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Hyperspectral Image Classification Based
on Unsupervised Regularization

Jian Ji , Shuiqiao Liu, Fangrong Zhang, Xianfu Liao , Shuzhen Wang, and Junru Liao

Abstract—Due to the powerful feature expression ability of
deep learning and its end-to-end nonlinear mapping relationship,
deep-learning-based methods have become the mainstream method
for hyperspectral image (HSI) classification tasks. However, the
accuracy of deep learning methods greatly depends on the use
of a large number of labeled samples to train the model. Also,
HSIs have few labeled samples and unbalanced categories, which
make the depth model prone to overfittingand seriously affect the
classification accuracy. Therefore, how to alleviate the overfitting
phenomenon caused by small samples in the classification problem
based on deep learning is still a problem that needs to be solved.
Considering that it is relatively easier to obtain a large number of
unlabeled samples in the field of remote sensing, making full use
of the unsupervised information learned from unlabeled data can
regularize the supervised classification model, which can effectively
alleviate the overfitting phenomenon caused by the small samples
problem. In the supervised training process, unsupervised infor-
mation from the overall distribution of the sample is introduced to
guide the regularization of the model, so as to realize the effective
classification of the data in the case of a small number of labeled
samples. Experimental results demonstrate the effectiveness of the
proposed method in terms of HSI classification with few training
samples.

Index Terms—Few samples, hyperspectral image (HSI)
classification, model regular, unsupervised information.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) has a strong pixel repre-
sentation ability. Hyperspectral imaging is based on the

spectral reflectance of ground objects, so it has strong ground
penetration and its resolution is not easily affected by color
shading. It has unique advantages in military reconnaissance,
agricultural observation, geological prospecting, and transporta-
tion planning [1]. As a prerequisite for the practical application
of HSIs, the classification of HSIs is of great significance.
HSI classification refers to dividing each pixel into a specific
feature category according to the spectral curve provided by
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each pixel. There are many research works on HSI classification,
but because the ground annotation of remote sensing images
is expensive, HSI classification lacks enough training samples.
Also, the high dimension and spectral redundancy of HSIs lead
to their high data volume characteristics. Small samples are
associated with high-dimensional characteristics, which is easy
to cause a “dimension disaster” [2], that is, the dimensionality
is too high and the samples are too few, so that the accuracy
of the classification task is reduced due to the overfitting of the
model [16].

In recent years, a lot of algorithms have emerged for HSI
classification, including traditional algorithms based on statisti-
cal theory and algorithms based on deep learning. According to
whether the classification algorithm is pixel-by-pixel or uses the
semantic information of the pixels around the pixel, the existing
HSI classification can be divided into two types: 1) pixel-level
classification and 2) super-pixel-level classification [4].

The traditional methods of pixel-level classification include
the following: 1) Linear classifiers: such as logistic regression [5]
and Gaussian maximum likelihood classification [6], respec-
tively, assuming that the sample obeys the Bernoulli distribution
and the normal distribution, and constructing the likelihood
function to find the decision. The boundary then classifies each
pixel. 2) Distance-based classifiers: such as K-nearest neighbor
classification [25], minimum distance classification [8], and
support vector machine (SVM) [9]. The main idea is to use the
distance between the test sample and each class as a decision.
The model determines the test sample as the closest class to it,
where SVM uses the distance of the sample in the feature space
after kernel function mapping. Except for SVM, these methods
cannot solve the “curse of dimensionality” of HSIs. But this
problem can be alleviated by dimensionality reduction or band
selection. That is, first perform feature extraction on the input
sample and then perform the classification operation. Feature
extraction methods include feature extraction method based on
binary discrete wavelet transform [10] and fast dimensionality
reduction method based on dynamic programming [11]. In ad-
dition to the dimensionality reduction of the data [27], another
method for high-dimensional problems is band selection, such
as independent component analysis for band selection [28]; the
bands containing more information are selected by evaluating
the average weight coefficient of each band, using an adaptive
band weight measurement method based on information en-
tropy [14]. These methods of deleting redundant bands reduce
the computational complexity of HSI classification and ease the
high-dimensional problem to a certain extent [26].
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The task of HSI classification based on deep learning mainly
focuses on proper feature representation and effective classifier
design. For example, the deep belief network (DBN) [32] uses
a network of restricted Boltzmann machines, which learns layer
by layer to extract robust nonlinear features in HSIs. However,
DBN adopts a fully connected (FC) structure [17], which leads
to too many parameters in the model, and the effect is not good
in the case of small samples. Different from FC networks, con-
volutional neural networks (CNN) [40] use partial connections
to share weights, thereby reducing the number of parameters.
Since the local connection of CNN is suitable for dealing with
the situation where there are few available training samples for
HSIs [19], a series of classification methods based on CNN
and its variants have appeared in HSI classification, such as
AlexNet [15] designed deeper on the basis of the original CNN
structure, so it has better feature representation capabilities but it
brings more parameters. In addition, there are GoogleNet [13],
VGGNet [3], DensNet [7], recurrent neural network, etc. These
networks make the original CNN wider or use convolutional
kernels of the same size, fixed pool size, and direct connection
structure to reduce the difficulty of training, compared with
the general deep network to achieve better scores classification
results [24].

