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Hyperspectral Image Band Selection Based on CNN
Embedded GA (CNNeGA)
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Abstract—Hyperspectral images (HSIs) are a powerful source
of reliable data in various remote sensing applications. But due to
the large number of bands, HSI has information redundancy, and
methods are often used to reduce the number of spectral bands.
Band selection (BS) is used as a preprocessing solution to reduce
data volume, increase processing speed, and improve methodology
accuracy. However, most conventional BS approaches are unable to
fully explain the interaction between spectral bands and evaluate
the representation and redundancy of the selected band subset.
This study first examines a supervised BS method that allows the
selection of the required number of bands. A deep network with
3D-convolutional layers embedded in a genetic algorithm (GA). The
GA uses embedded 3D-CNN (CNNeGA) as a fitness function. GA
also considers the parent check box. The parent check box (parent
subbands) is designed to make genetic operators more effective.
In addition, the effectiveness of increasing the attention layer to a
3D-CNN and converting this model to spike neural networks has
been investigated in terms of accuracy and complexity over time.
The evaluation of the proposed method and the obtained results are
satisfactory. The accuracy improved from 6% to 21%. Accuracy
between 90% and 99% has been obtained in each evaluation mode.

Index Terms—Attention layer, band selection (BS), convolution
neural networks (CNNs), embedded algorithm, genetic algorithm
(GA), hyperspectral image (HSI), spiking neural networks (SNNs).

I. INTRODUCTION

R EMOTE sensing can be used to gather information about
things or events that are happening on earth’s surface [1].

Hyperspectral image (HSI) is a method that employs spectral
differences to separate terrestrial objects as a result of ad-
vancements in image spectrometer technology. However, HSI
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creates an enormous amount of data that can be challenging to
process fast. Therefore, it can be difficult to apply standard image
processing methods designed for multispectral images [2], [3].
Without a question, HSI data offer scientists and researchers a
wealth of knowledge. However, because it takes a lot of computer
power to analyze these data, it is frequently difficult to make the
most of HSI’s potential. Large datasets maybe common image
processing algorithms inefficient and classification accuracy
may decrease. Several important factors can hinder classification
in large datasets, including the following.

1) A class imbalance in a large dataset.
2) The existence of noise in educational data.
3) Variety and a high number of classes.
4) Nonintegrated category (nonintegrated pixels in each

class).
5) Closeness and similarity of classes, etc.
New dimensional reduction techniques and procedures are

required to process HSI properly to get beyond these obstacles.
Dimension reduction is the technique that minimizes the number
of dimensions in the data while keeping most of the informa-
tion. This will help open the full potential of HSI data while
minimizing costs and time requirements [4], [5], [6]. One can
reduce HSI dimensions by choosing bands or extracting features
[7]. By applying specified criteria, feature extraction transforms
original data into a different attribute space [8], [9]. Most feature
extraction approaches combine all of the major bands linearly.
Inappropriate criterion adoption can be troublesome since it
makes it more challenging to evaluate the findings [10]. Many
feature extraction techniques include the preprocessing phase of
band selection (BS). Choosing a subset of desired bands from the
main bands can be used to enhance the results’ interpretability.
This keeps the spectral meaning intact and boosts efficiency [11].
Feature extraction methods are essential for reducing the amount
of data needed to be processed. It enables us to deal with less data
while yet maintaining the most crucial information. However,
it should be noted that not all feature extraction methods are
created equal. It is important to note that these methods can
often compromise or distort vital features in the data. This can
significantly impact how these data are interpreted physically
[12], [13].

When working with high-dimensional data, such as that in-
cluded in HSI, feature selection is crucial. We may simplify the
data and make it simpler to comprehend and deal with by low-
ering the number of dimensions. Feature selection techniques
assist maintain the data’s physical interpretation while lowering
dimension. This is an essential step in HSI analysis and should
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Fig. 1. Comprehensive guide to the BS process. (a) General framework of the BS process. (b) Stages of the BS process.

be given careful consideration [14]. By doing this, we can ensure
that we are selecting features that are related to the original data
and preserving its meaning. Because the HSI is not useful or
significant based on the ground cover classes, irrelevant and extra
bands are frequently eliminated when choosing bands for HSI.
However, analyzing these data can be rather difficult owing to the
Hughes effect when the number of cases is significantly smaller
than the number of characteristics, as is frequently the case with
HSI data. As illustrated in Fig. 1, [(a) BS of the basic framework
and (b) stages of the BS process], the general framework and
process for BS typically consist of four major processes. The
steps are as follows:

1) production of band subsets;
2) evaluation of band subsets;
3) stop criteria; and
4) validation of results [15].
HSI bands are an important part of the identification process

for many people. It is crucial to choose carefully when choosing
a band because doing so can be essential to success. Following
these steps carefully and thoughtfully ensures that your final
selection for HSI bands will be both relevant and accurate
[16], [17]. Two main types of BS methods are supervised and
unsupervised. Supervised methods require prior knowledge of
the data, whereas unsupervised methods do not. The main dif-
ference between these two types of methods is how the criteria
for BS are constructed. Supervised methods use predetermined
design criteria, whereas unsupervised methods use data itself to
determine which bands are most important. The best way for
your application must be chosen because each sort of method

has benefits and drawbacks [18]. The proposed models are more
accurate when a smaller number of bands are processed. The
results show that the number of spectral bands selected, the errors
obtained, and the trend in the proposed models represent local or
global minimums that determine the performance and accuracy
of the optimal model. In addition, the problem of choosing the
monitored method is considered by choosing the method that
constitutes the most accurate model [19].

II. RELATED WORK

Principal component analysis (PCA) and spectral eigen de-
composition are potent methods for dimensionality reduction
and data analysis. PCA is a technique that finds the linear
combination of variables that best explained the variance in a
dataset. This can be used to reduce the number of dimensions
in a dataset while preserving most of the information. In [20],
PCA is used in the spectral dataset and is used to prioritize
bands to maximize variance or SNR. In [21], combining super-
vised and unsupervised methods has various benefits to create
a precise HSI BS system. Instance-based supervised neural
computing was integrated with unsupervised techniques, such
as information entropy, information divergence, and PCA-based
band ranking. This produced superior performance results than
using only supervised or unsupervised techniques. Combining
several methods enables a more precise selection of bands most
relevant to the task at hand, improving classification accuracy.
In [22], four linear constraints were utilized to minimize band
correlation: spectral angle, normalized mutual information (MI),
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Pearson’s correlation coefficient, and Spearman’s rank correla-
tion coefficient. In [23], an unmixing-analysis-based alternative
separability index approach was used for HSI BS. With this
approach, correlated bands that cannot be effectively separated
are forced to be removed from the analysis. Results in a more
accurate and reliable final image. In [24], the interband redun-
dancy was eliminated using methods of band decorrelation based
on divergence. The first step was calculating the divergence
between each pair of channels. The channels with lower diver-
gence values were then selected for each band’s representative
channels. This approach resulted in improved image quality and
a reduction in processing time. Finally, the remaining bands were
prioritized according to their significance. The authors utilized
two approaches; a clustering-based method and a ranking-based
method to choose which bands to use for HSI. It was improved to
make the “rapid density-peak-based clustering” approach more
appropriate for HSI BS. The “isolated-point-stopping criterion”
determines the number of bands that are chosen. When used on
two independent datasets, this methodology surpassed earlier
techniques, according to this study [25].

