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Inference of Soil Freezing Front Depth During the
Freezing Period From the L-Band Passive

Microwave Brightness Temperature
Shaoning Lv , Lianyu Yu, Yijian Zeng , Jun Wen , Clemens Simmer, and Zhongbo Su

Abstract—The freezing front depth (zff) of annual freeze–thaw
cycles is critical for monitoring the dynamics of the cryosphere
under climate change because zff is a sensitive indicator of the heat
balance over the atmosphere-cryosphere interface. Meanwhile,
although it is very promising for acquiring global soil moisture
distribution, the L-band microwave remote sensing products over
seasonally frozen grounds and permafrost is much less than in
wet soil. This study develops an algorithm, i.e., the brightness
temperature inferred freezing front (BT-FF) model, for retriev-
ing the interannual zff with the diurnal amplitude variation of
L-band brightness temperature (ΔTB) during the freezing period.
The new algorithm assumes first, the daily-scale solar radiation
heating/cooling effect causes the daily surface thawing depth (ztf)
variation, which leads further to ΔTB; second, ΔTB can be cap-
tured by an L-band radiometer; third, ztf and zff are negatively
linear correlated and their relation can be quantified using the
Stefan equation. In this study, the modeled soil temperature profiles
from the land surface model (STEMMUS-FT, i.e., simultaneous
transfer of energy, mass, and momentum in unsaturated soil with
freeze and thaw) and TB observations from a tower-based L-band
radiometer (ELBARA-III) at Maqu are used to validate the BT-FF
model. It shows that, first, ΔTB can be precisely estimated from ztf
during the daytime; second, the decreasing of ztf is linearly related
to the increase of zff with the Stefan equation; third, the accuracy
of retrieved zff is about 5–25 cm; fourth, the proposed model is ap-
plicable during the freezing period. The study is expected to extend
the application of L-band TB data in cryosphere/meteorology and
construct global freezing depth dataset in the future.
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I. INTRODUCTION

A PPROXIMATELY 56% of topsoil in the northern hemi-
sphere’s landmass freezes at least for some time each year,

including permafrost, which accounts for about 24% relatively
[1]. Unlike permafrost in deeper soil depths, the soil freeze–thaw
(FT) occurs at depths of centimeters to meters, drastically alter-
ing water and energy exchange between the land surface and the
atmosphere [2], [3], [4]. In this term, the FT state transition refers
to seasonal albedo changes that firmly shift the radiation balance
over the land [5], [6], [7]. Besides albedo, the latent/sensible heat
fluxes affected by FT have considerable changes at diurnal scales
and impact the soil’s water and energy states in the upper few
centimeters [8], [9], [10], [11], [12], [13], [14]. Thus, FT state
monitoring is sensitive and critical to weather prediction, climate
forecasting, hydrology, and agriculture [15], [16]. However, due
to high expense and poor representativeness, FT state monitoring
is hard to achieve by regular measurements at in situ. On the
other hand, the FT states are also critical to the forward modeling
of microwave signals [17], [18], [19], [20], [21], which can be
further applied to studies about land-atmosphere interactions
with data assimilation [22], [23].

Since the launch of Skylab in the 1970s [24], passive remote
sensing of the land surface condition, including FT state in
microwave frequencies, has become a promising tool. Studies on
the FT state detection started with shorter microwave bands, such
as the Nimbus-7 Scanning Multichannel Microwave Radiometer
SMMR [25], the Special Sensor Microwave/Imager SSM/I [26],
and the Advanced Microwave Scanning Radiometer for EOS
AMSR-E [27].

With a deeper penetration depth than previous microwave
bands used by the Advanced Microwave Scanning Radiome-
ter 2 (AMSRe/AMSR2) [28], Funyun-3 [29], and Advanced
Scatterometer (ASCAT) [30], L-band microwaves have devel-
oped various FT states retrieving algorithms [31], [32], [33],
[34]. Besides polarization [35], [36], single-channel [37], and
multichannel [38] algorithms, the diurnal amplitude variation
(DAV) of brightness temperature (TB) has been used to detect
snow and ice with higher microwave frequencies [34], [39], [40],
[41], [42], but not yet for the L-band. At the L-band, ΔTB (i.e.,
DAV of TB hereafter) induced by freezing/thawing (ca. 100 K)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8957-6636
https://orcid.org/0000-0002-2166-5314
https://orcid.org/0000-0003-1146-3628
mailto:lvshaoning@fudan.edu.cn
mailto:l.yu@utwente.n
mailto:y.zeng@utwente.nl
mailto:z.su@utwente.nl
mailto:jwen@cuit.edu.cn
mailto:csimmer@uni-bonn.de


4040 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 1. (a) Location of the maqu experiment on the Tibetan plateau.
(b) Illustration of the footprint observed by ELBARA-III (circles with small
dots).

is more significant than the changes caused by water content
variation (ca. 10s K) [43], [44], [45], [46]. Regarding applying
L-band passive remote sensing of FT states, SMOS, and SMAP
have relevant global FT products in which the polarization ratio
and single-channel TB signals are applied [37]. However, there
is little information we can retrieve from L-band signals rather
than the FT states over the frozen soil.

This study analyzes ΔTB observed by the ground-based L-
band microwave radiometer ELBARA-III (the ETH L-Band ra-
diometer) at Maqu in the Tibetan Plateau [16]. Then, it develops
a brightness temperature inferred freezing front (BT-FF) model
that can retrieve the freezing front depth (zff) from ΔTB. zff is
defined as the annual FT dynamics front in the soil profile. The
rest of this article is organized as follows. Section II-A introduces
the tower-based L-band radiometer and the Maqu Experiment;
Section II-B describes the soil temperature simulation results
from the land surface model and analyzes the impact of the
FT transitions occurring on the soil surface or in deeper layers;
Section II-C derives the relation between ΔTB and zff from
microwave transfer model [47] and Stefan’s Equation [48].
Section III validates the BT-FF model with TB observations and
the modeled soil temperature data. Finally, Section IV concludes
this article.

II. OBSERVATIONS AND METHODOLOGY

The data to validate the BT-FF model contains TB observation
from ELBARA-III and modeled soil temperature data from a
land surface model named simultaneous transfer of energy, mass,
and momentum in unsaturated soil with FT (STEMMUS-FT).

A. TB Observations

The Maqu monitoring network was established in 2008 in
the eastern part of the Tibetan plateau [49], [50], [51] [see
Fig. 1(a)]. The Yellow River bounds the network at its eastern
and northern brinks, and its landscape is covered by meadow
interspersed by a few trees or bushes. Its elevation is about

Fig. 2. (a) TB time-series observed by ELBARA-III (small dots) with an
incidence angle of 40° in H-polarization. The dataset covers two complete cycles
of seasonal freezing and thawing between 2017 and 2018.; |ΔTB| for example,
(b) period II and (c) period IV observed by ELBARA-III at H-polarizations in
2017–2018.

3300 m, and the rainy summer period caused by the East
Asia Summer Monsoon is relatively short (July/August). On
an annual scale, the wintertime can last for more than half a
year, from October to March. Since December 2015, the L-band
(1.41 GHz) radiometer ELBARA-III installed at Maqu’s central
station observes the typical meadow vegetation with a 40 m ×
25 m footprint at incidence angles from 40° to 70° varying at 5°
steps [see Fig. 1(b)]. In this study, we analyze the observations
at 40° to stay consistent with the SMAP observations and focus
on a two-year period from August 2016 to August 2018 [see
Fig. 2(a)]. The period contains two complete annual FT cycles
and the freezing and thawing periods, respectively.

Furtherly, we separate the observations into periods according
to daily soil temperature at 2.5 cm (T2.5 cm) characterized by
unfrozen soil (I, a minimum of T2.5 cm > 0 °C), freezing soil (II,
from I to III), frozen soil (III, a maximum of T2.5 cm<0 °C), and
thawing soil (IV, from III to I) periods [the vertical dashed lines
in Fig. 2(a)]. A lot of studies done with these dataset has proved
that 2.5 cm is the most effective layer sensed by the radiometer
[23], [33]. Even though the sensing depth varies for the frozen
soil, 2.5 cm can be taken as an average and representative depth
in this study.

