
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 2275

A Review of Spatial Enhancement of Hyperspectral
Remote Sensing Imaging Techniques

Nour Aburaed , Member, IEEE, Mohammed Q. Alkhatib , Member, IEEE,
Stephen Marshall , Senior Member, IEEE, Jaime Zabalza , Member, IEEE, and Hussain Al

Ahmad , Senior Member, IEEE

Abstract—Remote sensing technology has undeniable im-
portance in various industrial applications, such as mineral
exploration, plant detection, defect detection in aerospace and ship-
building, and optical gas imaging, to name a few. Remote sensing
technology has been continuously evolving, offering a range of im-
age modalities that can facilitate the aforementioned applications.
One such modality is hyperspectral imaging (HSI). Unlike multi-
spectral images (MSI) and natural images, HSI consist of hundreds
of bands. Despite their high spectral resolution, HSI suffer from low
spatial resolution in comparison to their MSI counterpart, which
hinders the utilization of their full potential. Therefore, spatial
enhancement, or super resolution (SR), of HSI is a classical problem
that has been gaining rapid attention over the past two decades.
The literature is rich with various SR algorithms that enhance the
spatial resolution of HSI while preserving their spectral fidelity.
This article reviews and discusses the most important algorithms
relevant to this area of research between 2002 and 2022, along with
the most frequently used datasets, HSI sensors, and quality metrics.
Metaanalysis are drawn based on the aforementioned information,
which is used as a foundation that summarizes the state of the field
in a way that bridges the past and the present, identifies the current
gap in it, and recommends possible future directions.

Index Terms—Convolutional neural networks (CNNs), Fusion,
hyperspectral, literature review, remote sensing, single image super
resolution (SISR), spatial enhancement, super resolution (SR).

I. INTRODUCTION

FOR several decades, the importance and impact of remote
sensing applications have been rapidly increasing. In fact,

the first practical remote sensing application dates back to the
1840 s, when balloonists photographed the ground using newly
invented cameras [1]. Pigeon photography then came in 1907 by
Julius Neubronner as an aerial photography technique, where
a lightweight miniature camera was attached to pigeons. The
biggest leap in the field of remote sensing was taken when the
world’s first satellite to orbit the space, Sputnik, was launched
in 1957. The field of remote sensing imagery has been evolving
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ever since, especially after the first image was captured by Land-
sat in 1972 [1], which further raised the interest in using satellites
to monitor the earth’s surface. Nowadays, the field of remote
sensing is vast and technologically advanced, with hundreds
of journal papers and conferences to further exploit the full
potential of remote sensing instruments. This increasing interest
in remote sensing comes from the fact that it covers a wide range
of applications. Some of these applications include geology [2],
[3], [4], [5], [6], [7], vegetation [8], [9], [10], [11], land cover
land use [12], [13], [14], [15], and oceanography [16], [17], [18],
[19]. Each application requires different spatial, spectral, and
temporal resolutions depending on its objective. Satellites exist
with various resolutions, such as medium- and high-resolution
satellites to facilitate the various requirements of different ap-
plications. In addition, some satellites are designed for specific
tasks, such as weather satellites [20], ocean satellites [21], and
earth observation satellites [22], [23], [24]. In order to exploit
remote sensing data, meaningful information must be extracted
from remote sensing imagery, and this is where the role of im-
age processing techniques becomes important. Remote sensing
applications require several tasks that need to be performed with
high accuracy in order to guarantee meaningful results. Some
of these tasks include object detection [25], [26], [27], [28],
classification [29], [30], [31], and semantic segmentation [32],
[33]. The more the details can be obtained about an object, the
higher the accuracy of the results produced from these tasks.
This is where the importance of hyperspectral imagery (HSI)
arises.

The goal of HSI is to obtain the spectrum for each pixel in the
image of a scene, with the purpose of finding objects, identifying
materials, or detecting processes. In HSI, the recorded spectra
have fine wavelength resolution and cover a wide range of wave-
lengths. HSI measure continuous spectral bands, as opposed
to multispectral images (MSI), which measure spaced spectral
bands ranging from three to a few dozens of bands. In contrast,
HSI have hundreds of bands and they capture signals that offer
unique signatures to certain objects.

Due to manufacturing tradeoffs (i.e., capturing 3-D signals
with a 2-D sensor), it is hard to achieve both at the same
time [34]. Hence, spatial and spectral resolutions have inher-
ently inverse relation between them. It is worth mentioning that
spatial resolution is also a function of the distance between
the sensor and the target. Even a high-quality pushbroom HS
sensor in short-wave infrared can only capture 200–300 pixels.
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Fig. 1. Illustration of the difference between HSI and MSI.

Thus, there exists tradeoff between the distance from target and
the field of view. However, this article only deals with spatial
and spectral resolution that are related to sensor techniques.
Assuming that an MS sensor and an HS sensor have the same
distance from the target, the resulting MSI will have high spatial
resolution but low spectral resolution, a mirror opposite of
HSI, as illustrated in Fig. 1. Also, there exists system tradeoff
between data volume and signal-to-noise ratio (SNR), which
prevents achieving both simultaneously. HSI have low SNR
due to reduced illumination by narrow band filters, and they
are noisy if a long exposure time is not guaranteed. Practical
image processing applications in the context of remote sensing
ideally require images having both high spectral and spatial
resolution. Therefore, efforts have been exerted in the literature
to improve the spatial resolution of HSI while exploiting its
high spectral resolution simultaneously. One such example that
demonstrates the importance of having high spectral–spatial
resolution is seen in a study conducted by Kwan et al. [35].
Kwan et al. [35] enhanced the spatial resolution of the left
imager onboard the Curiosity rover using various pansharpening
methods. The goal is to have high spatial and high spectral image
data cube, which will greatly contribute to the understanding
of Mars.

This research study investigates and highlights the most ef-
fective techniques and the latest trends in this research field,
and explains the intended approaches to enhance HSI spatially,
otherwise known as HSI super resolution (HSI-SR). This study
also explores the available HSI datasets, the most frequently
used HSI sensors, and the most reliable quality metrics. The
rest of this article is organized as follows. Section II discusses
key concepts and mathematical background relevant to HSI-SR
techniques. Section III illustrates metaanalysis based on more
than 200 studies conducted between 2002 and 2022. Sections IV
and V explore Fusion and single image super resolution (SISR)
methods for HSI-SR, respectively. Section VI discusses the
challenges surrounding this area of research and recommends
the future direction accordingly. Finally, Section VII concludes
this article.

II. KEY CONCEPTS AND MATHEMATICAL BACKGROUND

There are several perspectives to categorize HSI-SR method-
ologies. From our perspective, the most straightforward cat-
egorization of high-resolution HSI (HR-HSI) construction is
broadly based on the availability of auxiliary data, Fusion
and SISR. Fusion methods initially started as a pansharpening
problem of MSI, which was then extended to HSI. However,
the Fusion method is a much more complicated problem for
HSI due to its large spectral information. Thus, method-based
(also called optimization-based) approaches appeared [194].
Nowadays, both pansharpening and method-based approaches
are considered as traditional approaches, and DCNNs have been
the most widely researched approach in this area [38], as will
be evident in Section III. Similar to Fusion methods, SISR ap-
proaches also started with grayscale and RGB images, and some
of these methods were used for HSI-SR, such as interpolation
and super resolution mapping (SRM). Both interpolation and
SRM approaches are nowadays mostly considered obsolete; they
have been almost completely overshadowed by DCNNS, as will
be shown in Section III. The proposed taxonomy of HSI-SR
methods is given in Table I.

An interesting perspective on HSI-SR categorization is pro-
vided in [195]. Kwan et al. [195] suggested categorizing the
methods into four groups. Group 1 requires HR panchromatic
(PAN) band in addition to the point spread function (PSF). Group
2 requires HR-PAN band only. Group 3 is SISR, which does not
require any extra information. Finally, Group 4 is SISR with
supplementary information, such as dictionary learning [196],
[197], [198], [199], [200]. It is worth mentioning that when any
HSI-SR method does not assume prior knowledge or require
auxiliary information, it is referred to as blind SR.

The next sections delve into the details of key concepts and
mathematical background that are directly related to the spatial
enhancement of HSI, followed by a review of some examples
from the literature related to Fusion in Section IV and SISR in
Section V.

A. Image Resolution

An image resolution refers to the amount of details provided
by an image. There are four different ways to describe image
resolution: spatial, spectral, temporal, and radiometric. Spatial
resolution refers to the smallest feature that can be depicted by
a pixel in a satellite image [201]. On the other hand, spectral
resolution refers to the satellite sensors’ ability to measure cer-
tain wavelengths from the electromagnetic spectrum [201]. High
spectral resolution means that the satellite is capable of capturing
hundreds of bands of the same spatial area, and the wavelength
for each band is typically narrow. Temporal resolution refers to
the time period of a satellite’s ability to capture images of the
same scene consecutively. Finally, radiometric resolution refers
to the sensor’s ability to distinguish between the electromagnetic
signals reflected by various objects within the same spectral
band [202]. For this study, only spatial and spectral resolutions
are of particular importance, as will be evident in the next
sections.
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TABLE I
TAXONOMY OF THE MAIN APPROACHES USED IN THE LITERATURE TO ACHIEVE HSI-SR

TABLE II
EXAMPLES OF PUBLICLY AVAILABLE HYPERSPECTRAL REMOTE SENSING

DATASETS

B. Datasets of Hyperspectral Images

HSI are constructed using hyperspectral cameras that are ca-
pable of capturing hundreds of imaging bands at different wave-
lengths for the same spatial area [203]. Typically, hyperspectral
sensors capture images between 400 and 2500 nm wavelength
with regular sampling interval of 4–15 nm. On the other hand,
the spatial resolution can be as coarse as 30 m. Low spatial
resolution implies that several objects may be captured within
the same pixel, which makes them difficult to identify. This is a
key concept behind spectral unmixing, which will be discussed
in Section IV-B1.