In [26], the pointwise-ranking-based HSI BS proposed by
these authors is very efficient and can be used to select an
appropriate subset of bands for further analysis or classification
tasks. This approach, based on the average correlation of labels
supplied by a trained nonhomogeneous hidden Markov chain
model performed to wavelet processed HSI data, ranks spectral
bands. The importance of each band in an HSI is evaluated in
[27] and [28] in accordance with MI between the HSI bands
and a common reference band. One of the most efficient ways is
the clustering-based steering-based HSI band reduction method
[10]. This method chooses representative bands from the clusters
based on information metrics, such as MI or Kullback–Leibler
divergence. This lowers the number of dimensions while en-
abling a more accurate depiction of the data. A brand-new
unsupervised band reduction method called BandClust has been
studied in [29]. This approach splits each band interval into two
disjoint contiguous subbands based on minimization criteria of
MI between averaged subbands. As a result, there are fewer
bands while the majority of the spectral data is still preserved.
One such semisupervised technique, band clustering, which uses
class spectral signatures for band clustering, was presented by
the authors in [30]. Each cluster center is used as a representative
band once outliers from the generated clusters have been elim-
inated. A system for automatically removing water-absorbed,
low discriminating, and high SNR bands was put forth [31].
The authors described feature mining as a useful method for
identifying certain representational bands [32]. It accomplishes
this by examining the connection between each band cluster.
According to Zeng et al. [33], convolutional autoencoders are
employed to learn the features of each data point in the cluster.
The ideal band is chosen for each cluster using this information.
In [34], the HSI BS issue was addressed by the authors using
graph algorithms. Data analysis may be done mathematically
using the rough set theory. Liu et al. [35] used to identify the
most important bands in an HSI. This is done by first reducing
the number of dimensions in the HSI so that it can be more easily
analyzed. The significance of each band is then determined

using a forward greedy search technique. The algorithm starts
with the most significant band and searches for the next most
significant band until all of the bands have been evaluated.
In [36], the performance of the wrapper-based semisupervised
HSI BS techniques was improved by the authors through the
introduction of the usage of guided filter pseudolabels. This
approach is based on a novel two-stage filtering procedure that
first uses unsupervised learning algorithms to automatically
identify relevant bands for further analysis and then uses a
supervised classifier to label them. In [37], a three-step strategy is
proposed. This approach begins with breaking down HSI bands
into band subgroups. This can be done by dividing the spectrum
into regions based on wavelength and then assigning each pixel
to a band according to its location in the spectrum. The second
step is to select nonredundant bands from the decomposed
subsets. This can be done by ranking the bands based on their
spectral information content and selecting only the top N bands,
where N is a user-defined parameter. The third step is to use
these selected bands for classification or other analysis tasks.
Evolutionary methods are a family of search algorithms that use
principles of natural selection and genetics to optimize solutions.
Numerous evolutionary techniques have been used for effective
band searching, including the genetic algorithm (GA) [38],
particle swarm optimization [39], and firefly algorithm [40]. An
innovative-supervised-filter-based method for BS using neural
networks is suggested in [41]. A binary single-layer neural
network classifier creates a classification between each class in
the dataset and the rest of the data for each class in the dataset.
The procedure of choosing the bands is then class-oriented since
the largest and lowest weight bands are chosen next. Up until
the predetermined number of bands is reached, this procedure
iterates.

In [42], semisupervised BS using an upgraded Levy flight
based variant of the GA is performed. In the suggested semisu-
pervised strategy, both spectral similarity and spatial proximity
are used to increase the number of training examples. The meta-
heuristic hybrid rice optimization (HRO), which has been effec-
tively used in BS, roughly divides its population into three groups
with an equal number of members based on self-equilibrium
and symmetry. However, the main HRO has significant limits
when it comes to the local search for better alternatives, and
this could lead to the missing out of a good option. For BS, a
modified HRO based on a differential evolution operator and an
opposition-based learning technique is proposed in [43].

According to the authors’ formulation in [44], the HSI BS
problem evaluates the performance of every sparse band com-
bination. It is a multitask sparsity pursuit problem. It is crucial
to find the best answer to this issue as it can enhance how well
image processing algorithms function. An attention module and
an autoencoder are combined to form a neural network module
that Dou et al. [45] called an attention-based autoencoder model.
The informative band subset is chosen by the attention module,
and the autoencoder only uses this subset to reconstruct the input
data. When there is a lot of noise in the input data, this method
can help an autoencoder perform better.

In [46], a multicriteria semisupervised model is developed
for the selection of hyperspectral picture bands. The model is
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broken down into two separate tasks. The first task evaluates
the amount of information and redundancy contained in the
chosen bands using unlabeled samples, whereas the second
task evaluates the discrimination of the chosen bands using
examples that have been labeled. In order to optimize this model,
a multitask optimization approach is developed to aggregate
the data from the bands and expedite the search for viable
bands. In [47], from the labeled data, signature patterns are
extracted with minimum and maximum reflectance values for
each class, which are then quantized. The quantization process
is carried out repeatedly until distinct patterns are found for
each class. Finally, to guarantee that the selected bands have the
least possible redundancy, bands with the highest correlation and
lowest variance are discarded.

Cao et al. [48] propose a supervised BS technique based on
the local spatial information of the hyperspectral picture and
the wrapper method in light of the special characteristics of
HSIs. The suggested technique consistently outperforms the
traditional wrapper method by making use of the data from both
labeled and unlabeled pixels in the HSI. In [49], unsupervised
HSI BS using band grouping and adaptive multigraph constraints
was suggested. When using a band grouping strategy to create a
global similarity matrix, the problem of disregarding substantial
correlations across neighboring bands is resolved. In contrast to
prior research work that was limited to fixed graph restrictions,
this approach creates a global similarity matrix by dynamically
altering the weight of the local similarity matrix.

III. MATERIALS AND METHODS

The methodology section includes descriptions of the sug-
gested approach, algorithms used, and the datasets. The method
of merging algorithms served as the foundation for the BS
strategy employed in this investigation. The evolutionary algo-
rithm, one of the most widely used search techniques, has been
integrated with artificial intelligence, particularly deep learning,
to choose the right number of bands and reduce the dimensions
for issues, such as the proposed method for classifying HSI.
The convolution network as a fitness function, implemented in
the evolutionary algorithm, is recommended as a mechanism for
getting suitable and optimal bands in the processing of HSI. This
mechanism is more effectiveness of genetic operators.

The structural alteration and transformation of the suggested
neural network model in the proposed method have been re-
viewed and assessed in the Results and Discussion section with
the goal of increasing accuracy and decreasing processing speed.

A. Convolution Neural Network Embedded GA
(CNNeGA—Proposed Method)

Reducing the dimensions of input data is effective in many
important problems and processes. Dimension reduction as a
preprocessing issue in HSI processing is also done by finding
appropriate subbands, which will be efficient in the next steps
and subsequent processing of related issues. To find suitable
subbands, we suggest using a GA and a convolutional neural
network with 3-D layers (3D-CNN), which are embedded in
the GA as a fitness function, which is responsible for classifying

TABLE I
PSEUDOCODE OF CNNEGA (PROPOSED METHOD)

the input data. A population of subbands of the main HSI and the
images produced from these subbands is applied to the proposed
model, and the results of the classification are used for ranking
and choosing suitable subbands. Finding the suitable subband
and finally reducing the dimensions as the final result, using
this combination, have been done with better and acceptable
success. The combination of the GA with the designed 3D-CNN,
which we named this combination CNNeGA, using the GA
a population of solutions is generated. Then, each solution
is applied to the convolutional neural network to evaluate its
effectiveness and the result of the classification is examined to
evaluate that solution. Better solutions are used with existing
successful solutions by applying common operators in the GA
(selection, crossover, mutation, etc.) to produce new generations
and superior solutions. This process is repeated until the best
solution is found and proposed. The pseudocode and its im-
plementation steps are also shown in Table I, and the structure
and flowchart of the proposed method (CNNeGA) are shown in
Fig. 2.

One of the key advantages of 3D-CNNs is their ability to
quickly identify patterns in 3-D data. This is important because
many real-world problems involve 3-D data, such as recognizing
objects in images or videos. Traditional neural networks are not
suitable for this type of data and can often struggle [50], [51],
[52], [53], [54], However, 3D-CNNs are specifically designed
to handle this type of information and can achieve much better
results than traditional networks. 3-D convolutional neural net-
works are the future of machine learning and can learn from data
much faster than traditional neural networks [55]. Traditional
neural networks use the process of back-propagation to learn
from data. This process can take a long time, especially when a
lot of data is being processed. 3D-CNN uses a different process
called convolutional layers, which can significantly speed up
the learning process. Convolution layers divide the input data
into small pieces and then process them in parallel. This allows
the network to learn faster and more effectively than traditional
networks. In addition, 3D-CNNs can more accurately represent
complex patterns in datasets [56], [57]. The complexity layer,
composite layer, and fully connected layer are some of the layers
that make up the 3D-CNN, a CNN multilayer neural network.
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Fig. 2. CNNeGA—proposed method (3-D CNN embedded in GA) block diagram.

The first CNN model’s convolution layer is used to execute the
convolution operation on the input data. The 2D-CNN models
can only extract spatial information, hence, the 3D-CNN-based
model can not only extract spatial characteristics but also derives
a spectrum for such models, which is why it is chosen and
used. In comparable circumstances, models based on spatial ex-
tractors perform significantly better than spectral-spatial feature
extractors.

In remote sensing applications, 3D-CNN can be used ef-
ficiently as these data include spectral and temporal features
[58]. The ReLU activation function is used in the middle layers
of the convolution network. ReLU has better behavior and is
the most recommended activation function [59], [60]. At the
ReLU output, a negative value is filtered to zero. The fast
convergence of ReLU is what enables the activation function of
CNN layers. This component allows two jumpers for reliable
network operation. The problems of vanishing gradients are
significantly reduced and saturation is avoided. The structure of
the 3-D convolutional neural network designed and embedded
in the GA algorithm, which is used here as a fitness and classifier
function, and how to apply the data as input and output are shown
in Fig. 3.

Each of the test data is placed in 3-D form (cube) in the input
layer, and as mentioned before, while passing through each
3-D convolution layer, they gradually pass through the ReLU
function. Also, the dropout technique is used to increase the
efficiency and accuracy of the network before using the output
layers. Regarding the input data to the network, it is necessary
to explain that the spectral channels in each subset of the band
applied to the convolution network are arranged in ascending
order. As a result, data from the same channel are sorted into the
same row. Therefore, the spectral background correlation will

remain stable in any selected band subset [61]. When 3D-CNN is
applied to the hyperspectral input, the results will be as follows:

Z (x,y, b) = F

⎛
⎝ I∑

i = 1

J∑
j = 1

K∑
d = 1

(I (x+ i,y + j,d

+ k)∗N (i, j,k) + b)

⎞
⎠ (1)

where K is demonstrated as the spectral size of the 3-D kernel.

B. Genetic Algorithm

GAs effectively solve many optimization problems, includ-
ing constrained optimization problems, scheduling problems,
routing problems, design optimization problems, and extracting
suitable features. They are also more efficient than other search
methods, such as hill climbing or simulated annealing, because
they can be implemented in software or hardware for real-time
applications, such as control systems or machine learning [62],
[63]. Fig. 4(a) displays the GA’s basic building blocks. The GA
starts with a population of potential solutions or chromosomes.
Then, it evaluates the fitness of each chromosome using fit
criteria. Chromosomes that are better than others are more likely
to reproduce and produce chromosome offspring. This process
is repeated until a satisfactory solution is found. GAs have been
used in various fields, such as image processing and HSI BS. In
HSI, the goal is often to find an optimal set of bands that can be
used for classification or feature extraction tasks. A GA-based
approach is effective in quickly and efficiently finding good
binding combinations. The main steps of using GA to select
the HSI band are as follows.
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Fig. 3. 3D–CNN structure and how to apply data input and receive output data to the 3D-CNN structure.

1) Create the initial population.
2) Select the fitness function.
3) Evaluate the fitness of each chromosome.
4) Reproduction of successful chromosomes.
5) Mutation of failed chromosomes.
6) Repeat until reaching the convergence criteria [64], [65],

[66].
The fundamental building blocks of a GA are chromosomal

representation, fitness function, and genetic operators, including
crossover, mutation, and selection. After randomly initializing a
population of chromosomes, new chromosomes are produced
by updating the genes on the pre-existing chromosomes in
accordance with the fitness function. The best chromosomes
in the population are selected for reproduction to produce new
offspring, with some crossover between them to create diversity.
This mutation occasionally introduces new solutions to the
population. The GA is iterated until a satisfactory solution is
found or the termination criteria are met [67]. The structure
of this algorithm and the details of the mutation and crossover
operators used in the basic GA are shown in Fig. 4 for a better
understanding.

To generate a new population, the operators used in the GA
used in this article are as follows, and their performance is
shown in Fig. 4(b). The crossover operator is of the two-point
type and the mutation operator is also selected from the flipping
type. As can be seen in Fig. 5, in the crossover operator, a part
of the selected subband is combined with another part of the
selected subband and a new chromosome is produced. In the
filling mutation operator, two selective bands are shifted with
each other and a new chromosome is produced. For the selection
block in the GA, the rotating wheel selection operator is also
used.