Considering that it is relatively easier to obtain a large number
of unlabeled samples in the field of remote sensing, making full
use of the unsupervised information learned from unlabeled data
can regularize the supervised classification model, which can
effectively alleviate the phenomenon of small samples and the
overfitting problem. Based on this clustering assumption that ad-
jacent samples have similar output values on the same manifold
structure, this chapter designs an HSI classification framework
that shares unsupervised information, that is, introduces unsu-
pervised training from the overall distribution of samples in the
supervised training process. Supervise the information and guide
the regularization of the model, so as to effectively classify the
data in the case of a small number of label samples.

The main work of this article is embodied in the following
three aspects.

1) A shared feature extraction module (SFEM) is designed
based on the Kullback–Leibler (KL) sparse stack au-
toencoder (AE) structure, which is used to extract both
the labeled data and the unlabeled data in the feature
extraction stage to obtain their consistency information.
That is, the structural information of the sample is put into
the process of supervised learning as prior knowledge to
provide regularity for the learning process.

2) Use the supervised learning and unsupervised clustering
processes to classify and cluster the two kinds of data in
the same dataset. The information obtained from unsu-
pervised learning that causes classification loss due to the
introduction of unsupervised clustering is introduced into
the supervised learning process. The process provides in-
formation on similarities and differences between classes,
and more information can be obtained from the supervised
learning part.

3) Test the effectiveness of this scheme in the mainstream
dataset of HSIs. In particular, when dividing samples,

focusing on the categories with a small number of tags,
we can see the superior performance of this method in the
case of small samples.

II. RELATED WORK

In HSI classification, traditional methods require fewer pa-
rameters and low computational complexity. However, because
HSIs collected under natural conditions do not generally have a
certain distribution law in the sense of mathematics and statistics,
it is based on the distribution assumption or the traditional
method of Vapnik–Chervonenkis (VC) dimensional theory is
limited. Deep-learning-based methods can extract high-level
features of data through multiple hidden deep networks, but
deep-learning-based methods require more labeled data for
training. The classification effect depends on the number of
effective training samples, so it appeared a lot of labeled training
samples. The lack of image and the imbalance of HSI categories
have become important factors limiting its development.

The method based on deep learning merges the spatial features
into the classifier, extracts the spatial features and spectral fea-
tures separately during feature extraction, and then uses feature
fusion technology to perform joint classification. For example,
using 2-D CNN to perform feature extraction on the machine
neighborhood of hyperspectral pixels containing spatial infor-
mation while performing principal component analysis (PCA)
operations on the spectral dimension can extract discriminative
spatial features while reducing the computational cost. Based
on this, Liang et al. [12] introduced sparse representation tech-
nology to encode deep spatial features extracted by CNN into
low-dimensional sparse features to improve feature representa-
tion capabilities. Long et al. [18] used the trained fully convo-
lutional networks 8 (FCN8) to explore deep multiscale spatial
structure information and used a weighted fusion mechanism to
fuse the original spectral features and deep multiscale spatial
features, and finally input the fused features into the classifier
for execution classification prediction.