Some examples of the publicly available HSI datasets for
studying spatial enhancement of HSI are given in Table II.
A sample of Pavia University dataset is shown in Fig. 2.
Other datasets include NUS [204], Kawakami [115], Univer-
sity of Houston [205], Moffett Field [206], Paris [207], San

Fig. 2. Pavia University cube with spectral signature of the pixel at position
(11, 9).

Francisco [208], and Real Hyperspectral dataset, which consists
of Samson, Jasper Bridge, Urban, and Cuprite [209], [210]. In
2019, a new HSI dataset called ICONES [211] became publicly
available. Due to its recent availability, it has not been used in
other research studies thus far, but it is worth mentioning due to
the large size and variety of HSI it provides. Some studies on
HSI use CAVE [212] and Harvard [213] datasets; however, the
images in both datasets are not captured using remote sensing
devices. Furthermore, CAVE dataset is listed as a multispectral
dataset rather than a hyperspectral one [214].

In addition to the sensors given in Table II, there are var-
ious other sensors, instruments, and data generation models
used in the literature to capture or generate HSI datasets,
such as Compact High Resolution Imaging Spectrome-
ter [215], HypXim [216], Compact Airborne Spectrographic
Imager [217], digital imaging and remote sensing image gen-
eration model [218], ASTER [219], PHI [220], hyperspectral
imager suite [221], HySpex [222], AisaDUAL [223], Airborne
Hyperspectral Scanner [224], and Apex [225].

C. Quality Metrics

The quality of enhanced images requires verification for the
purpose of evaluation and benchmarking. Verifying the quality
of an image with visual inspection is a subjective process that de-
pends on several factors, including screen size and illumination.
Therefore, quantitative evaluation is more reliable, in which the
quality of the enhanced image (also called estimated image)
is assessed by comparing it to the ground truth (GT) image
(also called reference or target image). One example of such
metrics is peak signal-to-noise ratio (PSNR), which is expressed
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as follows [229]:

PSNR = 10log10

MAX (Y)2

mse(Y, Ŷ)
(1)

mse(Y, Ŷ) =
1

M ×N

M∑
i=1

N∑
j=1

[y(i,j) − ŷ(i,j)]
2 (2)

where Y is the GT HSI and Ŷ is the estimated HR-HSI
from low-resolution HSI (LR-HSI, also called source HSI). Both
images have height M and width N . MAX(Y) refers to the
maximum possible value a pixel in the GT HSI can take. For
instance, the maximum value for images of type 8-bit unsigned
integer is 255. Mean squared error (mse) [229] computes the
cumulative error between the GT HSI and the estimated HR-HSI,
whereas PSNR computes the maximum possible power of a
signal to the power of distortion noise in dB. In ideal cases
where both images are identical, PSNR result would be infinite
because mse reaches zero [230]. Even though PSNR provides a
pixel by pixel comparison, it ignores human visual perception.
Structural similarity index measurement (SSIM) [231] allows
the inclusion of human visual perception by assessing the errors
of three factors: correlation, luminance, and contrast. SSIM is
expressed as follows:

SSIM =
(2μYμ

̂Y + C1)(2σY ̂Y + C2)

(μ2
Y + μ2

̂Y
+ C1)(σ2

Y + σ2
̂Y
+ C1)

(3)

where μY, μ
̂Y, σY, σ

̂Y, and σY ̂Y represent local means,

standard deviation, and cross covariance for HSIY and Ŷ. SSIM
value ranges between 0 and 1, where 0 indicates no similarity
and 1 indicates that Y and Ŷ are identical. In the special case
when C1 = C2 = 0, SSIM is referred to as universal image
quality index (UIQI) [232], which is considered the predecessor
of SSIM. SSIM is preferred over UIQI due to the fact that the
latter can lead to unstable results. Another quantitative metric
that measures spatial similarity is cross correlation (CC) [35],
[194], [195], [233], which is expressed as follows:

CC =
1

B

B∑
k=1

(
r1,k
r2,k

)

r1,k =
M∑
i=1

(y(i,:,k) − μy(i,:,k)
)(ŷ(i,:,k) − μŷ(i,:,k)

)

r2,k

=

√√√√ M∑
i=1

(
y(i,:,k) − μy(i,:,k)

)2 M∑
i=1

(
ŷ(i,:,k) − μŷ(i,:,k)

)2
(4)

whereB refers to the total number of HS bands. CC value ranges
between −1 and 1, where 1 is the ideal value if both images are
identical.

There are quantitative metrics that are specific to HSI, such
as spectral angle mapper (SAM) [234], which measures spectral
similarity between the spectra of the GT HSI and the spectra of

the enhanced HSI. SAM is expressed as follows:

SAM = cos−1

⎛⎝ ∑B
i=1 YiŶi√∑B

i=1 Yi
2
√∑B

i=1 Ŷ
2
i

⎞⎠ . (5)

SAM value should be as close to 0 as possible. Another example
of a quantitative metric specific to HSI is relative dimensionless
global error (ERGAS) [235]. ERGAS is computed as follows:

ERGAS = 100× h

l

[
1

B

B∑
k=1

(
RMSE(Yk, Ŷk)

2

mean(Yk)2

)]
(6)

RMSE(Yk, Ŷk)

=

√√√√ 1

M ×N

M∑
i=1

N∑
j=1

,
(
Y(i,j) − Ŷ(i,j)

)2
(7)

where h and l are the high and low spatial resolutions, re-
spectively, expressed in meters. ERGAS relies on computing
the normalized average error of each band in the enhanced
image; therefore, low ERGAS values indicate high quality. Other
evaluation metrics include degree of distortion [159], [197],
[236], Q2n [237], [238], [239], subpixel CC [240], and spectral
angle error [241], [242]. In addition, some researchers assess
the quality of their enhanced HSI by observing the perfor-
mance of standard classification algorithms on the enhanced
HSI as opposed to the GT HSI in terms of overall accuracy
and Kappa [243], [244], [245], [246], [247].

D. Basic Concepts of Convolutional Neural Networks (CNNs)

Artificial neural networks (ANNs) are a branch of machine
learning, which is in turn a branch of artificial intelligence (AI).
ANNs consist of an input layer, hidden layers, and an output
layer. When an ANN has one hidden layer, it is known as
a shallow neural network; otherwise, it is known as a deep
neural network. A particular class of ANNs that is designed
to perform image processing tasks is called CNNs, which was
first introduced in the 1990 s by Yann LeCunn and Bengio [248],
[249]. CNNs require high computational resources and process-
ing power, which computers could not achieve at that time.
Nowadays, with the rapid development of technology, CNNs
started gaining more attention, especially after a CNN success-
fully won ImageNet challenge of classifying 1.2 million images
in 2014 [250]. CNNs are now used for various other image
processing tasks, including object detection, semantic segmen-
tation, and SR. A CNN that performs SR tasks typically consists
of a combination of two or more of the following: convolutional
layer, activation function, and pooling layer. CNNs can include
other types of layers, such as batch normalization. For the context
of this article, only the layers relevant to SR will be discussed.
For the rest of this article, all operations are assumed 2-D unless
stated, otherwise.

Convolution is the product of elementwise multiplication
between an image and a filter that consists of one or more kernels.
When the filter consists of one kernel, the two terms can be
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Fig. 3. Sigmoid and ReLU activation functions.

Fig. 4. Illustration of 2-D convolution on images with multiple bands.

used interchangeably. The filter passes through the image in a
specified stride.

For an LR image X with a single band of size N ×N and a
kernel K of size M ×M , convolution at pixel position (x, y)
can be expressed as following:

F(x,y) = f

⎛⎝ M∑
i=1

M∑
j=1

K(i,j)X(x+i,y+j) + b

⎞⎠ (8)

where F(x,y) is the output feature, X(x+i,y+j) is the input that
includes the original pixel and the neighboring pixels within
the offset range (i, j), K(i,j) is the weight at location (i, j) that
corresponds to the input, b is the bias, and f is the activation
function. Some of the most commonly used activation functions
are sigmoid and rectified linear activation (ReLU), which are
seen in Fig. 3. According to the literature, ReLU is the most
suitable activation function for CNNs [251]. The result of the
convolution operation is a feature map that summarizes key
features of the convolved image. In the case where the image
has multiple bands, the filter convolves each band individually.
Fig. 4 shows how convolution works on multiband images. A
variation of the convolution layer called separable convolution
achieves the same outcome with less number of computations,
making them more efficient than standard convolution layers.
For more details about separable convolution, the reader is
referred to [252].

Pooling is another key operation in CNNs, which is the
process of downsampling an image by selectively discarding
features and preserving the important ones. There are two types
of commonly used pooling: max pooling and average pooling.
For example, for an LR image X with a single band of size
6× 6 and a kernel K of size 2× 2 with stride 2, the max

Fig. 5. Example of pooling a 6× 6 image using a max pooling filter of size
3× 3 and stride 2.

Fig. 6. Illustration of 3-D convolution on images with multiple bands.

pooling kernel passes through the image to produce a feature
map by preserving only the highest values and discarding the
lower ones. The result is as illustrated in Fig. 5. Images lose
dimensionality after convolution and pooling unless they are
padded. The simplest way of padding an image is by adding
zeroes at the border [253]. In addition, convolution and pool-
ing can be reversed using transpose convolution and upsample
operations, respectively, which are commonly used in a special
type of CNNs called autoencoders. Autoencoders learn spatial
mappings from one image to another, and can be repurposed
to be used for spatial enhancement. Convolution and pooling
operations can be extended to 3-D such that the calculations
are performed over the entire HSI cube rather than processing
each band individually. 3-D convolution spans all three direc-
tions: height, width, and bands. Therefore, 3-D convolution is
an adequate solution to accommodate spectral context. For an
LR-HSI denoted X of size N ×N ×B and a kernel K of
size M ×M × C, 3-D convolution at position (x, y, z) can be
expressed in the following:

F(x,y,z) = ReLU

⎛⎝ M∑
i=1

M∑
j=1

C∑
k=1

K(i,j,k)X(x+i,y+j,z+k) + b

⎞⎠ .

(9)
Fig. 6 provides a visual illustration of 3-D convolution. Re-

cently, 3-D CNNs have been commonly utilized and showed
effectiveness in HSI-SR, as will be seen in Sections IV-C
and V-B. All the aforementioned layers can be connected to-
gether in different topologies, such as feed forward [254], skip
(or residual) connections [255], attention mechanism [256],
and recursive neural networks [257], which can enhance the
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Fig. 7. Total number of Fusion versus SISR papers yearly.

Fig. 8. Total number of Traditional versus DCNN papers yearly.

performance of the network depending on its purpose either in
terms of output quality or computation complexity.

III. METAANALYSIS

A web scraping tool was developed using python program-
ming language to retrieve all the relevant research papers related
to HSI-SR. The tool was used to retrieve articles from IEEE
Xplore Digital Library related to the following keywords: hyper-
spectral SR, hyperspectral spatial enhancement, hyperspectral
reconstruction, hyperspectral Fusion, hyperspectral SISR, and
hyperspectral pansharpening. The tool retrieved various infor-
mation about the research papers, including title, type of pub-
lication (e.g. conference, or journal), authors, keywords, DOI,
and publication year. The results were later verified with visual
inspection and more entries were added manually from other
sources, including SPIE remote sensing conference proceedings
and MDPI remote sensing journal. A visual summary of all the
retrieved results can be seen in Figs. 7 and 8. From the yearly
total numbers of papers in both figures, it can be observed that
the interest in HSI-SR increased over the years. It is expected
that the number of published papers will increase further by the
end of 2022. Furthermore, although HSI-SISR studies have been
increasing for the past two decades, Fig. 7 shows that in every
year, there is a wide gap between the number of Fusion and SISR
studies. This can be attributed to the lack of data disadvantage,
which is discussed in more detail in Section VI-B. Also, Fig. 8
shows that the interest in DCNNs for HSI-SR has been gradually
increasing since 2017, and the number of publications in DCNN

Fig. 9. Most frequently used datasets in HSI-SR research.

Fig. 10. Most frequently used sensors for data collection.

HSI-SR has been exceeding the number of that in traditional
methods for the past 3–4 years. Since SISR methods utilize
DCNNs much more than traditional approaches, it seems that
there is correlation between the rise of DCNN methods and SISR
methods.

According to Fig. 9, the five most used datasets are Pavia
University, Washington DC, CAVE, Harvard, and Indian Pines.
As for the most used HS sensor, Fig. 10 shows that AVIRIS
prevails over other sensors by a large margin, followed by
HYDICE, Hyperion, and ROSIS. Even though Pavia University
is the most used dataset, AVIRIS remains more widely used
than ROSIS because the total number of datasets collected using
AVIRIS is more than the number of those collected using ROSIS.
In addition, several papers mention using AVIRIS for dataset
collection without specifying any of the standard datasets men-
tioned in this article. This also explains why Hyperion sensor
seems to be widely used, but not Botswana dataset. As for the
most used metric for quality assessment, Fig. 11 shows that
SAM is used at least 22% of the time, which is an expected
result, since it is the simplest formula that gives indications of
spectral distortion. Other metrics with high percentage of usage
include PSNR, RMSE, ERGAS, and SSIM.
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Fig. 11. Most frequently used evaluation metrics in HSI-SR research.

The word cloud seen in Fig. 12 gives a visual indication of
the mostly used terminologies in HSI-SR research literature.
Consistent with Fig. 7, the vast majority of the terminologies
are related to Fusion methods and their extensions, which further
asserts the fact that Fusion methods are currently the center of
attention in this research area. Finally, to give a summary of the
HSI-SR timeline, Fig. 13 shows the evolution of HSI-SR tech-
niques throughout the years by highlighting the most prominent
approaches. This timeline further asserts the fact that DCNNS
have been of central interest since 2017. It is worth noting that
publications in traditional HSI-SISR techniques stopped around
2016, while the field of traditional Fusion methods remains
active.

IV. FUSION

Image fusion is the process of combining information from
multiple images, such that the final product reveals more infor-
mation than the individual input images. The pioneer work in
Fusion methods dates back to 1999 [258]. Fusion-based meth-
ods combine the observed HR-MSI, and LR-HSI of the same
scene. According to the literature, using an LR-HSI with the
corresponding HR-MSI image to obtain an HR-HSI has shown
promising performance. Most approaches use RGB; therefore,
HR-MSI and HR-RGB will be used interchangeably. The ex-
isting approaches can be roughly divided into two categories.
The first one is to design a specific system based on standard
RGB cameras. Exploiting time-multiplexed illumination source,
multiple color cameras, and a tube of faced reflectors can be used
to complete the reconstruction [259], [260], [261]. However, this
method relies rigorously on environmental conditions and extra
equipment, which makes it impractical and costly. Therefore,
HR-MSI and LR-HSI Fusion is the favorable approach, but
it is considered as an ill-posed problem due to the amount of
lost information. Nonetheless, image Fusion is still possible
due to the existence of high correlation between RGB and
their corresponding HS radiance. In this study, image Fusion
approaches are divided into three categories: pansharpening,
method-based, and deep convolutional neural networks (DC-
NNs). Method-based approaches are further categorized into

matrix factorization (MF) and spectral unmixing, tensor based,
and Bayesian based, as given in Table I.

A. Pansharpening

One example of image Fusion is pansharpening, which trans-
forms an LR-HSI to HR-HSI by fusing it with a PAN band
extracted from an MSI. Pansharpening methods can be broadly
grouped into four categories: component substitution (CS), mul-
tiresolution analysis (MRA), variational methods, and hybrid
approaches.

1) Component Substitution (CS): One of the most widely
used CS methods for pansharpening is Brovey transform
(BT) [87]. BT is based on spectral modeling and was developed
to increase the visual contrast in the high and low ends of the
data’s histogram, such as shadows, water, and high reflectance
areas. It uses a method that multiplies each resampled HS pixel
by the ratio of the corresponding PAN pixel intensity to the sum
of all the multispectral intensities. It assumes that the spectral
range spanned by the PAN image is the same as that covered by
the HS bands. The basic procedure of BT first multiplies each
HS band by the HR-PAN band, and then divides each product
by the sum of the MS bands. In the case of RGB, BT can be
described using the following equation:

DNfused1 =
DNb1

DNb1 + DNb2 + DNb3
DN(HR−PAN) (10)

where DN is the digital number (pixel value), DNb1,2,3 are
LR-RGB bands, and DNfused1 is the resultant HR band. This
equation is repeated for each HS band individually. BT is limited
to three bands only, and there are constant suitable weights for
each band that are different for each satellite.

Gram–Schmidt (GS) pansharpening technique was first in-
vented by Laben and Brower [88]. A synthetic PAN image is
acquired by using a GS mode, of which there are three available.
In the first mode, the average of HS bands is taken as a synthetic
image. In the second one, low-pass filtered version of PAN
image is received as a synthetic PAN image. For the last mode, a
synthetic PAN image is achieved by using least square regression
analysis. By subtracting this synthetic PAN image from the
original PAN image, spatial details are obtained. The extracted
details are injected into the HS bands, which are upsampled to
PAN resolution in order to generate the pansharpened image. The
injection gain factor Gk of band number k in GS pansharpening
is defined as follows:

Gk =
cov(Xk, I)

var(I)
, k = 1, 2, . . . , B (11)

where cov is the covariance, var is the variance, and I is the
intensity component of the HSI. Aiazzi et al. [89] attempted to
enhance this approach by introducing GS adaptive (GSA).

Intensity hue saturation (IHS) [90] method is a standard CS
method that was developed based on the assumption that spectral
information is mostly contained within the hue and saturation
components, leaving the spatial information in the intensity
component. The basic approach in IHS method is to replace the
intensity component with HR-PAN image, which is histogram
matched to the intensity component, to obtain the spatial detail
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Fig. 12. Word cloud chart of the most frequently used terminologies in HSI-SR research.