C. Check Parent

Genetic operators (crossover, mutation) are used to generate
and improve new chromosomes. The repetition and commonal-
ity of some elements (bands) in parent chromosomes (subbands)

during population production is a well-known and unavoidable
problem. This defect will make the process of selecting subbands
difficult. Also, this causes the ineffectiveness of crossover and
mutation operators in the GA. To overcome this problem, our
proposed solution is to add a box to check parent chromosomes
before entering the crossover or mutation operator. Fig. 4(a)
and (b) shows this box and its location. Fig. 4(c) also depicts
the proposed solution’s details and implementation steps. After
evaluating the initial population, P1 and P2 are selected as
parental chromosomes. These parent chromosomes are selected
in the crossover operator to generate new chromosomes C1 and
C2, and similarly in the mutation operator, P, MC, to generate
C. This process is repeated if P1, P2 for crossover and P, MC for
mutation are not equal. If the constituent elements of the selected
chromosomes (P1�P2, P�MC) are not the same, therefore,
none of the genetic operators will be applied to them. First,
it will be explained how to implement the steps of the proposed
solution, before the crossover operator, and similarly, it will be
done about the mutation operator. In step 1, a list of common
bands in P1 and P2 is prepared; the length of this list is considered
to be L. If the length of L is greater than 1/2 b (b is the length
of P1 or P2) (that is, if the number of bands in the list of L is
more than half of the bands of P1 or P2), then the bands in the
list of L with the probability of L/b are directly placed in C1
and C2, and the crossover operator is applied to P1 and P2. If
this possibility (P(L/b)) fails and a band in P1 or P2 has not been
repeated several times, the process is terminated by applying the
crossover operator to P1 and P2. Because the initial population is
produced at randomly, the presence of a repetitive band in some
chromosomes is obvious. In the second step, a list of repeated
bands in P1 along with their number, which is M, is prepared.
Each repeated band, along with its additional number, is colored
in Fig. 4(c) and Step 2. In this step, the extra bands are removed
from P1. In the following, each of the additional repeated bands
is replaced with the probability P(τ ), which is equal to 1/K
from the list of all bands except the repeated bands. This step is
repeated similarly for P2. After this step, the crossover operator
is applied to P1 and P2. This process and its stages are repeated
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Fig. 4. (a) Basic structure of the GA with check parent box. (b) Crossover and mutation operators. (c) Check parent box.

in the same way before the selected chromosomes enter the
mutation operator. This solution was presented to prevent the
repetition of a band and maintain effective common bands in
each band category in the generated population. It also avoids
the ineffectiveness of crossover and mutation operators in the
face of similar and repeated bands. Maintaining effective and
suitable bands during this process on each selected and produced
chromosome is also one of the advantages of this proposed
solution. All operations in this process deal with the ID of each
of the bands, not the content of the bands. As a result, it does not
have an influential role in computational complexity. Table II
shows the pseudocode of the parent box check.

D. Dataset

The efficiency of the suggested BS strategy for categorizing
HSI land cover is assessed using three sets of publicly accessible
HSI remote sensing data. These are the key characteristics of this
dataset.

The first HSI dataset was gathered by AVIRIS sensor over
the Indian Pines (IP) test site in North-Western Indiana and
consists of 145×145 pixels and 224 spectral reflectance bands
in the wavelength range 0.4–2.5 × 10−6 m. The IP setting is
made up primarily of agriculture, with the remaining third being
either forest or other types of perennial forest vegetation. Two
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Fig. 5. Ground truth data and classification maps for dataset show the selection of (a) 5 bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30
bands selected for IP datasets.

TABLE II
PSEUDOCODE OF CHECK PARENT BOX

significant dual-lane highways, a rail line, some low-density
dwellings, other developed features, and minor roads are all
present. Since the scene is June, some of the crops, such as
maize and soybeans, are just starting to grow and have less
than 5% coverage. Sixteen categories of ground truth can be
used, although not all of them apply to every situation. By
eliminating the bands [104-108], [150-163], and 220 that cover
the water absorption region, we have also lowered the number
of bands to 200. You can access IP data on Pursue’s University
MultiSpec website. Table III displays the data and representation
for this dataset. The 224-band AVIRIS sensor was used to collect
the second HSI dataset, which is displayed in Table IV, as a
representation of a false color image as well as a real ground
image and its sample class information. This dataset has a
high spatial resolution (pixels 3.7 m) and was taken in the
Salinas Valley (SA) of California. The area covered includes
512×217. We eliminated 20 water absorption bands, in this
case, bands [108-112], [154-167], and 224, much as we did with

TABLE III
INDIAN PINES DATA SET (FALSE-COLOR IMAGE, GROUND-TRUTH, SAMPLES)

the IP landscape. The only form of this image that was stored
in the sensor was radiance data. Vegetables, barren soils, and
grape lands are included in this. Salinas’s dataset consists of 16
classes. The University of Pavia dataset (PU) from Table V is the
third HSI dataset. It was collected by reflective optical imaging
spectroscopy in the urban area surrounding the University of
Pavia in northern Italy. Nine separate classes, each representing
various urban terrestrial items, are taken into account in the
actual earth map. Each band has a size of 610 × 340 pixels with
a spatial resolution of 1.3 m per pixel. It was captured between
the wavelengths of 0.43 and 0.86 × 10−6 m. There are 115
spectral bands in this HSI. Twelve extremely noisy bands were
eliminated before the experiment, leaving 103 bands that may be
used for research. The fourth HSI dataset shown in Table VI was
obtained. The NSF-funded Center at Airborne Laser Mapping
acquired the data from the University of Houston campus and
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TABLE IV
SALINAS DATA SET (FALSE-COLOR IMAGE, GROUND-TRUTH, SAMPLES)

TABLE V
UNIVERSITY OF PAVIA DATA SET (FALSE-COLOR IMAGE, GROUND-TRUTH,

SAMPLES)

the neighboring urban area. The Houston (H) dataset consists of
144 spectral bands in the region of 380 to 1050 nm and its spatial
resolution is 2.5 m. The average height of the sensor above the
ground was 5500 ft. Houston’s dataset consists of 16 classes and
349×1905 pixels. A summary and initial information about the
four datasets used are provided in Table VII.

IV. RESULTS AND DISCUSSION

In this section, several comparative experiments have been
planned, developed, and used on four HSI datasets in this part.
The outcomes of these comparisons have been assessed and
analyzed using six competing methodologies. Analyzes and
discussions are done in several categories, which are as follows.

1) Parameters and settings are required in the proposed algo-
rithm and method.

2) Comparison of the accuracy obtained from the results of
the proposed method with six competing methods.

TABLE VI
UNIVERSITY OF HOUSTON DATA SET (FALSE-COLOR IMAGE, GROUND-TRUTH,

SAMPLES)

TABLE VII
DETAILS ON DATASETS

3) Distribution of selected and number of bands in each tested
dataset.

4) Selected ideal and recommended bands.
5) The results of the classification of images with the real

earth image using recommended bands.
6) The distribution of selected bands along with the spectrum

of classes in each batch of experimental data.
7) Complexity analysis.
8) Evaluation and effectiveness of increasing layers of atten-

tion in performance.
9) Converting the 3D-CNN model to a spike neural networks

(SNNs) and checking the results.
To show and compare the results of the proposed method

fairly, three competing methods have been selected. These
methods are selected from supervised categories, and named
according to their references as follows.

1) BS_UQ (BS using quantization) [47].
2) LSI_BS (local spatial information BS) [48].
3) SLN_BS (single-layer neural networks BS) [41].
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TABLE VIII
GA PARAMETERS

TABLE IX
3D-CNN PARAMETERS IN DIFFERENT BS

The focus of this article is on the relative comparison of the
results with the mentioned methods.

A. Implementation Details

In the experiment, the simulation and modeling process in
this research has been implemented through Python. Using the
Tensor-flow and Keras libraries, on the Collaboratory platform,
as well as using GPUs with free access and suggested by this
platform. The early stop strategy has been employed in the
validation to avoid the model from becoming overfitting and
to shorten the proposed method’s execution duration. We set the
Epoch number to the lowest value of 35 because the 3D-CNN 35
to 50 epoch range produces the maximum level of classification
accuracy.

The ReLU and SoftMax activation functions were employed,
respectively, in CNN’s middle and output layers. The number
of the selected band (BS) was considered as one of the set
parameters of the first layer filter in the 3D-CNN as (3∗3∗BS)
(see Fig. 3), which means that in all BS modes, the value with
the desired number is considered for the selected band category.
Also, that each iteration, 20% of samples are used for training
the network, and the GA’s iteration is set at 100.

B. Parameters and Settings

This section includes a list of the various settings and the
number of parameters for the 3D-CNN in the proposed method.
The different parameters and BS modes are shown in Tables VIII
and IX.

These settings include the initial value of the parameters used
in GA and the numerical number of parameters derived from the
convolution network, which is included in the GA. Each of the
operators used in the GA, including the ranking and selection of
the optimal chromosome, crossover, and mutation, has a value as
a probability, and the optimal value of this probability is recorded
during the initial settings and used in the process of running the
algorithm has taken. Also, the number of parameters or weights
used in the convolutional neural network, in selecting different
bands from 5 to 30 bands, is shown in these tables.

C. Performance and Accuracy Analysis

The level of accuracy attained in classifying the image derived
from the search for the ideal bands chosen by the proposed
approach is shown in the first evaluation of the methods taken
into consideration this article. The accuracy curve is created by
changing the chosen band number, b, which ranges from 5 to 30
with a five-point interval, and the average accuracy bar is created
by averaging the categorization accuracy rates used as a whole.
It is necessary to explain that in all the evaluations performed on
the desired and tested data, the accuracy was obtained and the
result of the evaluation of the classification accuracy for the full
band mode is the same according to the number of calculations
and the length of time. The accuracy obtained in the 30-band
mode is considered and excluded from further evaluation in the
selected band number set.

Table X contains information about the accuracy of image
classification HSI and the numerical comparison of the obtained
results with the reference methods. This table’s best and highest
accuracy values are related to the results obtained from the
proposed CNNeGA method. In this table, the maximum and
minimum values obtained by competitive methods can be seen.
The bold black font corresponds to the maximum precision
values in each of the selected bands. The differences in the value
of accuracy of the competing method with the proposed method
in all cases and tested data are about 6% to 21%. The evaluation
of the obtained accuracies about testing the data related to the
IP dataset shows that the maximum accuracy values obtained in
the competing methods are related to the BS_UQ method and
are between 0.85 and 0.9508. These values are lower than the
proposed method in each selected band category from 1% to 5%.
Also, the SLN_BS method has the lowest values obtained in this
group of the IP dataset. The accuracy obtained by the proposed
method (CNNeGA) is from 0.9085 to 0.9661. The accuracies
obtained from testing the data related to the second SA dataset
also show that the maximum accuracy values obtained in the
competing methods are related to the BS_UQ method and are
between 0.922 and 0.972. The accuracy values are lower than
the proposed method in each selected band category from 1%
to 3%. In this group, the LSI_BS method also has the lowest
values obtained. The accuracy obtained by the proposed method
(CNNeGA) is from 0.93007 to 0.982. The accuracies obtained
in the third group, the test of the PU dataset also show with a
slight difference that the maximum accuracy values obtained in
the competing methods are related to the BS_UQ and SLN_BS
methods and are between 0.906 and 0.97, of course, the SLN_BS
method is in the category bands 15, and 20 has the highest
amount of accuracy obtained. The accuracy values are lower than
the proposed method in each selected band category from 2% to
8%. Also, the LSI_BS method has the lowest obtained values.
The accuracy obtained by the proposed method (CNNeGA) is
from 0.9807 to 0.9973.

The accuracies obtained from testing the data related to the
last dataset H also show that the maximum accuracy values
obtained in competing methods are related to the BS_UQ and
SLN_BS methods and are between 0.892 and 0.9583, although
the SLN_BS method is in the category bands 5, and 15 has the
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TABLE X
ACCURACY OF METHODS IN THE CLASSIFICATION OF SUBBANDS HSI

highest amount of accuracy obtained. The accuracy values are
lower than the proposed method in each selected band category
from 2% to 12%. In this group, the LSI_BS method also has the
lowest values. The accuracy obtained by the proposed method
(CNNeGA) is from 0.9206 to 0.9807. The proposed method
as well as the SLN_BS method are class-based and therefore
based on classifier training. Of course, this issue in the proposed
method is due to the use of a deep network based on CNN
layers, which has higher accuracy in teaching and predicting
the class. The SLN_BS method has an approach based on the
use of machine learning. It seems that the approach of using
a deep network on CNN in this problem is good and has the
highest level of accuracy in the obtained results. But the SLN_BS
method has more speed and less computational complexity than
the proposed method. In the LSI_BS method, accuracies have
been obtained using the SVM classifier. SVM classifier is one
of the most common algorithms used in the classification of
many problems and is the basis for comparing the proposed
methods with this method. Of course, here too, the accuracy
of the proposed method was proven higher than the LSI_BS
method due to the use of a deep neural network as a classifier.
This method has average computational complexity and speed
between the proposed method and the SLN_BS method.

The level of accuracy attained in classifying the image derived
from the search for the ideal bands chosen by the proposed
approach is shown in the first evaluation of the methods taken
into consideration in this article. The accuracy curve is created
by changing the chosen band number, b, which ranges from 5
to 30 with a 5-point interval, and the average accuracy bar is
created by averaging the categorization accuracy rates used as
a whole. It is necessary to explain that in all the evaluations
performed on the desired and tested data, the accuracy was
obtained and the result of the evaluation of the classification
accuracy for the full band mode is the same according to the

number of calculations and the length of time. The accuracy
obtained in the 30-band mode is considered and excluded from
further evaluation in the selected band number set. Table X
contains information about the accuracy of image classification
HSI and the numerical comparison of the obtained results with
the reference methods. This table’s best and highest accuracy
values are related to the results obtained from the proposed
CNNeGA method. The BS_UQ method has the closest results
to the proposed method compared to the other two methods.