Generally, ΔTB during Period I is dominated by rainfall and
evaporation via changing θ and T. TB has higher values in the
early afternoon and lowest values in the morning, and TB varies
by about 10 K daily, respectively. In contrast, ΔTB is minimal
during Period III because the high microwave penetration depth
returns TB characteristic for a relatively large soil column;
here, ΔTB stays less than 5 K. For Period II [see Fig. 2(b)]
and IV [see Fig. 2(c)], ΔTB signals are more complicated to
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Fig. 3. Soil temperature profile evolution simulated by STEMMUS-FT and
the daily thawing front (thawed-up-frozen-down, red dots) and annual freezing
front (frozen-up-thawed-down, blue dots) as inferred from soil temperatures.

interpret. The large |ΔTB| cannot be fully explained by either
daily soil temperature or penetration depth variations. As shown
in Fig. 2(b) and (c), |ΔTB| can reach 20 K daily. Only Subdaily
FT transitions can explain it, e.g., the radiative heating over the
daytime thaws the upper frozen soil, which means unfrozen soil
appears at the surface [39]. Besides, in Period IV, the ponded
water can drastically reduce the soil surface emissivity and
penetration depth, mixing the signal of an FT transition and
a water/ice phase transition.

B. STEMMUS-FT and Soil Temperature Data

With a 1 cm resolution in the vertical direction achieved
by STEMMUS-FT, we can capture the daily thawing process
caused by the daytime heating effect. The minimum vertical
resolution that can be done by measurement is 2.5 cm, which
cannot satisfy the requirements of this study. Furthermore, the
sensors using TDR methods are hard to be installed over the soil
surface where the depth is shallower than 2.5 cm due to their
cylindrical sensing area.

STEMMUS-FT [52] is a land model coded in MATLAB
with extra modules based on STEMMUS [53], enhancing its
capacity in FT simulations. In STEMMUS-FT, frozen soil is the
thermal equilibrium system of soil grains, liquid water, ice, water
vapor, and dry air [54], [55], [56], [57], [58]. The dynamics of
the individual soil components, including soil\ice\water\vaper,
interacting with each other were explicitly considered and re-
solved. Soil water and heat transfer are tightly coupled and
realized by solving the equations of water conservation and
energy conservation. Additional details on the STEMMUS(-FT)
can be found in [59], [60].

Fig. 3 shows STEMMUS-FT’s T simulations at Maqu, iden-
tifying freezing soil depth (zff) and thawing soil depth (ztf). zff
is defined as T at zff, where Tupper layer < 0 °C< Tlower layer

and reversely for ztf, where Tupper layer > 0 °C > Tlower layer.
During Period II, the amplitude of ztf due to the daily FT cycles
is large, with a maximum of about 10 cm from the surface to
the deeper layer. In Fig. 3, the amplitude of ztf corresponds to
the development of the zff. For instance, the daily freezing and
thawing cycles were damped in Period II, and the growth of zff
was decreased in Period III. In Period IV, ztf goes deeper rapidly
until the end of zff in about April.

Compared with Fig. 2, |ΔTB| changes visually correlate well
with the daily ztf changes affected by T variations between 0
and 0.2 m in Fig. 3. When the surface soil freezes at night,

Fig. 4. Illustration of the freezing process assumptions in the BT-FF model.
zff is the freezing front, reflecting the annual FT state cycle, and ztf is the daily
thawing front caused, e.g., by radiative heating during daytime. Symbol m is the
total lasting days of the annual freezing process, i.e., the last day of period II.

the deeper soil layers—frozen or thawed—will contribute to
TB, but with a weaker attenuating effect from the frozen soil
above than at the daytime. In Figs. 2 and 3, TB does not change
much at night, even when the soil profile shows a frozen-moist
(downwards, hereafter) structure. In contrast, daytime thawing
of the surface soil significantly reduces the penetration depth,
leading to a moist-frozen-moist structure in the soil profile.
Especially during Periods II and IV, this moist-frozen-moist
structure appears shortly during the daytime and completely
disappears at night. Besides the FT state vertical structures,
another reason that may cause |ΔTB| is open water due to melted
snow or ice. It is noted that during Period IV, the frozen soil layer
below the surface impedes draining and increases the residual
water at the surface. Open surface water cannot appear in period
frozen since snow is much more common than rainfall.

C. Derivation of the BT-FF Model

The proposed BT-FF model covers both the annual FT cycle
regarding zff and the daily FT processes, leading to ΔTB via
ztf. The BT-FF model is based on the 0th-order microwave
transfer model (see Section II-C-1) and relates ΔTB between
two observation times within 24 h to the respective change of
ztf (and ztf(n) for ztf on the nth day after the beginning of the
yearly FT cycles). We estimate the temporal evolution of zff from
ztf/ztf(n)) via Stefan’s equation (see Section II-C-2). To clarify,
we refer ztf/ztf(n) to daily FT cycles while zff refers to annual FT
dynamics, e.g., during Period II (See symbols in the Appendix).

1) 0th-Order Microwave Transfer Model: The 0th-order in-
coherent model extensively used in passive microwave remote
sensing of soil moisture is formulated as

TB = ETeff (1)

where TB is the observed brightness temperature in K, E is the
soil slab’s emissivity contributing to TB, and Teff is the so-called
effective temperature of the soil slab. E depends on θ and
other factors affecting the dielectric constant of a soil column.
Teff relies on the dielectric constant as well. The penetration
(e-folding) depth—as a measure of the soil slab depth mainly
contributing to TB—depends on the dielectric constant profile
and can reach a depth of meters down in extremely dry but also
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frozen soil at the L-band. For instance, Fig. 3 shows that in
the first few days of Period II, the soil is frozen down to about
20–40 cm, and the soil below the frozen layer does not contribute
significantly to the observed TB (e.g., a short period before ztf
grows).

We further assume that both T and dielectric constant are
vertically constant in the frozen layer; then (1) can be rewritten
as

TB = EfT (2)

with T the frozen layer’s temperature and Ef the emissivity of
the upper thawed soil layer. According to the red dots in Fig. 3,
a thin upper soil layer (less than 20 cm) has thawed at 6 pm due
to the daytime solar heating, giving rise to a thawing front at
depth ztf. Considering the optical depth (τ tf) [61], [62] down to
ztf, (2) can be formulated as

TB = EtT (1− e−τtf) + EfTe
−τtf (3)

where Et is the emissivity of the upper thawed soil layer. By e−τtf ,
the opacity stands for reflectivity/scattering of the internal/upper
soil layer. We further assume that the temperature of the ice-
water mixture is always close to 0°C, which is the normal case
during freezing and thawing, then ΔTB between morning and
late afternoon is

ΔTB = EtT (1− e−τtf) + EfTe
−τtf − EfT

= EtT (1− e−τtf)− EfT
(
1− e−τtf

)
= (Et − Ef )T

(
1− e−τtf

)
. (4)

τ tf can be transferred to the corresponding ztf [62], [63] is given
by

τtf =
2πε′′t
λ
√
ε′t

ztf (5)

with ε′t and ε′′t the real and imaginary part of the dielectric
constant of the thawed soil calculated from [64]. With a =
(Et−Ef)T and bt =

λ
√
ε′t

2πε′′t
the penetration or e-folding depth in

the thawed soil, we get

ztf = −bt ln

(
1− ΔTB

a

)
(6)

which relatesΔTB to ztf. Thus, we can infer ztf with given Et and
Ef. ztf is quantified by the simulation result from STEMMUS-
FT.

2) Stefan’s Equation: Both ΔTB and ztf are caused by sur-
face thawing and refreezing (see Section II-C-1), and they vary
daily. The zff propagation (see Section II-C-2) evolves at an
annual scale. We use Stefan’s equation [48], [65], [66] to model
both the propagation of ztf and zff (here, both fronts are indicated
by zi), based on the soil skin temperature time series via

zj =
√

cjI (t) (7)

where Subscript j stands for either thawed (Subscript t) or frozen
soil (Subscript f), cj =

2kj

Lθρ ([ci] = m2 °C−1s−1) with kj the

thermal conductivity of frozen or thawed soil ([kj] = W m−1

°C−1) that can be considered as a pair of constants, L the latent

heat for water (3.34 × 105 J kg−1), θ is soil moisture when the
annual freezing cycle starts in the unit of m3m−3),ρ the density of
ice ([ρ] = kg m−3), and I =

∫ t2
t1

|Ts(t)|dt the temporal integral
of the soil skin temperature (Ts) in °C during freezing (Ts< 0 °C)
or thawing (Ts > 0 °C) between the Time t1 and t2, with t1/t2
being the beginning/ending of either the annual FT cycle or the
daily FT cycle. For a specific day in Period II, Ts might increase
above 0 °C, leading to the surface soil ice thawing over time Δt
= t2−t1. Accordingly, freezing (Ts < 0 °C) prevails during td
− Δt with td the seconds for a day ( = 86 400 s). Equation (7)
covers annual and diurnal FT cycles that depend on the integral
time interval. If the integration stands for the annual cycle, we
can obtain zff by (7); otherwise, ztf is calculated by considering
the daytime radiation heating effect over the frozen soil. Thus,
we get zff and ztf on day n after the start of Period II, zff(n) and
ztf(n), respectively, following (7) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ztf (n) =

√
ctTst (n)Δt (n)

zff (n) =
√

cfTsf (n)Δtf (n)

=
√∑n

i=1 cfTsf (i) (td −Δt (i))

(8)

where Tst(n) is average Ts at daily thawing time on Day n,Δt(n)
the duration of the thawing on nth day, Tsf(i) the average soil
skin temperature during daily freezing lasting for td − Δt(i)
seconds on Day i, Tsf(n) is the average skin temperature during

freezing from day 1 to day n, and Δtf (n) =
n∑

i=1

(td −Δt(i))

the overall freezing duration from day 1 to day n. ztf(n) and zff(n)
on day n are related via

ztf(n)

zff(n)
=

√
ctTst(n)Δt(n)√∑n

i=1 cfTsf(i) (td −Δt(i))

=

√
ct
cf

√
Tst(n)Δt(n)√∑n

i=1 Tsf(i) (td −Δt(i))
(9)

with
√

ct
cf

assumed constant during the FT cycles since ki and

θ are assumed to be constant. The average soil skin temperature
on any day n (Ts(n)) and its average until and including day n
is given by

Ts(n) =
Tsf(n) (td −Δt(n))

td
+

Tst(n)Δt(n)

td
. (10)

Equation (10) means Ts(n) can be separated into freezing

(i.e., Tsf(n)(td−Δt(n))
td

) and thawing process (i.e., Tst(n)Δt(n)
td

),

which can be used in (7). For instance, if Δt(n) = 1
2 td and

Tsf(n) = −Tst(n) on the first day (n = 1), then Ts1 = Tsf(n) +
Tst(n) = 0 °C.

The T propagation with time and depth can be described as a
sine wave by using a Fourier-serie [67], [68] as

T (za, t) =

⎧⎨
⎩

T +A exp
[
− (za − zb)

√
ω/2kl

]
∗

sin
{
ωt− φ

[
− (za − zb)

√
ω/2kl

]}
⎫⎬
⎭ (11)
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where za/zb is the vertical coordinate positive downward, t is the
time; T is the temporal average of the soil temperature, and A
is half of the difference between the maximum and minimum
at zb; ω = 2π

td
= 2π

86 400 s is the angular velocity of the Earth’s
rotation;φ is the initial phases of the soil temperature at depth zb;
and 1/

√
ω/2ki is the damping depth of the diurnal temperature

wave. Thus, za-zb = 0 and za = 0. The freezing period starts
from daily Ts = 0 °C, so we get T = Ts = 0 °C. We assume Ts

time-series whose maximum/minimum is Ts(1)/−Ts(1) on the
day n= 1, then A= Ts(1). In this case, a surface soil temperature
time series without trend can be simplified as

Ts (t) = Ts(1) sin (ωt) . (12)

To further simply (11), the freezing period ends when the daily
maximum Ts = 0. Equation (12) is expented with a linear trend
to mimic the daily Ts variation during Period II as shown in [69]
and [70]

Ts (t) = Ts(1) sin (ωt)− 2Ts(1)
t

mtd

= Ts(1)

[
sin (ωt)− 2

t

mtd

]
(13)

where m is the lasting days of Period II (i.e., the total number of
days starting from daily Ts = 0 to the ending at daily maximum
Ts = 0), and t is the accumulated seconds after Day i = 1. Equa-
tion (13) represents a Ts time-series whose maximum/minimum
is Ts(1)/−Ts(1) on the day n = 1 and gets below 0 °C on the day
i = n. Then, (13) is written as

Ts (t)

Ts(1)
= sin (ωt)− 2

t

mtd
(14)

and (10) is written as

Ts(n)

Ts(1)
td =

Tsf(n)

Ts(1)
(td −Δt(n)) +

Tst(n)

Ts(1)
Δti. (15)

Ts(n), Tsf(n), Tst(n) are defined by Tx = 1
Δt

∫
Ts(t)dt, where

x can be i/sf/st or others depending on the averaging time interval
for T. Thus, in the BT-FF model, Ts(n) decreases from 0 °C (i
= 1) to −Ts(1) (n = m), Tst(n) decreases from Ts(1) to 0 °C (n
= m), and Tsf(n) decreases from Ts(1) to −2Ts(1) (n = m).

By considering Ts(1), (9) can be rewritten as

ztf (n)

zff (n)

=

√
ct
cf

⎡
⎣
√

Tst (n)

Ts(1)
Δt (n)

/√∑n

i=1

Tsf (i)

Ts(1)
(td −Δt (i))

⎤
⎦ .

(16)

Since Ts(1) is a constant, Fig. 5(a) focuses on the
[sin(ωt)− 2 t

mtd
] part to infer the ratio of ztf(n)

zff(n)
in (16). Fig. 5(a)

illustrates the [sin(ωt)− 2 t
mtd

] time series with m = 5 days,
m = 25 days, and m = 100 days. The pink area for the nth

day is Tst(n)
Ts(1)

Δt(n), while the sum of the blue area from first to

nth day is
∑n

i=1
Tsf(i)
Ts(1)

(td −Δt(i)). Fig. 5(b) shows the slope

Fig. 5. (a) Time series of a sine wave to mimic the daily
variation of Ts(n)/Ts(1) discussed in (16) by assuming a freez-
ing process lasting for 5/25/100 days (left). (b) Illustration of√

Tst(n)
Ts(1)

Δt(n)/

√∑n

i=1
Tsf(i)
Ts(1)

(td −Δt(i)) ratio by the Ts(n)/Ts(1)

sinewave model in (a).

of
√

Tst(n)
Ts(1)

Δt(n) over
√∑n

i=1
Tsf(i)
Ts(1)

(td −Δt(i)) when m = 5
days, m = 25 days, and m = 100 days. Generally, the slope can
be simplified as a constant that depends on m, i.e., how many
days Period II can last.

Thus, the hypothesis that zff(n) and ztf(n) in (16) and (6) are
nearly linear related is solid. We now propose a linear regression
function

ztf(n) = α(m)zff(n) + β (m) . (17)

α(m) and β(m) can be identified by linear fitting of zff(n) and
ztf(n) from STEMMUS-FT simulation results [see Fig. 5(b)]. It
is seen that the error of linear approximation is larger when the
vertical coordinate is smaller. The relative error is about 10%
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for all m values. In other words, the shorter Period II for a given
site, the smaller α(m) (α(m) < 0). Equation (17) is adopted in
the following to infer zff(n) from ztf(n). By using (17), the linear
curve must fit for the first day in Period II when the L-band can
detect the daily FT cycles, which means zff(1) ≈ ztf(1), i.e.,

(1− α(m)) zff(1) = β(m). (18)

For m days of the L-band TB detectable in Period II, i.e., the
daily maximum Ts < 0 °C, we get ztf(m) = 0. Then

α(m)zff(m) + β(m) = 0. (19)

By considering (18) and (19), we get⎧⎨
⎩
α(m) = −zff(1)

zff(m)−zff(1)

β(m) = zff(1)zff(m)
zff(m)−zff(1)

. (20)

3) BT-FF Model: With the linear relation given by (17) and
its appropriateness demonstrated in Fig. 5(b), we can substitute
(6) into (17), we get the BT-FF model as

zff(n) = − 1

α(m)

[
bt ln

(
1− ΔTB

a

)
+ β(m)

]
. (21)

Equation (21) relates the ΔTB with the annual frozen front
zff(n). As mentioned above, we assumed the soil moisture con-
tent of thawed soil in the annual freezing process does not
change with depth and time, which leads to bt =Constant. Thus,
Parameters a, bt, are constant in the BT-FF model.

III. RESULTS

Equation (6) explains the relationship between ztf andΔTB in
theory. The parameters, i.e., a and bt, are defined explicitly. Thus,
a and bt can be estimated with the dielectric constant. In detail, a
dielectric constant model requires only clay, sand fraction, soil
moisture (soil water content after thawing), soil temperature,
and some optional inputs. The clay/sand fractions are constant
for a fixed location, and T, if not crossing the freezing point of
water, has less impact on the dielectric constant than θ and the
FT states. According to [71], the clay fraction over the top is
9.85%, and the sand fraction is 26.95%. θ = 0.275 cm3/cm3 is
the STEMMUS simulated soil moisture content at the moment
when Period II started in 2017. Fig. 6(a) and (b) illustrates the
variation of a/bt along with θ using the Wu’s model for frozen
soil to caculate Ef [64] and the Mironov’s model for unfrozen
soil’ Et, ε′t, and ε′′t [72].

Parameter a ranges from −20 K to 100 K while soil moisture
increases from 0.05 cm3/cm3 to 0.6 cm3/cm3 [see Fig. 6(a)]. The
negative a means the unfrozen arid soil has smaller emissivity
than after frozen one. Parameter a also means that the maximum
ΔTB can be caused by the FT transition so that the higher θ leads
to larger ΔTB. It should be noted that Parameter a also depends
on the polarization besides θ, but the difference between H-pol
and V-pol is less than 10 K in Fig. 6(a). On the other hand, bt
decreases with soil moisture exponentially. A certain ztf means
the soil optical depth is reduced while freezing.

Equation (16) contains the variables ct/cf for the heat capacity
when the soil bulk is unfrozen/frozen. For a site like Maqu, ct
/cf could be considered constant once the soil moisture (or soil

Fig. 6. Estimation of parameter a (a) parameter bt (b) according to soil
water/ice content in (6).

water content in either liquid or solid) is fixed. For Maqu,
√

ct
cf

=

0.76 is adapted here. Thus, Parameter α(m) is determined by the
lasting days of Period II (n). For Parameter β(m), it depends on n
as well as the amplitude of the soil skin temperature time-series
(i.e., Ts(1)). Fig. 7(a) shows the theoretical values of α(m) along
with the freezing days according to (20). The increasing αn

means the zff grows more slowly if the freezing process lasts
longer. In Figs. 2(a) and 3, the freezing process at Maqu in the
winter of 2016–2017 and 2017–2018 lasts about 75 days from
November 1st to January 15th. Thus,α(75) is estimated asα(75)
=−0.066. Fig. 7(b) is β(75) estimations by setting Ts(1) in [1 k,
60 k] while assuming the freezing days is 75. At Maqu, Ts(1) =
30 K is marked according to the soil temperature simulations in
Fig. 3.

While Figs. 6 and 7 give a full scale of a/bt/α(m) /β(m)
estimates, we can also get these parameters from TB and
STEMMUS-FT’s simulations. In Fig. 8, a fitting curve in the
form of (6) is used to get a relationship between ΔTB and ztf.
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Fig. 7. Estimation of α (left) and β (right) according to ztf(n) and zff(n) in
(17) when n increases from 1 to 100 days. α(75) = −0.066 and β(75) = 0.023
are marked out for the Maqu site.

ΔTB is mainly caused by the temperature difference between 6
A.M. and 6 P.M., and the emissivity changes of F/T status at the
upper soil layer, i.e., it can be related to the thawing front. Thus,
a = 68.26 is derived, which fits the range illustrated in Fig. 6(a).
And bt = 0.06 is also obtained, which is equivalent to the value
at the θ of about 0.35 m3/m3. The regression estimates of a/bt
fit the BT-FF model. In the same way of estimating a/bt, Fig. 9
shows α(m) /β(m) by making a linear regression as shown in
(19). It should be noted that the linear regression is made with
only the maximum ztf in a day, not all ztf values we get from
STEMMUS-FT. We get α(m) = −0.041 and β(m) = 0.056 by
averaging 2016–2017 and 2017–2018, which is different from
the theoretical estimates in Fig. 7 as α(m) = −0.066 and β(m)
= 0.023.

By taking a/bt/α(m) /β(m) estimates from Figs. 6 and 7
into the BT-FF model, we can get zff and ztf time-series from

Fig. 8. Relationship between ΔTB observations and inferred ztf(n), and its
exponential regression ΔTB versus ztf(n) relationship as in (6) at Maqu.

ELBARA-III’s TB observations in Period II from 2016 to 2018.
The zff and ztf are compared with zff and ztf inferred from T
simulations in STEMMUS-FT in Fig. 10. Regarding zff, the
RMSE is 12 cm (5–25 cm for 95% confidence). For ztf, the
RMSE is 7 cm.

IV. DISCUSSION

Although the BT-FF model has a clear mathematic expression,
the uncertainty mostly comes from estimating parameters, i.e.,
a/bt from the field measurement and the assumption in deriva-
tion.

The BT-FF model is proposed to consider two major assump-
tions. The first one is that the frozen layer’s T and dielectric
constant are vertically constant. It is found that the evapora-
tion and draining in the frozen soil are relatively weaker than
in the unfrozen soil. Although the vapor diffusion affects the
simulation of soil temperature, the effects are relatively small
in degrees. The total amount of water removed from the frozen
soil in winter is few [46], [73]. This grantee the assumption
because the BT-FF model considers only period freezing when
the phase change of water cannot be very active due to low daily
air temperature.

Regarding soil temperature, the thermal inertia due to radia-
tion heat is consumed as the heat of condensation and sublima-
tion. T at the upper parts of the soil is around 0 °C, while T at
the bottom can always be considered constant in the daily time
scale [74]. Thus, the second assumption is that the temperature
of the ice-water mixture is always close to 0 °C. This assumption
is reasonable because the BT-FF model only applies period
freezing when a rapid FT transfer happens daily. Regarding the
depth interval of ztf (0–10 cm) and the huge thermal inertia of
ice-water mixtures, the T gradient must be slight, and its daily
average is almost 0 °C.
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Fig. 9. Linear regression of ztf(n) – zff(n) relationship as in (17) at Maqu.

In contrast, the abovementioned two assumptions are not
satisfied in period thawing. The annual freezing and thawing
periods have different dynamics impacting ΔTB. For unfrozen
soil, θ and T profiles change TB/ΔTB, especially in the top 10
cm. However, for frozen soil, ΔTB is dominated by the surface
FT state transitions, while θ and T on the top 10 cm are not
crucial for TB. These conditions simplify the microwave transfer
model, leading to the BT-FF model and limiting its application
to period freezing.

When it comes to modeling data, applying the BT-FF model at
a global scale is not easy. It is challenging to infer zff even from
the land-surface models. For instance, SMOS needs the Hydrol-
ogy Tiled ECMWF Scheme for Surface Exchanges over Land to
provide land surface inputs for retrieval or forward simulations,
while SMAP uses the modern-era retrospective analysis for
research and applications, Version 2. Both land-surface models
have too few layers for computing zff, and thus, can hardly be
used in evaluating the BT-FF model.

Fig. 10. zff(n) prediction from the BT-FF model versus the simulation from
STEMMUS-FT.

V. CONCLUSION

Previous works lack a theory that can bridge the gap between
TB observation and the FT state of the soil profile during Period
II when zff propagates into deeper soil layers. This theoretical
gap hampers the information we can retrieve from the L-band
satellite, such as SMAP or SMOS. We propose the BT-FF model,
which retrieves the freezing front depth (zff) from brightness
temperature observations in the annual freezing period. The
BT-FF model utilizes the Stefan Equation and zeroth-order
microwave transfer model to achieve this goal. By taking TB ob-
servations from ELBARA-III and soil temperature simulations
from STEMMUS-FT at Maqu, we conclude that ΔTB between
6 A.M. and 6 P.M. is an optimal pair in retrieving zff. In the BT-FF
model, θ and T profiles data are unnecessary because we assume
θ and T in deeper layers vary little during Period II.

The concept of soil optical depth (τ ) is seldom used in
analyzing TB at L-band. We think τ has advantages over the
geometric depth frame (z) in analyzing TB signals under certain
circumstances, such as the freezing/thawing period. The BT-FF
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model presented in this study is an application of τ in interpreting
the TB signals at the L-band. The BT-FF model is expected to
improve our understanding of the freezing/thawing process.

APPENDIX

VARIABLE DEFINITIONS IN SECTION II
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