Fig. 13. Timeline that shows the evolution of HSI-SR techniques throughout the past two decades by highlighting the most representative methods. An upward
direction indicates a Fusion method, whereas a downward direction indicates an SISR method. Short bars indicate a traditional method, whereas long bars indicate
a DCNN method.

matrix. These details are injected into each HS band separately
in order to obtain the pansharpened image.

PCA technique [91] transforms the HSI to feature space
in order to obtain principal components. The first principal
component is assumed to contain most of the energy or most
of the spatial information. This term is replaced by the PAN
image, which is histogram matched to this component. By using
inverse PCA transform the pansharpened HSI is obtained. In
2021, Dong et al. [262] suggested a more effective CS technique
by achieving the intensity component and injection gain using
binary partition tree and image segmentation. Other works in this
area include [92] and [93]. Generally, CS algorithms produce
remarkable results in terms of spatial resolution; however, they
cause spectral distortions, which is their major drawback. Choi
et al. [94] attempted to overcome this drawback regardless of
the type of satellite sensor by introducing partial replacement
adaptive CS. Nonetheless, MRA-based algorithms have better
resistance to spectral distortions. These algorithms are discussed
in the next section.

2) Multiresolution Analsis (MRA): MRA-based approaches
can be generally conveyed in the following:

Ŷk = Ỹk +Gk ⊗ (P−PL), k = 1, 2, . . . , B (12)

where Ỹk denotes the kth band of the upsampled (inter-
polated) HSI, ⊗ denotes elementwise multiplication, P is the
PAN image, and PL is the low-pass version of P. Each MRA-
based algorithm extracts PL and Gk differently. For instance,

smoothing filter-based intensity modulation (SFIM) [95] is a
pansharpening technique that obtains PL from P using a linear
time invariant low-pass filter, such as averaging filter. For Gk,
high-pass modulation (HPM) is utilized. The result is then added
to each HS band separately.

Other techniques utilize multiresolution image decomposition
to obtain PL. For instance, wavelet transform (WT) is used
for decomposing an image into its high- and low-frequency
components, which is a powerful technique for multiple im-
age processing tasks, including denoising and SR. Thus, there
is a variation of WT that can be used for pansharpening. In
the first step, histogram matching is performed between the
PAN image and each HS band. Afterward, WT is applied to
the resulting histogram-matched PAN image. The result of
this decomposition is categorized into image details extracted
through high-pass filtering, and an approximation image ex-
tracted through low-pass filtering. Only the approximation part is
considered, and the other decompositions are set to zero. Hence,
inverse WT yields low-resolution PAN image. This result is
then subtracted from the original PAN image to create the detail
matrix. Pansharpened bands are finally obtained by adding this
matrix to each HS band [96]. This approach has been explored
and expanded by several studies in the literature [97], such as
decimated WT using additive injection model (Indusion) [98],
additive A trous wavelet transform [99], A trous wavelet
transform using the Model 3 [100], and additive wavelet lu-
minance proportional [101].
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Similar to WT, Laplacian pyramid (LP), which is derived
from Gaussian pyramid, also decomposes the image into its
high- and low-frequency components. LP was improved into
what is known as enhanced LP (ELP), and then generalized LP
(GLP) was derived from ELP. GLP is used as a pansharpening
technique by extracting the PAN image details from LP, and
then injecting the details into an upsampled version of the
HSI. This method has been extended to GLP with modula-
tion transfer function matched filter (MTF-GLP) [102], GLP
with MTF-matched filter and context-based decision injection
scheme (MTF-GLP-CBD) [103], and Gaussian MTF-matched
filter with HPM injection model (MTF-GLP-HPM) [99], [104].

MRA methods perform well in terms of robustness and
efficiency, but suffer from aliasing effect and spatial details
distortion [108], [263].

3) Variational Methods: The first variational model frame-
work known as “P+XS Image Fusion” was introduced in [105].
This approach uses the assumption that the geometry of spectral
bands of HSI is related to the topographic map of the correspond-
ing PAN image. The goal is to minimize the energy function,
which comprises of three components, by using gradient descent
algorithm. This variational framework carries out by minimizing
the sum of integrals HSI and its low-pass filtered version and
tangent vector multiplied gradient of HS bands, and also the
integral of the sum of subtraction the PAN image from alpha
values multiplied HS bands.

| �Ŷk | −θ ∗ �Ŷk = 0 (13)

where Ŷk represents the kth band of the pansharpened image
Ŷ, and θ denotes the normal vector field of the PAN image. The
first component,Eg , that must be minimized is the spatial fidelity
term, which is expressed as

Eg =

B∑
k=1

∫
Ω

(
| �Ŷk | −θ ∗ �Ŷk

)
(14)

where Ω ⊂ R2 denotes an open, bounded domain with a
Lipschitz boundary. The second component, Er, that must be
minimized is based on the image relation hypothesis. This hy-
pothesis states that PAN image is the product of weighted sums
of each MSI band, where each weight corresponds to the energy
of the respective spectral band. Thus, the second component is
expressed as follows:

Er =

∫
Ω

(
B∑

k=1

αkŶk −P

)2

(15)

where α are the weighting coefficients of each band, and
P denotes the PAN image. The final component that must be
minimized, Ef , is based on the assumption that the LR image is
the product of convolution between the HR image and a low-pass
filter. Thus, this component is expressed as follows:

Ef =

B∑
k=1

∫
Ω

∏
S

(Kk ∗ Ŷk −Xk)
2dx (16)

where
∏

S is a Dirac’s comb defined by the grid S, Kk is
the convolution kernel of the low-pass filter, and Xk represents

the kth band of the LR-HSI. All three components are finally
expressed as follows [105]:

E =

B∑
k=1

γk

∫
Ω

(
| � Ŷk| − θ ∗ �Ŷk

)

+ λ

∫
Ω

(
B∑

k=1

αkŶk −P

)2

+ η

∫
Ω

∏
s

(
Kk ∗ Ŷk −Xk

)2
dx (17)

where γk, λ, η > 0, γk allows controlling the relative weight
of each band, and λ and η allow controlling weights of each
component of the equation.

The most notable methods that extended this framework
are nonlocal variant, and nonlocal variant with band-decouple,
both proposed by Duran et al. [106], [107], respectively. In
2018, Huang et al. [108] enhanced this framework by proposing
a variational pansharpening method for HSI constrained by
spectral shape and GS transformation. First, Huang et al. [108]
utilized the spectral shape feature of the neighboring pixels with
a new weight distribution strategy to reduce spectral distortions
caused by the change in spatial resolution. Then, the correlation
fidelity term uses the result of GSA to constrain the correlation,
thereby preventing the low correlation between the pansharp-
ened image and the reference image. Then, the pansharpening
is formulated as the minimization of a new energy function,
which produces the final pansharpened image. Huang et al. [108]
claimed that this method outperforms GSA, guided filter PCA,
MTF, SFIM, intensity modulation, the classic and the band-
decoupled variational methods. These methods do not limit the
number of bands, but suffer from high computational cost and
large spectral distortion. Other works in this area include [109],
[110], and [111].

4) Hybrid Approaches: One of the main challenges for fus-
ing LR-HS and HR-PAN/RGB data is to find an appropriate
balance between spectral and spatial preservation. Hybrid ap-
proaches use mixture of CS and MRA methods to overcome this
challenge. Liao et al. [112], [113] designed a guided filter in the
PCA domain (GFPCA). Instead of using CS, which may cause
spectral distortions, GFPCA uses a high-resolution PAN/RGB
image to guide the filtering process aimed at obtaining SR. In
this way, GFPCA does not only preserve the spectral information
from the original HSI, but also transfers the spatial structures
of the high-resolution PAN/RGB image to the enhanced HSI.
GFPCA first uses PCA to decorrelate the bands of the HSI, and
to separate the information content from the noise. The first PCA
channels contain most of the energy of an HSI, and the remaining
PCA channels mainly contain noise. When GF is applied to
these noisy channels, it amplifies the noise and causes a high
computational cost in processing the data, which is undesirable.
Therefore, guided filtering is used to enlarge only the first PCA
channels, preserving the structures of the PAN/RGB image,
whereas bicubic interpolation is used to upsample the remaining
channels.
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B. Method-Based Fusion

1) Matrix Factorization and Spectral Unmixing: Spectral
unmixing is the procedure by which the measured spectrum of
a mixed pixel is decomposed into a collection of constituent
spectra, or endmembers, and a set of corresponding fractions
or abundances, that indicate the proportion of each endmember
present in the pixel [114]. The basic principle of MF [115] is to
associate the Fusion problem with “linear spectral unmixing”;
the data can be described by a linear combination of spectral sig-
nals, also called reflectance function basis. Each signal uniquely
corresponds to a material present in the scene. Spectral unmixing
refers to the problem of finding the number of endmembers in
an HSI, their spectral signatures, and their perpixel abundances.
It is the inverse of spectral mixing described as follows:

rj =

p∑
i=1

hiw(i,j) + nj = Hwj + nj

p∑
j=1

w(i,j) ≤ 1, w(i,j) > 0, i = 1, 2, 3, . . . L (18)

where rj is the spectral vector expressed by a linear combination
of several endmember vectorsh, p is the number of endmembers
in the image, L is the number of pixels, and wij is a scalar
representing the fractional abundance of endmember vector hj

in the pixel ri. H is of size B × p mixing matrix, where B is
the number of bands and p � L.

An example of this approach for HS unmixing is demonstrated
in [116], where the authors proposed coupled nonnegative matrix
factorization (CNMF) for HS and MS data Fusion, and studied
its effect on HSI classification. Their approach unmixed both
sources of data to find the signatures and abundance of the
endmembers, as described earlier. The relationship between low
and high spatial resolution in HS can be described as follows:

X = YDs + Es (19)

where Ds is the spatial transform matrix and Es is the residual
error. Ds is determined by image registrations and estimation of
PSF. Similarly, the relationship between low and high spectral
resolution in MS can be described as follows:

Z = DrU+ Er (20)

where U is the high spectral resolution MSI, Z is the low
spectral resolution MSI, Dr is the spectral transformation ma-
trix, and Er is the residual error. Dr is derived from radiometric
calibration to obtain spectral response function (SRF). With
references to (18), HS and MS can be expressed as follows:

Y = WYHY +EY (21)

U = WUHU +EU (22)

where W and H are abundance and endmember matrices,
respectively, and EY and EU are residual error matrices. NMF
spectral unmixing is commonly performed to minimize the
squared Frobenius norm of the residual matrix in the linear
spectral mixture model expressed as ‖EY‖2F and ‖EU‖2F .

This principle can be applied to estimate the upsampled HSI.
Assuming HS and MS images capture the same scene, their
endmembers should be the same, and the abundance map of
LR-HSI data should match that of MSI. The abundance matrix
can be extracted from the MSI, and then used to enhance the
spatial resolution of HSI [116], [117], [118], [119]. HR-HSI can
then be approximated as

Ŷ ≈ WYHU. (23)

CNMF for HSI-SR was extended in [120] to test its ef-
fect on target detection. Yokoya and Iwasaki [120] experiment
showed that CNMF can restore pure spectra, which contributes
to accurate target detection. Despite the effectiveness of CNMF
approach, the obtained solution is usually not unique, which
can lead to an unsatisfactory outcome. Licciardi et al. [121] at-
tempted to extend the aforementioned methods where endmem-
bers are extracted directly from downsampled HSIs. The derived
endmembers are used as an input to an unmixing algorithm
applied to the MSI. The obtained abundances are then used to
reconstruct the HR-HSI. Another approach that uses spectral un-
mixing is depicted in [122]. The method is split into two stages:
spatial upsampling and spectral substitution. Spatial upsampling
is done by estimating an optimal linear combination on exemplar
patches for SR reconstruction, followed by evaluation using
learned local spectrum dictionary. This approach unmixes HS
observation within a pixel using guidance from HR-RGB image.
In the spectrum substitution stage, sparse coding is adopted.
This stage refines the spectrum obtained in the first stage based
on the limited materials assumption within a local region of
a scene. Other variations of NMF include sparse nonnegative
matrix factorization [123]. HSI can be unmixed using various
mathematical functions, learning algorithms, and probabilistic
frameworks, such as K-SVD [119], Bayesian sparse represen-
tation (BSR) [124], [162], HySure [125], [126], maximum a
posteriori (MAP) [127], [128], and GSOM+ [129]. An approach
similar to [116] was followed in [118], but the mixing matrix was
replaced with a dictionary learned using a nonnegative matrix
factorization with sparsity regularization code. Another sparse
representation dictionary learning method was used in [117],
where two dictionaries were learned from the HSI and MSI,
and then dictionary-pair learning method was used to establish
correspondence between them. Motivated by the successful
applications of sparse representation, Dong et al. [130] proposed
a nonnegative structured sparse representation (NSSR) approach
for taking consideration of the spatial structure. Dong et al. [130]
then conducted optimization procedure with the alternative di-
rection multiplier method (ADMM) technique [264]. NSSR
achieved a large margin on HSI recovery performance compared
with the other state-of-the-art approaches. A similar approach
was devised recently by Xue et al. [131] and Xu et al. [132]. The
effectiveness of dictionary approaches strongly depends on how
these dictionaries can be obtained. Lanaras et al. [133] proposed
HSI-SR by integrating coupled spectral unmixing strategy into
HSI-SR and conducted optimization procedure with the proxi-
mal alternating linearized minimization method. Other works in
this area include [134], [135], [136], [137], [138], [139], [140],
[141], [142], [143], [144], [145], and [146]. One shortcoming of
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this method and MF approaches in general is that they require
good initial points of the two decomposed reflectance signa-
tures to provide satisfactory results. Furthermore, most work
generally assumes that the number of the pure materials in the
observed scene is smaller than the spectral band number, which
is not always satisfied in the real application. In addition, MF
approaches generally suffer either from spectral distortions or
high computation time.

2) Tensor-Based Approaches: A tensor is considered as a
generalization form of a matrix. Tensors can be used in the
context of HSI-SR by addressing the nonuniqueness of tensor
rank. Imposing prior information or regularization are examples
of ways to answer this nonuniqueness [78], [147]. HSI are low
rank and self-similar [126], [148], [162]. Therefore, applying
low-rank regularization on the core of a tensor addresses this
nonuniqueness and avoids the necessity of obtaining an exact
value of tensor rank. A tensor-based observation model can be
expressed as follows:

X = YD1D2 + Es (24)

Z = YD3 + Er (25)

where D1 and D2 denote the degradation matrices of the
spatial resolution, which can be constructed by downsampling
Toeplitz matrix if the PSF is known. D3 represents the degrada-
tion in the spectral resolution, which can be constructed if the
SRF of the HS and MS sensors are known. Using this model,
tensor decomposition can then be used to estimate Y. For in-
stance, following Tucker decomposition, Y can be decomposed
as follows:

Y = TMNB+ Ez (26)

where T is the decomposed core tensor, and Ez is the error term.
Consequently, the Fusion model can be formulated as follows:

min
Y

1

2
‖X−YD1D2‖2F +

1

2
‖Z−GD3‖2F . (27)

Prior information must be incorporated in order to regularize
(27). For instance, Ma et al. [149], took advantage of the similar-
ities between adjacent bands as well as neighboring pixels, and
imposed graph regularization on spatial and spectral matrices
separately to minimize the effects of distortion. Another example
is demonstrated by Dian and Li [265], where they proposed a
low tensor multirank regularization method that exploits high
correlation among spectral bands, as well as nonlocal spatial
similarities. Ding et al. [150] followed a similar strategy, but
instead of Tucker decomposition, they use coupled tensor LL1-
based decomposition framework to estimate HR-HSI due to
its connection to linear mixture models, as suggested by Qian
et al. [151]. Li et al. [148] considered HR-HSI as a 3-D tensor,
and formulated the Fusion problem by estimating the core ten-
sor and three dictionary modes through coupled sparse tensor
factorization approach. They also incorporate a regularizer to
model the high spectral–spatial correlations. Other examples
include [152], [132], [153], [154], [155], [156], [157], [158],
[159], [266], [267], [268], [269], [270], [271], [272], and [273].

3) Bayesian-Based Approaches: The first known approach
that utilizes Bayesian Fusion was devised by Zhang et al. [160]

in 2009. The Fusion framework of this approach takes place in
the wavelet domain, and is referred to as wavelet MAP. Zhang
et al. [160] assumed additive noise imaging model for the HSI,
and interpolation is used as a priori to bypass the need to estimate
the spatial degradation operator and perform SR in a blind
manner. Performing MAP [127] to approximate the enhanced
image in the wavelet domain rather than the spatial domain
allows for scale-specific and subband-specific estimations. The
authors compare their approach to spatial domain estimation,
in addition to some of the most commonly used pansharpening
techniques. Another blind Bayesian-based approach is HySure
devised by Simões et al. [125], [126].

Most optimization-based approaches rely on explicit param-
eter turning for each different dataset or sensor. To solve this
problem, Akhtar et al. [161] attempted to avoid this problem by
utilizing nonparameteric BSR over four stages. First, the proba-
bility distributions and the proportions of the material reflectance
spectra are extracted. Second, a dictionary is estimated and
transformed based on the spectral quantization of the HR-MSI.
Third, the sparse codes of the HR-MSI are computed by using
the proposed Bayesian sparse coding. Finally, the HR-HSI is
estimated using the dictionary from the second stage and the
sparse coding from the third stage. Another BSR approach was
devised in [162], where the authors learn dictionaries from the
observed HSI and MSI, and then solve the optimization problem
with respect to the target image and the sparse code by using split
augmented Lagrangian shrinkage algorithm (SALSA) [163],
which is an instance of ADMM. According to Wei et al. [162],
“SALSA enables a huge nondiagonalizable quadratic problem
to be decomposed into a sequence of convolutions and pixel
decoupled problems, which can be solved efficiently.” This
approach outperforms MAP [127] and wavelet MAP [160].

Fusion approaches assume that the HSI and MSI are perfectly
coregistered, which is an impractical assumption. In an attempt
to overcome this limitation, Bungert et al. [164] devised a blind
Bayesian approach with directional total variation that is robust
against imprecise registrations between the HSI and MSI.

C. Deep Learning-Based Fusion

DCNNs have recently shown great success in various im-
age processing and computer vision applications. DCNNs have
also been applied to RGB image SR and achieved promising
performance [34], [274], [275]. Since the correlation between
MSI and HSI is highly nonlinear, DCNNs have high potential to
achieve HR-HS with high accuracy if HR-RGB image is used.
Some researchers in the literature focused on utilizing DCNNs
to obtain HR-HSI from its LR version only [276], an approach
known as SISR. In this case, the CNN is known as spatial-CNN.
However, their enhancement factor is limited to 8 at maximum
compared with using observed RGB or, more generally, MS
data. HSI require a much higher enhancement factor (e.g., 32).
Further elaboration on this can be found in Section V-B. Other
researchers improved the spectral resolution of LR-RGB images
using DCNN, in which case it is known as spectral-CNN [34],
[277]. This approach ignores the HS attribute that correlates the
narrowband and spectra, which leads to unsatisfactory results.
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Spatial-DCNN and spectral-DCNN improve the image in one
dimension only. Therefore, it is desirable to design a network
architecture that performs enhancements in both dimensions in
order to generate an HR-HSI. This will be explored in the next
sections from supervised and unsupervised learning perspec-
tives.

1) Supervised: Traditional pansharpening approaches, albeit
primitive, can be elevated using DCNNs as well. A notable ex-
ample of such case is deep HSI sharpening model demonstrated
in [165], which learns image priors and incorporates them into
the Fusion framework. First, the HR-HSI is initialized by solving
Sylvester equation. Then, a one-to-one mapping between the
initialized HR-HSI and the reference HR-HSI is learned via deep
residual CNN. The priors learned from this network are then
utilized in the Fusion framework to obtain the final estimated
HR-HSI. This approach shows superiority against traditional
pansharpening and MF approaches. A spatial and spectral Fusion
network (SSF-Net) for HR-HSI reconstruction was proposed
in [166]. The results of the network were promising in spite
of the simple concatenation of the upsampled LR-HSI and
the HR-RGB image. However, the upsampling of the LR-HSI
and the simple concatenation cannot effectively integrate the
existing spatial structure and spectral property without high
computational cost. In addition, precise alignment is needed for
the input of LR-HSI and HR-RGB images, and it is extremely
difficult to attain due to the large difference of spatial resolution
in the LR-HSI and HR-RGB images.

In 2019, inspired by the success of SSF-Net, Han et al. [167]
devised multilevel and multiscale SSF-Net (MS-SSFNet), which
fuses LR-HSI with HR-RGB. The authors’ proposed that DCNN
relies on the gradual reduction of the feature sizes of the HR-
RGB while increasing the feature sizes of the LR-HSI. Further-
more, DCNNs often suffer from vanishing gradient problem
during the training, and the authors alleviate this problem by
integrating multilevel cost functions into MS-SSFNet archi-
tecture. Other works in this area that also tackle Fusion with
spectral–spatial context include [168], [169].

All the aforementioned methods assume that the degradation
kernels are already known. In order to find a middle-ground
between hand-crafted priors and DCNNs that do not assume
prior knowledge but need massive training data, many authors
used the output of DCNNS as deep prior regularizers [170],
[171], [172]. For instance, Zhang et al. [173] attempted to over-
come this problem blindly without any prior assumptions. They
use DCNN to regularize the spatial and spectral degradation
instead of using hand-crafted priors. They utilize a generator
network to model the latent HR-HSI, and the spatial degradation
are modeled through a convolutional layer, whereas the spectral
degradation are modeled through a fully connected layer. Thus,
the network works as an end-to-end pipeline that learns from the
LR-HSI and the HR-HSI. This approach outperforms traditional
blind Fusion approaches, such as NSSR [130]. A similar blind
approach idea was presented by Wei et al. [174], where they
used a deep recursive residual network to fuse LR-HSI with
HR-MSI. Other works in this area include [175], [176], [177],
[178], [179], [180], [181], [182], [183], [184], [185], [186],
[187], [188], [189], [190], [191], [192], [177], [193], [278],

[279], [280], [281], [282], [283], [284], [284], [285], [286],
[287], [288], [289], and [290].

2) Unsupervised: Supervised learning algorithms for image
Fusion require a large size of HSI dataset perfectly registered
with their MSI counterparts, which is unrealistic. Unsupervised
learning offers the possibility to bypass this limitation, as it has
the potential to achieve remarkable results with small datasets
compared with supervised learning approaches. Qu et al. [291]
were the first to attempt this task for HSI-SR using CNN. Their
network consists of two encoder–decoders that are coupled by
the same decoder in order to preserve spectral information.
Sparse Dirichlet distribution naturally covers the physical con-
straints of HSI and MSI. This allows minimizing the angular
difference between HSI and MSI representation, which reduces
spectral distortions. The resulting network is referred to as
uSDN. As previously mentioned, one of the major challenges
that faces this network and image Fusion in general is the
assumption that HR-MSI and LR-HSI are accurately registered.
The performance of the Fusion typically relies on the registration
accuracy. Therefore, Qu et al. [292] attempted to overcome the
shortcomings of uSDN by projecting both HR-MSI and LR-HSI
into the same statistical space. This representation is assumed to
follow Dirichlet representation as well. The authors also exploit
mutual information (MI) between both images to capture any
nonlinear statistical dependencies between them. Maximizing
MI leads to maximizing spatial correlations, which leads to
minimizing spectral distortions. The authors test their approach
on CAVE and Harvard datasets using ERGAS, PSNR, and SAM
evaluation metrics. It can be observed that this approach offers an
advantage over conventional Fusion methods as well as uSDN.

In a similar approach, Lei et al. [293] took advantage of image
prior and utilized it for unsupervised learning that consists of
two-stage SR. The first stage is a Fusion model that is pretrained
on synthetic data to generate a general spatial–spectral HSI prior.
The second stage is a degeneration model that makes the general
HSI prior more specific, which is trained in an unsupervised way.
The algorithm performance shows superiority against traditional
Fusion algorithms, as well as the results demonstrated in [294]
and [168].

Another unsupervised approach is demonstrated in [295]. The
authors utilize spectral unmixing and obtain the initial value of
high-resolution abundance by interpolation. The exact interpola-
tion method is not mentioned. A deep learning model is trained
by utilizing the prior knowledge of hyperspectral and multi-
spectral images to optimize abundances and target HSI. The
authors test their algorithm using CAVE and Harvard datasets,
but they argue that their method should be tested on remote
sensing datasets as well because they are more complicated and
may require a stricter model to deal with atmospheric influences.
The authors also mention the model’s inability to generalize
across different HSI datasets.

Li et al. [296] attempted to overcome the limitations of re-
lying on prior knowledge and large datasets. They propose a
deep learning architecture that is capable of adaptively learning
degradation models. The architecture is mainly divided into
three stages. These stages effectively learn spatial and spectral
transformations. The authors test their algorithm against uSDN
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Fig. 14. Visual comparison between various Fusion methods using Pavia University dataset [297]. (a) GT. (b) CSU [133]. (c) CNMF [116]. (d) NSSR [130]. (e)
HySure [125]. (f) uSDN [291]. (g) MIAE [298].

and some of the traditional fusion methods, such as CNMF and
HySure, and their approach shows superiority when tested on
Houston and Chikusei datasets.

Inspired by the recent success of unsupervised DCNNs, Liu
et al. [297] embedded NMF into their approach and developed
a model inspired autoencoder for unsupervised HSI-SR. NMF’s
task is to preserve the intrinsicality of the estimated HR-HSI,
such that the autoencoder takes each individual HSI pixel as
an input sample for the encoder side, and outputs spectral and
spatial matrices at the decoder side. However, the value of
the input pixel is unknown, so the LR-HSI and the HR-MSI
are used as inputs in a pixelwise manner that is solved by
using gradient descent. The loss function of the autoencoder is
formulated based on spectral and spatial degradations. Instead of
assuming this degradation as shallow priors, the authors propose
an additional blind estimation network to estimate the PSF and
SRF. The approach outperforms traditional Fusion approaches
in addition to uSDN [291], as seen in Fig. 14.

Other works in this area include [298], [299], [300], [301],
[302], [293], [303], [304], [305], and [306].

V. SINGLE IMAGE SR

The mathematical formulation of SISR can be constructed
using an observation model, which is expressed as follows:

X = DGY + E (28)

where D is the downsampling operation, G is the blurring
filter, and E is the additive noise. HR-HSI can be estimated by
minimizing the Forbenius norm of the difference betweenY and
Ŷ, as follows:

Ŷk = argmin
Yk

‖DGYk −Xk‖2F , k = 1, . . . B. (29)

The past two decades have witnessed impressive advances
in this area of research [307]. This section discusses these
advances, starting from the simple ones and building up to more
sophisticated approaches. Similar to Fusion methods, SISR
approaches that do not assume prior knowledge regarding the
degradation kernel are referred to as “blind SISR.”

A. Traditional Methods

SISR methods rely mainly on the observed LR-HSI and do not
require auxiliary MSI. Some SISR make use of prior assump-
tions to reconstruct HR-HSI. The earliest HSI-SR method and
the pioneer in this field is the work proposed in [80]. Akgun
et al. [80] proposed a system for capturing HSI, and based
on the proposed system, they design HSI-SR framework as
an inverse problem. Assuming that the degradation kernel is
known, projection onto convex sets (POCS) [308] can be used
to estimate the HR-HSI, such that when the estimated HR-HSI is
degraded, it will give a result identical to the observed LR-HSI.
The proposed POCS gives more accurate results and the more
additional constraints can be added from prior information or
assumptions. POCS can also be used to estimate the PSF of LR
images, which aids the estimation of the HR counterpart, as seen
in [81].

Regularization-based methods, also referred to as
reconstruction-based methods, reconstruct HR-HSI from
LR-HSI in addition to prior assumptions. For instance, Villa
et al. [75] utilized spectral unmixing for SISR-HSI. They
extract the end members using vortex component analysis.
Then, they use fully constrained least squares (FCLS) algorithm
to determine the abundance fraction of the endmembers within
each pixel. Afterward, each pixel is divided into subpixels
according to the required scale factor. The authors assume
that each endmember is spatially close to the same family
of endmembers in the surrounding pixels. Based on that,
they chose simulated annealing as a mapping function that
minimizes the perimeter of the areas that belong to the same
endmember. The authors test the effectiveness of their method
by comparing the classification map of the enhanced HSI to that
of the GT. Another reconstruction-based approach was adapted
in [76]. The authors present maximum a posteriori-Markov
random fields (MAP-MRF)-based approach. Similar to [75],
the first step is to extract the endmembers, and then estimate the
abundance maps using FCLS. The reconstruction is performed
on the estimated abundance maps using MAP-MRF. The authors
consider this approach an improvement to their previous one
presented in [77]. Other examples include [244], [309], and
[310].
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Tensor-based approaches, while predominantly used in Fu-
sion methods, can also be used for SISR. For example, Wang
et al. [311] argued that HSI can be modeled as a 3-D tensor
to exploit global (spectral) correlations between HSI bands in
addition to local (spatial) correlation among HSI patches. These
correlations can be modeled by a nonconvex low-rank tensor,
which is an optimization problem that can be solved using
local linear approximation and ADMM. The authors’ approach
show superiority against spectral unmixing analysis and various
interpolation approaches. Similar examples can be found in [78],
[79], [312], and [313].

Some SISR approaches rely on SRM, a concept that was
first introduced in [82]. SRM is a technique based on spectral
unmixing to estimate the class composition of image pixels.
Then, by using algorithms to show how these classes are dis-
persed spatially within the neighboring area represented by the
pixel, the spatial resolution is enhanced. According to Atkinson
[314], these approaches can be divided into two categories:
optimization and learning based. A dictionary-learning example
is presented in [83]. The authors propose a multidictionary-based
sparse representation approach, where the proposed feature
vector expresses the significant information about spatial de-
pendence. Consequently, multiple distribution dictionaries are
learned via sparse representation. The feature vector is then
reconstructed by every dictionary. It is also assigned to a class
according to reconstruction errors and spectrum distortions. The
authors assert that learning-based SRM is robust to noise. Their
approach also avoids overfitting problems that can be poten-
tially encountered with neural networks. The recent SRM for
HSI-SISR approaches are utilized in conjunction with DCNNs,
such as [84], [85], and [86].

SISR approaches that do not require auxiliary MSI and do
not impose prior assumptions, especially if the blurring kernel
is an unknown function, are referred to as blind SISR. The
simplest blind SISR approach in the literature is interpolation.
Interpolation is a term that can be used interchangeably with
resampling, in the sense that it involves transforming an image
from one coordinate system to another. The accuracy of the
interpolation depends on the selection of a proper interpolation
kernel. Some of the most common interpolation methods include
nearest neighbor, bicubic, and bilinear interpolation [71], and
others [72], [73], [74]. Even though interpolation methods are
widely used in commercial software, they are not favorable
because they introduce artifacts and blurriness, and they intro-
duce spectral distortions in HSI. Nonetheless, there are several
examples in HSI-SR research where bicubic interpolation is used
as a benchmark for performance comparison, or as an initial step
in the designed approach [253], [297]. The vast majority of blind
SISR approaches are performed using DCNNs, which have been
the predominant approaches in HSI SISR from 2017 onward, as
will be discussed in the next section.

B. Deep Learning-Based SISR

As discussed in Section II-D, CNNs consist of automatic
feature extractors that omit the requirement of having manual
hand-crafted features or human intervention. Instead, CNNs are

capable of learning one-to-one mapping between an LR image
and its corresponding HR version. In the case of natural images
(e.g., RGB images), many efforts were exerted to improve their
spatial resolution via DCNNs. Some of the most prominent
methods include SR convolutional neural network [315], very
deep SR [316], [317], super resolution generative adversarial
network (SRGAN) [318], enhanced deep residual networks for
single image SR [319], UNet [320], and autoencoders [321],
[322]. Unlike natural images, HSI can suffer from spectral distor-
tions upon spatial enhancement. Therefore, HR-HSI CNNs must
be developed while taking spectral context into consideration.

Some algorithms develop SISR DCNNs while taking inspi-
ration from Fusion methods to minimize spectral distortions.
For example, Yuan et al. [36] used transfer learning technique
to repurpose SR DCNN that was originally trained for natural
images. In addition, they utilize CNMF to capture the spectral
relation between spectral bands. The authors compare their
results to Fusion methods as well as interpolation methods, and
it shows superiority in terms of RMSE, PSNR, SSIM, ERGAS,
UIQI, and SAM. Some authors argue that 3-D CNNs capture
spectral information better than 2-D CNNs and, thus, they use
3-D convolution as their primary approach for blind HSI-SR.
An example of this can be seen in [37], where the authors used
a 3-D full CNN (3D-FCNN) to learn both spatial and spectral
correlations simultaneously. They further extended their work
and improved their algorithm by including one extra convolution
layer [38]. This method is sensor specific, as it is a way to avoid
the necessity of having a large dataset. Therefore, this method
works on images acquired by the same sensor only. For instance,
Pavia Center and Pavia University datasets were acquired by
ROSIS sensor, so the algorithm needs to be trained for one of
them only. A similar approach was adapted in [39] by using 3D-
FCNN with residual connections to enhance spectral and spatial
characteristics simultaneously. Another approach that utilizes
3D-FCNN was explored in [40]. The authors decomposed LR-
HSI into three groups of wavelet coefficients according to their
frequency similarity, and hence, the network is referred to as
frequency separated 3DCNN. This is done to suppress spectral
distortion while maintaining the high-frequency information.
The feature cubes are extracted using 3-D convolution and the
details are reconstructed by 3-D deconvolution. The final HR-
HSI is obtained by inverse wavelet transformation. This method
shows superiority against 3D-FCNN and bicubic interpolation in
terms of PSNR, SSIM, and SAM. Some researchers use attention
mechanism to amplify the important features extracted from
3-D convolution. For instance, Dou et al. [41] devised a 3-D
attention-based SRGAN (3DASRGAN) that utilizes SAM as a
part of the loss function to guarantee the minimization of spectral
distortions. 3DASRGAN prevails over bicubic interpolation,
3D-FCNN, and the original SRGAN. The loss function is an
important aspect of CNNs that directly affect spectral fidelity.
Other examples of incorporating SAM within the loss function
can be seen in grouped deep recursive residual network devised
in [42].

Li et al. [43] argued that 3-D CNNs are not the optimal
choice because the spectral bands of HSI are highly redundant.
Therefore, they propose 1D–2D spatial-spectral CNN instead.
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Fig. 15. Visual comparison between various SISR methods using Chikusei dataset [46]. (a) GT. (b) VDSR [318]. (c) EDSR [321]. (d) 3D-FCNN [37]. (e) GDRRN
[42]. (f) DHSP [53]. (g) SSPN [46].

The 2-D path of the network extracts spatial features, and the
1-D path of the network utilizes the high similarity between
HSI bands. Experimental results on Pavia dataset prove that this
network performs better than 3D-FCNN. However, according
to Li et al. [44], the dual 1D–2D CNN does not explore spatial
features deeply enough. Therefore, the authors devise a mixed
2-D/3-D convolution, which they refer to as MCNet. The 2-D
units help the network to learn the hierarchical features more
adaptively, and separable 3-D convolution is utilized in the
3-D units in order to optimize memory usage while extracting
spatial and spectral features. Experimental results on CAVE
and Harvard datasets show superiority against bicubic interpo-
lation, 3D-FCNN, and the dual 1D–2D CNN. Using a similar
principle, Wang et al. [45] also utilized a mixture of 2-D and
3-D convolutions, and they added feature context fusion to
combine the features from each band with the preceding one
to simplify the network structure and enhance the performance.
Another example that illustrates that benefit of 2D–3D mixture
over 3-D networks is the spatial spectral prior network (SSPN)
proposed in [46], where the authors consider the image prior,
or regularization term, as a parameter that can be learned. They
compare their network to deep HS prior demonstrated in [53],
which is a full 3-D network, and SSPN shows superiority in terms
of visual quality as well as PSNR, SSIM, and SAM. A sample of
the visual comparisons between SSPN and other SISR methods
can be seen in Fig. 15. Section II-D discusses that DCNNs can
be configured in different topology, and layers can be connected
in different strategies. Making efficient use of these strategies
highly boosts HSI-SISR performance. This can be observed in
several studies in the literature [47], [48], [49], [50], [51], [52],
[54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65],
[66], [67], [68], [323], [324], [325], [326], [327], [328], [329],
[330], [331], [332].

All of the aforementioned HSI-SISR approaches suffer from
data scarcity. That is, HSI datasets exist as a single scene, which
is insufficient to train DCNNs. In SISR approaches, an HSI scene
is often divided into patches to train a DCNN. For instance,
dividing Botswana dataset into patches of 64× 64 yields 92
patches of which 70% is typically used for training and the
remaining for testing. Even though this is the most common
approach, data scarcity is still a challenge that needs to be over-
come. In addition, the aforementioned HSI-SISR approaches
perform well on homogeneous datasets that are captured by the
same sensors, and cannot generalize across different sensors.
In 2021, Li et al. [69] addressed the problem of HSI’s high
dimensionality and scarcity of training samples, which result in

undesirable behaviors, such as overfitting. Their work is built
based on the concept that there exists high correlation between
HSI and their corresponding RGB. Thus, RGB and HSI can
be trained jointly, such that RGB-SISR can provide additional
supervision. This approach minimizes the amount of HSI dataset
required for training, and provides the ability to be applied on
heterogeneous datasets. In addition, the authors also devise a
novel augmentation algorithm called spectral mixup to increase
the amount of training samples. The most recent version of
this approach was published by the same authors in 2022 [70].
This method outperforms [42], [43], [44], and [46]. It is worth
mentioning that this is the only research work that addresses the
problem of data scarcity for HSI-SISR.

The main drawbacks of the aforementioned algorithms are
limiting their experiments to scaling factors of ×2 and ×4.
In [44] and [45], the scaling factor goes up to ×8 at most,
and HSI-SR requires higher scaling factors in order to be put
into practical use. Furthermore, SISR techniques have no un-
supervised approaches associated with DCNNs, as the only
semisupervised approach that tackles data scarcity problem is
the one mentioned in [69] and [70].

VI. CHALLENGES AND FUTURE DIRECTIONS

In order to define the future direction of this field of research,
a proper analysis of the existing challenges must be done.
These challenges will be discussed in terms of each method’s
drawbacks that must be overcome in order to lead to successful
breakthroughs in the field of HSI-SR.

A. Fusion Challenges

The general drawback of all Fusion methods is their depen-
dency on prior knowledge, as the quality of the outcome is
conditioned upon the existence of HR-MSI that is accurately
coregistered with LR-HSI. With regard to pansharpening ap-
proaches, they all suffer from spectral distortions in various
degrees. That is, CS techniques suffer from spectral distortions
the most, followed by MRA, and then variational methods [333].
Even though MRA and variational methods cause less spectral
distortions, they fail to reduce spatial distortions compared
to CS. Generally, there is always tradeoff between spectral
distortions and spatial distortions. Hybrid approaches achieve
balance between spatial and spectral distortions. Method-based
approaches are able to overcome the barrier of spectral dis-
tortion and achieve remarkable balance between spatial and
spectral preservation better than hybrid approaches. However,
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the main issue with these methods is that they require prior
knowledge about the degradation kernel and/or PSF and SRF.
The drawbacks of DCNN methods are different for supervised
and unsupervised approaches. Supervised approaches require a
large amount of data, and the performance often end up being
data dependent. That is, the trained network performs well on
data captured by a certain sensor, but may not achieve the
same performance given data from other sensors. Meanwhile,
unsupervised methods do not require a large dataset, but they still
impose impractical assumptions and require prior knowledge.

B. SISR Challenges

SISR omit the need for an accurately coregistered HR-MSI,
but they have their own set of challenges. For instance, PCOS
assumes prior knowledge and it is highly sensitive to noise [334].
In addition, the limitation of regularization methods differs
between stochastic and deterministic techniques. The former
mostly suffer from high computational cost, and the latter mostly
suffer from noise sensitivity and artifacts [335].

As mentioned in Section V, SRM technique is based on
spectral unmixing. The effectiveness of this method relies solely
on the accuracy of subpixel classification map. If it is inaccurate,
the resulting spatial and spectral resolutions will be distorted as
well.

Interpolation drawbacks depend on the exact methodology
used. Here, bicubic and bilinear interpolation will be discussed,
as they are the most used ones for HSI-SR. Since both meth-
ods are designed to operate in 2-D, they do not preserve the
spectral signature of HSI. Furthermore, bilinear interpolation
causes blurriness and artifacts in the outcome. This effect is less
noticeable in bicubic interpolation, but it is still present.

As for DCNN-based SISR methods, they suffer from two
main shortcomings. The first one is data scarcity. The available
datasets at the moment consist of only one HS scene, which is
not enough to train a DCNN. The common approach is dividing
the scene into patches, which can produce a few dozens of HSI to
use for training, validation, and testing. This is still considered
a small amount of data and can lead to overfitting during the
training procedure. The second shortcoming is similar to that
of DCNNs used for Fusion, which is the networks’ inability to
generalize.

C. Summary and Recommendations

It is worth observing the quantitative results obtained by the
recent studies. To narrow it down, the results are studied for
the two most used datasets: Pavia University and Washington
DC, and three of the most used metrics: PSNR, SAM, and
ERGAS. Fig. 16 lists the span of PSNR for Pavia University and
Washington DC datasets obtained by the following studies [116],
[145], [146], [147], [186], [190]. The PSNR overall ranges
between 26 and 43 dB approximately. On average, an acceptable
PSNR value that can compete with state-of-the-art results would
be around 37 dB. A large span of PSNR shows that the obtained
result highly depends on certain conditions, or the dataset itself.
Study [146] is an example of such large span.

Fig. 16. Comparison between PSNR values across different studies on Pavia
University and Washington DC.

Fig. 17. Comparison between SAM values across different studies on Pavia
University and Washington DC.

Fig. 18. Comparison between ERGAS values across different studies on Pavia
University and Washington DC.

Fig. 17 shows comparisons between SAM results for the
same studies with the same datasets. The worst overall value
is 5.57, while the best is 1.78. An acceptable SAM value would
be on average 3.7. Similar to PSNR case, SAM results can
also show inconsistencies across different datasets. For instance,
study [186] shows vastly different SAM results for Pavia Uni-
versity and Washington DC datasets.

Comparisons between ERGAS values shown in Fig. 18 in-
dicate that most studies show consistency in the results ob-
tained for different datasets, with the exception of study [145]
showing large ERGAS value for Washington DC. Such value is
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TABLE III
COMMON DISADVANTAGES BETWEEN HSI-SR METHODS

Fig. 19. Analysis summary of Fusion methods, according to [194] findings.

considered as an outlier. Generally, an acceptable ERGAS value
is about 2.4 on average.

Since there is no ideal method for enhancing HSI, the best
method can be chosen according to the purpose of enhancement
and available information. For example, if a large scale factor
is required and a corresponding MSI or PAN band is avail-
able with precise coregistration, then Fusion is the favorable
approach. In that case, if there exists plenty of data, supervised
DCNN approaches can be recommended; otherwise, traditional
or unsupervised methods would be favorable. In cases where no
auxiliary image is available for Fusion, SISR is the only option
that can be followed, and it can produce decent outcomes as long
as the scale factor does not exceed 4. Whether to use supervised
DCNNs or traditional approaches depends on the size of dataset.
For small datasets, traditional approaches are more suitable than
DCNNs.

Based on the discussion presented in Sections VI-A and
VI-B, the overall drawbacks of all the studies discussed in
both Sections IV and V are summarized in Table III. Some
of the drawbacks are specific to a particular method, whereas
other methods share similar drawbacks. According to a detailed
quantitative analysis of Fusion methods conducted by Luncan
et al. [194], Fusion methods that successfully minimize spectral
distortions in the enhanced HSI suffer from high computational
complexity. Their findings can be summarized in Fig. 19. By
looking at both Table III and Fig. 19, it can be concluded that
the most important drawbacks to consider while designing a new

algorithm are spectral distortions and computational complexity
for Fusion methods, and scaling factor, which needs to exceed
8, in addition to data scarcity for SISR methods.

VII. CONCLUSION

This article presented a thorough literature review of HSI-SR
approaches by studying more than 200 papers published within
the last two decades. In summary, HSI-SR approaches can
be viewed from different perspectives, but the most common
one is the broad categorization of Fusion and SISR. Fusion
methods mostly use auxiliary MSI and may impose further
prior knowledge. On the other hand, SISR do not require a
supplementary MSI. Furthermore, algorithms that do not assume
prior knowledge are known as blind SR. The common objective
of these various approaches is to improve HSI spatially without
compromising its spectral resolution. The quality of the outcome
is commonly measured using spatial metrics, such as PSNR
and SSIM, and spectral ones, such as SAM and ERGAS. Each
approach to HSI-SR has its own advantages and disadvantages.
In order to achieve a breakthrough in this area of research, at least
one of these disadvantages, such as exceeding scale factor of 8
for SISR, need to be overcome. In addition, Fusion approaches
seem to suffer from a tradeoff between spectral distortion and
computational complexity.

There are several HSI datasets for testing and benchmarking.
ICONES dataset is worth investigating, as it is recent, massive,
and has not been used in research papers thus far. For both Fusion
and SISR directions, DCNNs have taken over the field during
the past four years, and it is expected that they will continue to
do so since evidence proves their effectiveness over traditional
algorithms. Furthermore, the number of studies in the area of
Fusion far exceeds those in the area of SISR. This has been an
ongoing trend since 2002, which points to a gap in the direction
of SISR particularly. Finally, generalization imposes one of the
greatest restrictions on HSI-SR, as algorithms typically perform
well on a particular dataset or a particular type of sensor, but
falls short when it comes to others. This is a crucial challenge to
take into consideration in the future HSI-SR studies, especially
with respect to data scarcity.
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