This method is based on feature extraction and the use of
statistical methods to select a data-oriented band without user
intervention. Although data labeling is used in this method,
it does not depend much on this technique. But the BS_UQ
method used 60% of the samples for training and 40% for
testing the classifier to check the accuracy. Compared to the
proposed method, more data (about three times) has been used
for training and testing the classifier. In this method, an SVM
classifier is also used. This method is almost equal to the LSI_BS
method in terms of computational complexity. In general, the
proposed method has better performance due to the use of less
number of training samples, higher stability, and accuracy of
classification in the face of various data. The proposed method
shows promising results compared to the other mentioned meth-
ods in that the classification accuracy of PU and IP datasets
reaches more than 99% and 98% in some cases. However, less
than 97% was obtained for some datasets, this may be because
the data (classes) are larger and imbalanced, have a relatively
lower spatial resolution, and also have a much larger number
of cover classes. The selection of bands efficiently establishes
the resolution between various land cover classes without data
loss or spectral distortion. Figs. 5–8 show the four datasets IP,
SA, PU, and H separately so that you can visually assess the
effectiveness and classification accuracy of the selected band
set of 5 to 30 bands using the advised CNNeGA method as well
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Fig. 6. Ground truth data and classification maps for dataset show the selection of (a) 5 bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30
bands selected for SA datasets.

Fig. 7. Ground truth data and classification maps for dataset show the selection of (a) 5 bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30
bands selected for PU datasets.

Fig. 8. Ground truth data and classification maps for dataset show the selection of (a) 5 bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30
bands selected for H datasets.
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TABLE XI
IDEAL AND RECOMMENDED BANDS IN DIFFERENT SUBBANDS PER THE HSI DATASET

as the variation between the prediction of the obtained images
and the actual image.

Separately, the classification maps in this method and the
ground truth in the IP dataset, including 16 feature categories in
Fig. 5(a)–(f), in the Salinas dataset with 16 feature categories in
Fig. 6(a)–(f), the Pavia University dataset, including 9 features,
are shown in Fig. 7(a)–(f), and the Houston dataset, including
9 features, are shown in Fig. 8(a)–(f). As shown in Fig. 5, the
proposed method gradually achieves better classification results
in four different datasets by increasing the number of selected
bands.

D. Band Selection

As shown in Table X, the proposed method gradually achieves
better classification results in different datasets by increasing the
number of selected bands. Figs. 5–8 show the accuracy, quality,
and performance of the proposed method as it progresses toward
increasing the number of bands in each desired image in each
of the selected bands and improving the classification.

Table XI shows the proposed and ideal band using the CN-
NeGA method tested and displayed on each of the datasets
separately. In addition to displaying the selected bands, the

accuracy values obtained in the classification of each category
of bands have also been re-entered. The display and distribution
of the ideal bands selected in the CNNeGA method in the
corresponding Fig. 9, and for each of the IP, SA, PU, and H test
data separately and after the table of recommended bands for
each, have been shown. If the selected bands contain too much
redundant information, test data with this method are not suitable
for classification tasks. First, we investigated the distribution of
the selected bands to analyze the additional information in the
selected bands with the proposed BS method. The selected and
recommended groups in each category, from 5 to 30, are shown
in different colors in Fig. 9. The uniform distribution of the
selected bands, which are chosen from the entire spectrum of
bands, serves as additional evidence that the suggested strategy
was chosen well. Using this method to choose a band has several
advantages, including the straightforward implementation and
coding of the method and access to resources, such as the Colab
platform, which is available without charge. The selected bands
and the class spectrum curves from four different datasets are
shown in Figs. 10–13, respectively, in each group of bands
from 5 to 30 bands. In the shown graphic, each vertical line
denotes where a certain band is located. The suggested BS
approach may choose bands with low redundant information and
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Fig. 9. Distribution of the optimal bands selected in the proposed method in (a) IP, (b) SA, (c) PU, and (d) H dataset.

Fig. 10. Spectrum curves of the classes are included in the IP dataset. The vertical lines denote the different bands selected by the BS proposed method: (a) 5
bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30 bands selected.

a distribution that is close to uniform, according to experimental
data. Using the proposed method, a set of influential bands have
been identified and spectral bands that do not contain useful
information have been avoided. Fig. 9, with Figs. 10–13, is a
complete visual representation of how to select a band using
the proposed method. The evaluation criteria of the studied
and proposed methods are the accuracy level obtained in the
classification in each of the selected band categories and on each
of the experimental data. From the results shown in Table X,
and the accuracy obtained in classifying images into different
categories in Figs. 5–8, and on the experimental data, we can
see that our method achieves the highest performance in each

dataset and our hypothesis confirms that. The results, which
are consistent even under investigation, show that there is a
significant gap in performance between the proposed method
and competing methods in the accuracy proposed method and
competing methods in the accuracy achieved in band classifica-
tion and selection. There are limitations in the implementation
and the proposed method, which can mainly be pointed to
the amount and time of calculations of this method, which
is considered of the major limitations. The increase in the
number of parameters of the CNN used, which increases in
each of the selected bands, leads to an increase in the time and
computation.
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Fig. 11. Spectrum curves of the classes are included in the SA dataset. The vertical lines denote the different bands selected by the BS proposed method: (a) 5
bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30 bands selected.

Fig. 12. Spectrum curves of the classes are included in the PU dataset. The vertical lines denote the different bands selected by the BS proposed method: (a) 5
bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30 bands selected.

E. Effectiveness of Increasing Attention Layers in Performance

In this part, we pay attention to one of the ideas added to this
article, that is, the level of effectiveness and adding attention
layers to the 3D-CNN structure. The attention mechanism is used
in many methods and increases accuracy, especially in classifica-
tion methods. In the final part, after selecting and finding suitable
bands (recommended band sets in Table XI), we evaluated the
performance and classification accuracy of each band category
by applying these bands to the new 3D-CNN network structure.
This evaluation was done only to confirm the performance of
the proposed method and retest the recommended subbands
in each dataset. The performance evaluation showed that the
accuracy of the classification is ∼ 3% more and increased
than the previous value. Although the evaluations show good
performance, satisfactory results, and the increase in parameters
(2 to 3 times the structure of the 3D-CNN network and the

parameters shown in Table IX), as a result, the computational
complexity is one of the serious challenges. Fig. 14(a) shows
the change in the 3D-CNN structure with the addition of the
attention layer. In this structure, the attention layer is used in
two forms: the spectral attention module and the spatial attention
module, which are shown in Fig. 14(b) and (c). The weight
of attention paid to each of the retrieved spectral and spatial
features is altered by the spectral and spatial attention module,
which is positioned after each 3-D CNN layer. Each channel
generates additional channels with distinct information after
being processed by various convolution kernels. Assume that
each channel will have weights added for display. A stronger
link and relationship between the channel and the important
information imply a heavier weight. As a result, the appropriate
channel needs to receive greater focus. Each feature channel’s
relevance is modeled by the spectral attention module, which
subsequently boosts or suppresses them depending on the task.
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Fig. 13. Spectrum curves of the classes are included in the H dataset. The vertical lines denote the different bands selected by the BS proposed method: (a) 5
bands, (b) 10 bands, (c) 15 bands, (d) 20 bands, (e) 25 bands, and (f) 30 bands selected.

TABLE XII
ACCURACY OBTAINED IN THE CLASSIFICATION SUBBANDS RECOMMENDED HSI DATASET BY 3D-CNN

A spatial attention map develops details by utilizing the link
between the spatial features of the information in concentrated
chunks. Spatial attention is distinct from spectral attention. In
the structure of 3D-CNN with attention layers, there are second
paths to extract the cube features of the input image. In this
structure, one path is used to extract spectral features and the
second path is used to extract spatial features. Finally, after
connecting the output of these two feature extraction paths,
the feature map obtained in the last layer of 3-D CNN (C4)
from the global average pooling (GAP) module has been used
to create the feature vector. In the networks that use the fully
connected layer for classification, the output feature maps are
given to SoftMax after joining each other, but in this method,
a feature map is generated for each class after the last CNN
layer. The GAP layer is added to the network. By adding a
GAP layer on top of the feature maps, they benefit from the
feature maps and the feature vector results are directly given
to SoftMax. One of the characteristics of the GAP layer is that
it is not more than a problem due to the lack of parameters for

optimization, and on the other hand, this layer is more resistant to
local changes and more compatible with convolution networks
[79], [80], [81], [82], [83], [84], [85], [86], [87]. Table XII shows
the accuracy result obtained using the 3D-CNN network based
on the attention layers, which shows the four datasets of IP,
SA, PU, and H. It seems that in datasets where the similarity
between classes (spectral similarity), such as on the SA dataset,
the accuracy obtained by using the attention mechanism is not
much different from the previous values.

F. Spike Neural Networks

SNNs are biologically plausible counterparts of artificial neu-
ral networks (ANNs). ANNs are usually trained with stochastic
gradient descent, and spiking neural networks are trained with
spike-timing-dependent plasticity. Training deep convolutional
neural networks is a memory and power-intensive task. SNNs
could potentially help in reducing power usage. There is a large
pool of tools for one to choose to train ANNs of any size.



ESMAEILI et al.: HYPERSPECTRAL IMAGE BAND SELECTION BASED ON CNN EMBEDDED GA 1943

Fig. 14. (a) Architecture of the 3D-CNN with attention layers. (b) Spectral attention module. (c) Spatial attention module.

All the available tools to simulate spiking neural networks are
geared toward computational neuroscience applications. SNNs
promise that they are less computationally intensive and much
more energy efficient because it runs asynchronously using
spikes. SNNs have gained massive attention as a potential
energy-efficient alternative to conventional ANNs due to their
inherent high-sparsity activation. However, most previous SNNs
methods use ANN-like architectures, which can provide optimal
performance for the processing of binary information in SNNs.
This section focus on implementing a deep spiking CNN. The
3D-CNN (proposed model) converts into an SNN network to
implement our idea for providing a method. Of course, our
approach in this section is only a reference to the conversion

method and some components and techniques in the use of SNNs
[88], [89], [90], [91].

ANNs and SNNs can model the same types of network
topologies, but SNNs trade the artificial neuron model with
a spiking neuron model instead. The artificial neuron model
much like spiking neurons operates on a weighted sum of inputs
[see Fig. 15(a)]. In this work, spiking convolutional neural
networks are used for feature extraction. To explain, consider
the convolution kernel WSC1(i, j, k, 1). This kernel is used to
find spikes at any location of the spiking input image. If there
is a spike in the spiking image that matches up with the kernel,
then this result will be a maximum (maximum correlation of the
kernel with the image). The accumulated membrane potential
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Fig. 15. (a) Structure spike neuron with input–output spike data. (b) Structure of the 3D-CNN model to SNN based on 3-D convolution layer and input data.

for the neuron at location (x, y, z) of map1 of the SC1 layer is
given by

V m (x,y, z, , t,1) =

t∑
τ=0

⎛
⎝ I∑

i = 1

⎛
⎝ J∑

j = 1

(
K∑

k = 1

(I (x

+ i,y + j, z + k, τ)WSC1 (i, j,k,1)) . (2)

The neuron at (x, y, z) of map 1 of the SC1 layer then spikes
at time t if

V (1)
m (x,y, z, , t, 1) ≥ γsc1 (3)

where γsc1 is the threshold. If the neuron at (x, y, z) in map 1
of SC1, then a vertical line of spikes has been detected in the
spiking image centered at (x, y, z). Similarly, feature maps will
be generated in layers SC2 to 4 [92], [93], [94].

Fig. 15(b) shows the structure of the SNN based on convo-
lutional layers. The structure of the 3D-CNN network model
proposed in this article has been transformed into an SNN
network without any fundamental changes. This conversion
has been done using existing frameworks designed in Python.

Also, the spiking-ReLU activation function is used in the output
section of each layer of the network. The input data have also
been applied to the network in spiking form. To generate input
data spiking form, the resulting image of the selected bands is
passed through an on-center and an off-center difference of the
Gaussian [DoG in (4)] convolution filter. The output of each
of the two DoG filters is computed using the same mode of
convolution. To generate input data spiking form, the resulting
image of the selected bands is passed through an on-center and
an off-center DoG convolution filter. The output of each of the
two DoG filters is computed using the same mode of convolution

Vσ1,σ2 (x,y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1/(2πσ12)e((x

2+y2)/(2σ12))

−1/(2πσ22)e((x
2+y2)/(2σ22))

for a < x < b, a < y < b
0 otherwise

(4)

where σ1 and σ2 are for the on-center and off-center between a
and b [95].
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TABLE XIII
ACCURACY AND RUN-TIME 3D-CNN MODEL TO SNN MODEL

The classification accuracy with the new modified network
has been tested only for all datasets. This advantage was in-
vestigated in the implementation of the proposed network. The
results of checking the speed and execution time of the proposed
network show that the speed and processing time compared to
the 3D-CNN network with equal conditions show a reduction
of more than 50%. Table XIII shows the classification accuracy
values and the run-time (time complexity) of 3D-CNN and SNN
models. Also, the best results are shown in bold.

This conversion has been done using existing frameworks
designed in Python. To simulate the model and evaluate its
performance, the Nengo library has been used in Python. Nengo
is a Python library for building and simulating large-scale neural
models. Nengo can create sophisticated spiking and nonspiking
neural simulations with sensible defaults in a few lines of code.
To study and access this library, visit https://www.nengo.ai. In
the last stage of this experiment, we considered the conditions
slightly different. For the same run-time in the 3D-CNN model,
it was necessary to increase the number of epochs. The num-
ber of epochs for the same run-time and the SNN model is
approximately 120 to 160. Also, the accuracy in the SNN model
has increased to 4%. The results obtained in this case from the
experiment were evaluated as suitable results compared to the
3D-CNN model. The results for equal execution time, accuracy
for 5BS to 30BS mode, are obtained, as shown in Table XV.
Reducing the parameters (due to changing the neurons of the
network) is effective in improving the accuracy. For equal execu-
tion time, the number of network cycles is increased. According
to these conditions, an increase in accuracy was expected. In

addition, energy consumption should be added to the advantages
of this model of neural networks compared to the ANNs. Finally,
Table XIV compares the accuracy value obtained from the
classification of subbands in the methods evaluated in this article
is displayed. The accuracy results of the proposed method have
also been compared in three different modes (3D-CNN, 3D-
CNN with attention layer, and 3D-CNN to SNN). As mentioned
in the previous sections, the proposed method with the SNN
neural network model has the highest classification accuracy
compared to competing methods. According to the cases and
advantages of SNN neural networks that were mentioned earlier,
an increase in accuracy has been achieved. Fig. 16 also shows
the accuracy comparison curve of the evaluated methods in this
article.

G. Computational Complexity Analysis

After comparing the differences in accuracy, one of the most
significant indices used to assess and evaluate the quality or
quantity of approaches is the computational complexity index.
The suggested technique includes the following mention of this
index.

The complexity of the GA is affected by the population, the ge-
netic operators and how they are implemented (which may have
a considerable impact on total complexity), and obviously the
fitness function. The GA has an O (P ∗ G ∗ O (Fitness)∗((Pc ∗ O
(crossover)+ (Pm ∗O (mutation))) complexity. The complexity
depends on how many things there are, how many generations
there are, and how long it takes to process each generation.

https://www.nengo.ai
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TABLE XIV
ACCURACY OF METHODS IN THE CLASSIFICATION OF SUBBANDS HSI DATASETS

Additionally, the complexity is transformed to O (O (Fitness) ∗
(O (mutation) + O (crossover)), and P, G, Pc, and Pm are
constants. The large o is O (1) since it takes a given amount
of time and the number of generations and population size
are constant. This holds true for mutation functions, crossover
functions, and fitness functions as long as they take a known
amount of time. Considering that the convolutional neural
network is used as the fitness function in GA, the complexity
of the proposed method depends a lot on the computational
complexity of the 3D-CNN network. The number of operations
in each layer should be calculated initially since the complexity
of CNN relies on various levels. Then, all the complexity of
CNN relies on various levels. Then, all of these operations must
be added, and time complexity must be expressed as a function
of the input (and probably the number of layers). The complexity
of a 1-D convolutional layer O (k∗n∗d) and a 1-D convolution is
the sum of the rowwise dot products of a filter W�Rk×d with a
region matrix A�Rk×d, where k is the length of the filter and d
is the depth dimension (e.g., dimensionality of word embedding
space), and finally, at the layer level, we apply the filter over
the input n−k+1 times (where n is the length of the input), let
us say n times since n>>k. This gives us a final complexity
of O (n∗k∗d). However, the computational complexity of 3-D
convolution for images with N ∗ M ∗ K dimensions and N ∗
M ∗ K filter sizes is equivalent to O (NMKnmk). Therefore,

TABLE XV
COMPLEXITY OF THE ALL METHODS

the computational complexity of 3-D convolution for pictures
with N ∗ M ∗ K dimensions and N ∗ M ∗ K filter sizes is
equivalent to O (NMKnmk). As a result, the complexity in the
3D-CNN network, which has four 3-D CNN layers, will be
O (knmKNM^ Num. Layers). Regarding the proposed method
in this article, the complexity of calculations will be equal to
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Fig. 16. Comparison curve of the accuracies of classification obtained in the proposed method with the methods presented in the different datasets,
(a) IP, (b) Salinas, (c) Pavia University, and (d) Houston dataset.

the product of the complexity of the 3D-CNN network and the
complexity of the GA O (O (knmKNM^Num. Layers) ∗ (O
(mutation) + O (crossover)). In Table XV, the complexity of
all methods (BS_UQ, LSI_BS, SLN_BS, CNNeGA) and also
the complexity of the proposed method with 3D-CNN with Att.
Layers and SNN are displayed. The complexity of the proposed
method is also evident as a result of the changed structure of the
3D-CNN model (adding path and attention layers). Therefore,
the complexity of 3D-CNN_Att will be the number of additional
layers (L) multiplied by the complexity of CNNeGA. Although
3D-CNN SNN has the same structure as 3D-CNN, it is less
complex due to the change in the nature of the input data and
fewer parameters. The complexity of 3D-CNN_SNN based on
the run-time option is almost half of CNNeGA.

V. CONCLUSION

BS is an effective way to reduce the size of hyperspectral
data and to overcome the curse of dimensionality problem in
ground object classification. This study proposes a supervised
BS framework based on a combination of convolutional neural
networks and the GA algorithm in this context. Convolutional
networks and metaheuristic search techniques are used in the
fundamental concept and proposed architecture of the BS for
HSI. A subset of bands that accurately reflect the original bands
and have little redundancy can be chosen using this framework.
The CNNeGA approach was fairly resilient to different noise

bands. A group of bands corresponding to a higher level of
classification accuracy was selected. The bands with the highest
correlation to the selected bands were automatically disregarded
in the suggested method, which is an iterative procedure. The
suggested approach could be thought of as a class-based ap-
proach in general. With this strategy, a BS criterion that suits the
requirements of each class was possible. In other techniques,
bands are chosen depending on the statistical characteristics of
the dataset. The proposed method in this work has the advantage
of being classification-based and uses a linear classification to
rank and choose bands. The proposed method (CNNeGA) shows
between 6% and 21% performance improvements compared to
its competitors in the experimental data reviewed in this study.
According to the experimental data, the band subset chosen by
the CNNeGA approach was more successful at classification and
had lower performance and correlation than the band subsets
chosen by other BS methods. Testing on different types of
datasets has shown that the proposed method is more stable
than competing methods in terms of scale, number of sam-
ples, and multiplicity of dataset classes. Finally, to improve
the performance of the proposed neural network model (3D-
CNN) integrated with GA, the number of attention layers was
increased, and the structure of the model was changed to SNNs.
The accuracy of classification has increased by approximately
1% to 3% by changing the network structure and model. In
the computational complexity index, the complexity time has
been reduced by more than 50%. The increase in classification
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accuracy and processing speed (reduction of computational
complexity), especially in changing the model to spike networks,
was significant and promising for future work. According to the
obtained results, we intend to investigate the application of the
SNN model for the problem of BS and classification of HSIs in
an unsupervised manner.
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