Recently, model regularization (MR) is a method to effec-
tively alleviate the model overfitting caused by the small sample
problem. In deep learning, too few training samples and more
parameters in the model will cause the model to change from
the limited training data. The model learned in the medium
lacks generalization ability, that is, the phenomenon of over-
fitting. In response to this problem, there are several strategies
in HSI processing: transfer learning (TL) [22], active learning
(AL), and model optimization [30]. TL is a method that learns
useful information from auxiliary data and introduces it into
the target dataset to effectively reduce the data dependence of
the algorithm. Deng et al. [48] used the initial values of deep
network parameters trained on other remote sensing datasets
to initialize the 2-D CNN for classification. Compared with
random initialization, the TL algorithm converged faster af-
ter parameter migration [29]. AL is based on the selection
of training samples, adding unlabeled data samples as new
training samples to the training dataset, thereby adding labeled
training samples. Ma et al. [20] combined AL with iterative
training sampling, expanded the multidimensional dataset by
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iteratively incorporating other spatial classification information
into the unlabeled data samples enhanced by AL, and updated
the current training samples in a single iteration. While further
improving the accuracy of classification, it reduces the inconsis-
tency of classification. Finally, it is a method based on MR. MR
refers to adding some restriction rules to the target function that
needs to be trained, reducing the parameter space, and then con-
straining the solution space and minimizing classification errors.
In a hyperspectral dataset, different collected light, weather, and
shading will cause the spectral reflectance of the same object
to deviate. The efficiency of TL relies on the consistency of the
dataset, so the use of TL to solve the small sample problem in
HSI classification has the problem of auxiliary dataset selection.
The method of AL to expand training samples is to select data
that are helpful for classification from unlabeled samples, query
human experts, and obtain the label of the sample. Additional
information is required, which is often not available in actual
classification applications. Therefore, choosing a simpler and
more feasible MR can alleviate the overfitting problem caused
by small samples by introducing prior knowledge into the sample
and reducing the loss of model structure.

Currently, making use of the unsupervised information con-
tained in the dataset can improve the classification performance.
The machine learning algorithm can be divided into two cate-
gories according to whether the training process uses labeled
training samples: 1) supervised learning and 2) unsupervised
learning. First, supervised learning establishes training sets
based on samples in different categories and then makes de-
cisions based on training parameters. The unsupervised training
process does not require labeled samples, and the main purpose
is to extract useful features from a large amount of unlabeled
data. Because of the high cost of remote sensing data processing
and labeling, the number of unlabeled samples in hyperspectral
data is much larger than that of labeled samples [31]. To deal
with this problem, more and more research works are devoted to
designing an unsupervised deep learning framework for HSI data
to realize an encoder–decoder that can learn without using label
information, and at the same time through migrate the trained
network and fine-tune the labeled dataset to improve classifi-
cation performance [34]. The advantage of the unsupervised
algorithm is that it does not need to have label data to obtain
its own distribution information in the sample, but it also has
the disadvantage that the classification is not accurate enough
and the category needs to be determined manually. Therefore,
we consider using a clustering algorithm to initially extract the
difference information of the sample in the feature space and
introduce it as a regular term into the supervised classification
process to improve the classification accuracy.

HSI has a large amount of data and many feature channels.
Liu et al. used the Ghost module to reduce the complexity of the
model, and combined with the extended morphological profile
(EMP) features, propose an HSI classification method based
on EMP features and Ghost module (GhostEMP). GhostEMP
can improve the efficiency of operation [33]. Also, Shen et al.
proposed a method named GLSESP to improve the performance
of the supervised classification. They used the global spatial
and local spectral similarity to extend the labeled sample size.

Also, in order to alleviate band redundancy, they extended
subspace projection, which projects the original image to a
lower-dimensional subspace. GLSESP is also very practical
and effective in HSI classification [23]. Recently, CNNs have
been widely used for HSI classification due to their detailed
representation of features. However, the current CNN-based
HSI classification methods mainly follow a patch-based learning
framework. These methods not only limit the use of global
information but also require a high computational cost. So,
Xu et al. used an image-based global learning framework for
HSI classification. They proposed a dual-channel convolutional
network (DCCN) for HSI classification to maximize the ex-
ploitation of the global and multiscale information of HSI [35].

Also, CNNs have emerged as a popular choice for HSI anal-
ysis now. However, the performances of traditional CNN-based
patchwise classification methods are limited by insufficient
training samples, and the evaluation strategies tend to provide
overoptimistic results due to training-test information leakage.
To address these concerns, Liang Zou et al. proposed a novel
spectral–spatial 3-D fully convolutional network to jointly ex-
plore the spectral–spatial information and the semantic informa-
tion. It takes small patches of original HSI as inputs and produces
the corresponding sized outputs, which enhances the utilization
rate of the scarce labeled images and boosts the classification
accuracy [36].

III. PROPOSED METHOD

The core idea of this article is to introduce the unsupervised
information contained in the whole sample consisting of a
small amount of labeled data and a large amount of unlabeled
data as a regularization constraint in the training process of
supervised HSI classification and use the classification loss to
backpropagate. The supervised classification model can learn
the unsupervised information of the full set of samples in
addition to the information contained in the labeled samples
and alleviate the overfitting caused by small samples. For a
given hyperspectral dataset x ∈ iw×h×d, where w × h repre-
sents the width and height of the image, and d represents the
number of spectral bands. There are a total of n samples in
the input dataset, of which l samples belong to the labeled
dataset XL = x1, x2,..., xl, xi ