which
is dedicated to the noise removal of input images. It acts as a
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Fig. 2. Illustration of our proposed YSRNet framework. y is the image with degradation. SR denotes the SR image. The green module represents the deconvolution
process. The two blue modules represent the noise removal process. Arrows in the network represent data exchange and the network is a fully symmetric structure.

Fig. 3. Inputs of D module are z, m, k, S, µ1, µ2, and xk−1. The output of
D module is the reconstructed image.

denoiser. Inspired by Res-Unet proposed in [62], a new network
with multiple feature inputs is proposed in this article, which
is called YSRNet. This module corresponds to (8) and (9). It
solves z-subproblem and m-subproblem by neural networks.
The final results are fused and approximate HR images by
end-to-end training. Res-Unet is a combination of res-blocks
and U-net. The size of the input images is b× n× s× s, where
s denotes the height and weight of images, b and n denote the
batchsize and channel number, respectively. This network can
be divided into two parts. The first part acts as a feature extractor.
The second part acts as a data reconstructor. Since the network
structure is Y-shaped, we call it Ynet. For each input feature, the
feature extractor extracts different scale features of the image to
fully mine the intrinsic information from the image. The feature
extraction process is accomplished by using several Res-blocks.
Each scale transformation is done by a pooling layer, which
can make the length and width of the picture to be half of the
original and double the number of channels. The design of the
Res-block is the same as the structure in [62], which contains
two convolution layers and one Relu layer. The structure of the
Res-block is shown in (13). Each residual block connects the
input to the output using a skip connection. Taking the scale

factor equaling to 2 as an example, the five scales for feature
extraction process are 256, 128, 64, 32, and 16, respectively. The
number of channels is 16, 32, 64, 128, and 256, respectively.
After deep prior and TV prior feature extraction, we merge the
two parts. Notably, fusion here refers to channel concatenating.
Simply adding two parts may lead to a loss of information. Up
to now, the feature extraction of the two channels is completed

xk+1 = xk + conv(relu(conv(xk))). (13)

The second part is the process of upsampling, which is the in-
verse process of feature extraction. Image scale changes from 16
to 256, and the channel number changes from 256 to 1. The de-
convolution layer accomplishes Upsampling. It is worth noting
that during the feature extraction and image reconstruction, we
use the skip connection to connect layers of the same scale. This
operation can exchange information between different layers to
mine deep information of the image. It can also retain shallow
features. And this information exchange can bring about the
improvement of the network performance [63], [64].

The deep prior features and TV prior features are shown in
Figs. 4 and 5, respectively. Deep priori is mainly aimed at the
extraction of the overall features. And TV priori is mainly aimed
at the extraction of the edge features. TV features can effectively
enhance the edge information of the image, which can improve
the performance of P module.

C. End-to-End Training

This network is obtained by end-to-end training. Each iter-
ation contains one D module and one P module. N iteration
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Fig. 4. Deep prior features. Deep prior features are adaptively learned from
the network and focus on all the information of the image.

Fig. 5. TV prior features. TV prior features mainly learn the edge information
of the image and can provide edge features for image reconstruction.

YSRNet network containsN Ynet blocks. The flows of YSRNet
and Ynet are shown in algorithm 1 and algorithm 2, respectively.
The original HR images are used to calculate the loss functions.
Ultimately, SR images can gradually approximate original HR
images.

D. Enhanced Version: YSRNet+

Considering different features and channels in YSRNet have
the same weight, an enhanced version (YSRNet+) is proposed.
Because each convolution kernel of a neural network also
contains weight information to some extent. Compared with
YSRNet+, YSRNet can also learn the weights for different prior
terms to some extent. However, the performance of YSRNet is
limited. Attention mechanism as a weight learning method can
make the network learn weight information better. We apply
an attention module in YSRNet+. By introducing the attention
module, we can apply different weights on different prior terms
and channels, and thus, the model will focus more on important
features. This module can better explain the effect of α and β
in (4). The purpose of α and β is to balance the loss between
the reconstruction term and the prior terms, which is also the

Algorithm 1: YSRNet.

Algorithm 2: Ynet.
Input: Noise images x, TV priori matrix TVx
Output: Denoised images X
1. Feature Extraction Network for x

x module:
x → Conv(3×3) → Downsampling module I →

Downsampling module II → Downsampling module III
→ Downsampling module IV → F(x).

2. Feature Extraction Network for TVx
TVx module:
TVx → Conv(3×3) → Downsampling module I →

Downsampling module II → Downsampling module III
→ Downsampling module IV → F(TVx).

3. Channel Concat
X = Concat(F(x), F(TVx)).

4. Noise Removal and Images Output
X → Conv(3×3) → Upsampling module I →

Upsampling module II → Upsampling module III →
Upsampling module IV → X.

return Denoised images X

function of the attention module. Thus, the attention module can
further enhance the interpretability of the network. The attention
module can extract more valuable features of the image and give
it a larger weight, which is helpful for image reconstruction.
The Res-block combined with the attention block is shown in
Fig. 6. We map the features of different channels into various
weights through a simple network so that the network can learn
the importance of the features. The Res-blocks are applied in
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Algorithm 3: Attention Module.
Input: x-Feature channels R(x), TV -Feature channels

R(TV ), Channel numbers n
Output: Channels with attention X
Part I: Deep priori attention module
R(x) → pooling(R(x)) → full connection(R(x)) →∑n
1 wx.

Part II: TV attention module
R(TV) → pooling(R(TV)) → full connection(R(TV))
→∑n

1 wTV .
:Part III Feature Fusion (concatenate feature maps)
X = ϕ(R(x)) ×∑n

1 wx + ϕ(R(TV)) ×∑n
1 wTV .

return X

Fig. 6. Res-block with attention block. Blocks of different colors denote
weight values for different channels. The networks in blue box denotes a
res-block.

each stage of Ynet. Thus, the attention module is also applied in
all stages.

The function of attention Res-block module is given in (14),
where conv, relu, pooling, and full_con denote convolution
layer, activation layer, pooling layer, and full connection layer,
respectively. Equation (14) is corresponding to Fig. 6. The
second term denotes the attention weight, which consists of a
full connection layer and a pooling layer. As shown in algorithm
3, the deep priori and TV priori both have n feature maps in the
network. According to (14), we can multiply feature maps by the
corresponding weight.

∑n
1 wx and

∑n
1 wTV are corresponding

toα andβ in (4). We concatenate the deep priori feature channels
and TV priori feature channels for feature fusion. Then, all the
features are used for image reconstruction

xk+1 =
(
xk + conv(relu(conv(xk)))

)
· (full_con(pooling(xk))

)
. (14)

IV. EXPERIMENT

We evaluate the proposed networks’ performance using three
remote sensing datasets to demonstrate the algorithm’s effec-
tiveness.

UC Merced Land-Use dataset is a common aerial dataset
containing 21 kinds of scenes and 100 samples of 256× 256
pixels in each class. The pixel resolution of this dataset is 1 ft.
Training can be time-consuming because of too many pictures
in this dataset. Therefore, we selected the first ten categories
of scenes, each selecting 40 pictures as training samples. Then,
for each class, ten pictures are selected as the testing sample
to evaluate image reconstruction performance. Ultimately, we

use 400 images for training and 50 for testing. For the second
aerial dataset, the WHU-RS19 dataset is selected. WHU-RS19
dataset is collected from Google Earth by Wuhan university. It
contains 19 categories of physical scenes in the satellite imagery,
including airport, beach, bridge, commercial, desert, river, and
so on. For the universality of the algorithm, we choose the
NWPU-RESISC45 dataset to demonstrate the algorithm’s effec-
tiveness. NWPU-RESISC45 dataset is created by Northwestern
Polytechnical University, which is a large scale on the scene
classes and the total image number. It holds big variations in
translation, spatial resolution, viewpoint, object pose, illumi-
nation, and so on. For this dataset, we selected the first forty
categories of scenes, each selecting 30 images for training and
2 for testing.

Examples of these three datasets are shown in Fig. 7. The
experiments are performed under the Pytorch framework, and
we train them on NVIDIA Titan RTX GPUs. Adam is selected as
the optimizer. For each training sample, the images are cropped
to the patches of size 48 × 48 as the input. The learning rate is
initialized as 0.0005. The mini-batch size is set to 48. We choose
L1 loss for the PSNR performance. It takes about 20 h to obtain
the YSRNet model.

In addition to YSRNet and YSRNet+, several advanced SR
algorithms are compared, including DPSR [65], IMDN [66],
MAN [68], HSENet [69], USRNet [54]. DPSR proposes a deep
plug-and-play SR framework to solve the SISR problem. It con-
siders multiple blurring kernels and supports existing deblurring
methods for blurring kernel estimation. IMDN proposes a mul-
tidistillation module to optimize memory and real-time. MAN
is an attention network, which consists of a multiscale large
kernel attention structure. HSENet was proposed for optical
remote sensing image SR, which is a hybrid-scale self-similarity
exploitation network. USRNet presents a learnable unfolding
network, which is the first to solve multiple degradation prob-
lems using a single end-to-end model. We use FLOPs (floating
point operations) to evaluate the computational complexity of
the algorithm. The FLOPs of DPSR, IMDN, MAN, HSENet,
USRNet, YSRNet, and YSRNet+ are 52.07 G, 7.67 G, 9.26 G,
18.82 G, 9.08 G, 7.13 G, 11.00 G, and 11.17 G, respectively.
Due to the introduction of double priors, the algorithm’s com-
putational complexity has increased. Moreover, due to the intro-
duction of the attention mechanism, YSRNet+ has only a little
higher computational complexity than YSRNet, but it also has
performance improvements.

Considering the article’s length, we only use PSNR to evaluate
the performance of algorithms. PSNR is an image evaluation
index, which is defined by MSE between the ground-truth image
and the generated SR result. It can be expressed as

PSNR= 20log10
Max(IHR)√

MSE(IHR, G(ILR))
(15)

where Max(IHR) denotes the maximum pixel value in original
images. The larger the value of PSNR demonstrates, the better
performance.
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Fig. 7. Illustration of the datasets. We select 10 types of images from UC Merced Land-Use dataset and WHU-RS19 dataset as training samples, respectively.
And we randomly select five of each class as testing samples. We select 40 types of images from NWPU-RESISC45 dataset as training samples. And we randomly
select two of each class for testing.

Fig. 8. Degradation images with various noise levels. The noise levels are set
to 0, 3, 7, 10, and 13, respectively.

In what follows, we will verify the validity and universality
of the proposed algorithms in three remote sensing datasets.

A. Comparison With Different Methods on Dataset 1

In this section, we use the UC Merced Land-Use dataset
to verify the validity of the proposed algorithms. As Fig. 7
shows, 400 Gy images are used for training, and 50 images
are used for testing. The size of training images is 180× 180,
and the scales of SR are 2, 3, and 4. The noise level is set
to σ = 0, σ = 3, and σ = 7. n in (1) is usually assumed to
be additive white Gaussian noise. The noise intensity for n is
σ/255. We first generate the noise matrix with the mean value
of 0 and the standard deviation of σ/255. Then, we add the
image with the noise matrix. Different standard deviations will
produce different intensity noise matrices. Images with different
noise levels are shown in Fig. 8. We set various noise levels to
verify the algorithm’s robustness under different conditions. We
generate the training data pairs {xi, yi} by first extracting the
component of randomly cropped image blocks (48×48 pixels
for each block). And two data enhancement methods are used
to increase training data: flipping and rotating. The number of
unfolding layers is 6 (N = 6). Ten blurring kernels from [54]
are used to verify the algorithm’s performance under different
degradation conditions. We use 4 isotropic Gaussian blurring
kernels, 4 anisotropic Gaussian blurring kernels, and 2 motion
blurring kernels. Although complex motion blurring kernels
are generally not considered for aerial images, they are also

considered in order to verify the effectiveness of YSRNet and
YSRNet+ more fully.

The first eight kernels are Gaussian blurring kernels, and the
last two are complex motion blurring kernels. The information
entropy of different remote sensing images differs significantly
compared with natural images. Simple remote sensing images,
such as agricultural, contain less information entropy, while
complex images, such as buildings, contain larger information
entropy. Therefore, the stability requirements of the algorithm
are more stringent. The best results are shown in bold, and the
second is underlined. The last two are algorithms proposed in
this article, which are also shown in bold.

The PSNR results are presented in Table I . YSRNet and YSR-
Net+ still stand out under different blurring kernel degradation.
We use the average PSNR of 50 testing pictures as the result,
which can make results more stable. Traditional neural networks
do not have good adaptability to different blurring kernels. They
perform well with no blurring or with small blurring kernels.

Fig. 9 shows the SR results of different algorithms with the
scale factor being 3. DPSR and IMDN have similar SR perfor-
mance. But because the lightweight multidistillation network
being used in IMDN has fewer network parameters, which can
lead to a fast training process. The edge structure of MAN
algorithm is not clear enough. USRNet is also a deep unfolding
method that can fully use the prior kernels’ information. The
images of USRNet, YSRNet, and YSRNet+ are clearer than
the others; among them, YSRNet+ handles the details best. The
PSNR of YSRNet+ is 0.08 dB, 0.18 dB, and 0.22 dB higher than
USRNet on average for ×2, ×3, and ×4 times SR, respectively.
Except for the first kernel and the last, YSRNet+ can obtain
the highest PSNR, which demonstrates the effectiveness of the
proposed network architecture.

Compared with USRNet, YSRNet has a larger number of
parameters and more time-consuming training due to the pro-
cessing module for TV prior term. In practice, because testing
time is more critical, thus, an appropriate increase in training
time is acceptable. Based on this, the attention module intro-
duced by YSRNet+ also slightly increases the training time. The
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TABLE I
SCORES OF PSNR FOR DIFFERENT SR ALGORITHMS WITH REMOTE SENSING IMAGES (DATASET 1)

overall visual effect of USRNet is similar to that of the proposed
algorithms, but YSRNet and YSRNet+ do better in detail. At the
same time, YSRNet+ is more interpretable.

B. Comparison With Different Algorithms on Dataset 2

In this section, we use another remote sensing dataset to
further verify the effectiveness of the algorithms. The training
and testing samples are generated from WHU-RS19 dataset. The
PSNR results are presented in Table II. YSRNet and YSRNet+

still perform well. In addition, several testing samples are se-
lected for detailed analysis.

Since multiple degradation factors are considered in this arti-
cle, several specific cases are selected for algorithm comparison.
Degradation factors are set as Table III. We choose different
scenes, scale factors, noise levels, and kernels to demonstrate
the effectiveness of proposed algorithms.

Fig. 10 is the simplest scene showing an industrial building
taken by the airplane from WHU-RS19 dataset with the size of
384×384. A part of the image is enlarged to show the SR effect
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Fig. 9. SR results for different algorithms under different blurring kernels. The blurring kernel is shown on the upper-left corner of x0. The scale factor is 3, and
the noise level of LR image is 0.

Fig. 10. Reconstruction of buildings. Parts of SR results for different algorithms under the same degradation cases are enlarged. The blurring kernel is shown on
the upper-left corner of the whole image. The scale factor is 3, and the noise level of LR image is 5.

of different algorithms more clearly. The scale factor is 3 with
the noise level of 5. The image is blurred by kernel 5, which is an
anisotropic Gaussian kernel. LR result is obtained through near-
est neighbor interpolation. PSNR of LR image is only 15.49 dB.
PSNR is improved to varying degrees by the optimization of
different algorithms. The edges of DPSR, IMDN, and HSENet
results are somewhat blurred, which roughly restores the shape
of the target and provides better noise reduction. MAN lost some
details of the image. USRNet restores the information from the
original image better, but it does not perform as well as YSRNet
and YSRNet+ for detail textures and small target edges. YSRNet
has a clearer image and a cleaner noise reduction, but it is still
blurry to restore the small objects in the image. YSRNet+ has
a better SR performance and can further improve PSNR than
YSRNet+.

In Fig. 11, more noise is added (σ = 9). DPSR and HSENet
can roughly restore the HR image. Although IMDN restores the

general outline of the object, the noise is not removed cleanly
and stripes are produced. Thus, its PSNR is only 0.8 dB higher
than LR image. Compared with YSRNet, USRNet does not
restore road textures very well. But YSRNet also produces a
small amount of interference stripes. YSRNet+ performs best
among these SR algorithms.

Fig. 12 is the most complex scene for 3 times SR.
Except IMDN, the other methods can do noise reduction
well. For freeway scenes, YSRNet and YSRNet+ have the same
performance. The PSNR of them are 0.5 dB higher than USRNet.

Figs. 14 and 13 are images of parking lot and dense residentia,
respectively. The task of Figs. 14 and 13 is more challenging with
the scale factor of 4. For the textures in Fig. 13, YSRNet performs
better. Some small cars can also be restored. In Fig. 14, a vehicle-
dense area is enlarged. The visual effect of each algorithm is not
clear enough due to the difficulty of the task. USRNet, YSRNet,
and YSRNet+ behave similarly from visual effects. PSNR of
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TABLE II
SCORES OF PSNR FOR DIFFERENT SR ALGORITHMS WITH REMOTE SENSING IMAGES (DATASET 2)

TABLE III
DEGRADATED IMAGES OF FIVE SCENES

YSRNet and YSRNet+ are 0.12 dB and 0.17 dB higher than
USRNet, respectively.

In summary, all algorithms have the function of noise
removing, deblurring and image SR. DPSR and HSENet have
a similar performance. These two have problems of detail
texture restoring. IMDN has faster computation speed, but its
performance decreases with high noise levels. MAN may also
lost some details in the process of image reconstruction. USRNet
is stable and can handle various degradation factors. YSRNet+
performs best and has better interpretability at the same time.

C. Universality of the Proposed Algorithms on Dataset 3

PSNR results of the third dataset are shown in Table IV.
Each PSNR is the average of 80 testing samples. The PSNR
results demonstrate that our proposed algorithms outperform the
other competing methods. YSRNet+ is 0.20 dB, 0.37 dB, and
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Fig. 11. Reconstruction of bridge. Parts of SR results for different algorithms under the same degradation cases are enlarged. The blurring kernel is shown on
the upper-left corner of the whole image. The scale factor is 3, and the noise level of LR image is 9.

Fig. 12. Reconstruction of freeway. Parts of SR results for different algorithms under the same degradation cases are enlarged. The blurring kernel is shown on
the upper-left corner of the whole image. The scale factor is 3, and the noise level of LR image is 9.

0.47 dB higher than USRNet on average at 2x, 3x, and 4x SR,
respectively. Traditional neural network methods show a better
performance only at the first kernel. The proposed algorithms
perform well, especially for complex blurring kernels, which
indicates that the proposed algorithms can fully use the image’s
prior information and can be adapted to different blurring ker-
nels. For the degradation of small blurring kernels, the traditional
algorithm performs well. However, as the blurring kernels be-
come more complex, the performance of traditional algorithms
degrades dramatically. YSRNet and YSRNet+ perform well in
all situations.

The visual effect of different algorithms is shown in Fig. 15.
The last three methods are unfolding-based algorithms, which
show that the unfolding-based methods have better SR results for
complex blurring kernels. DPSR, IMDN, and HSENet cannot
remove image blurring very well. MAN may lost some details.
USRNet and the proposed methods are suitable for various
blurring kernels. Compared to USRNet, the results of YSRNet
are better than USRNet in detail due to the introduction of
gradient channels. The attention module can further enhance
YSRNet.

Since the proposed algorithm is based on the variable splitting
algorithm, the algorithm follows the iterative updating process
of the optimization algorithm. The number of iterative layers of
the algorithm is set to six, so the image reconstruction process is
divided into six steps. Each level of iteration brings the iteration
results closer to HR pictures. The results of the experiment
are shown in Fig. 16. The initialized picture results from the
downsampling picture interpolated by nearest neighbors. The
downsampling factor is 3. xk denotes iteration layers. As Fig. 16
shows, the image becomes clearer as the number of iteration
times increases, which denotes that the network is similar to tra-
ditional optimization algorithms. The experimental results also
show that PSNR increases with the number of layers being larger.

In summary, the proposed YSRNet and YSRNet+ algorithms
are effective and perform well on standard datasets, especially
for complex blurring kernels.

D. Ablation Experiment

The ablation experiments are shown in Table V, where ave.
denotes the average value of the results in all SR scales and
noise levels. Because the proposed algorithm is an improvement
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Fig. 13. Reconstruction of dense residentia. Parts of SR results for different algorithms under the same degradation cases are enlarged. The blurring kernel is
shown on the upper-left corner of the whole image. The scale factor is 4, and the noise level of LR image is 3.

Fig. 14. Reconstruction of parking. Parts of SR results for different algorithms under the same degradation cases are enlarged. The blurring kernel is shown on
the upper-left corner of the whole image. The scale factor is 4, and the noise level of LR image is 7.

Fig. 15. SR results for different algorithms under different blurring kernels. The blurring kernel is shown on the upper-left corner of x0. The scale factor is 3,
and the noise level of LR image is 0.
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TABLE IV
SCORES OF PSNR FOR DIFFERENT SR ALGORITHMS WITH REMOTE SENSING IMAGES (DATASET 3)

Fig. 16. Initial SR estimation x0 is the nearest neighbor interpolated version of LR image. The scale factor is 3, and the noise level of LR image is 0. The blurring
kernel is shown on the upper-left corner of x0. x1−x6 denote the results in different iterations.

based on USRNet algorithm, we perform the ablation exper-
iments with USRNet. The improvements can be divided into
two parts, the attention module, and YSRNet. And YSRNet+
is the combination of the attention module and YSRNet. TV
priori denotes the model only using TV prior features for image
reconstruction. As shown in Table V, the attention module and
YSRNet can improve the algorithm performance to different

degrees, verifying the proposed modules’ effectiveness. Because
TV priori is extracting the edge information of the target images,
some image information may be lost. Therefore, the results
of image reconstruction only using TV priori are limited. The
parameter numbers of base model method, base model with
attention method, YSRNet, and YSRNet+ are 592 K, 597 K,
1695 K, and 1707 K, respectively. Therefore, the parameter
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TABLE V
ABLATION EXPERIMENT

growth of the attention module is worth comparing to the PSNR
improvement.

V. CONCLUSION

This article introduces a double prior unfolding strategy for
remote sensing image SR. Unlike the previous works, which are
unexplainable networks, we propose a double prior unfolding
network with interpretability for remote sensing image SR. D
module can reconstruct the image and make the image clearer.
Rmodule can utilize deep priori and TV priori to remove noise.
We combine the traditional optimization algorithm with the
neural network and design a network (YSRNet), which has the
flexibility of traditional algorithms and the strong fitting ability
of neural networks. This unfolding strategy enables the algo-
rithm to better handle multidegeneration SR tasks. In addition,
an enhanced version (YSRNet+) is proposed, and an attention
module is introduced into the algorithm. Unlike the commonly
used attention module, this attention module enables the network
to focus on more important features. YSRNet+ enhances the
interpretability of the algorithm while improving the perfor-
mance of the YSRNet. Multiple experiments are performed to
evaluate the two proposed networks, from which the following
conclusions can be obtained.

1) The proposed YSRNet and YSRNet+ algorithms perform
better than state-of-the-art methods. The learning rate
of the network should be carefully chosen to avoid the
problem of slow or nonconvergence of the network.

2) As the number of iteration layers increases, the model
parameters increase significantly, so we need to choose an
appropriate number of iteration layers to make a trade-off
between the performance and efficiency of the algorithm.

3) When the number of channels in the network is large
enough, the performance gained from the attention module
will be less noticeable. However, it still works.

Based on the existing network problems, there are the follow-
ing three aspects in our future work.

1) Using more prior information from traditional methods
will be considered, which can make the traditional
optimization algorithm better combined with the neural
networks.

2) The network framework will be improved to enhance the
fitting ability.

3) We will consider the design of lightweight networks to
reduce network parameters and training time.
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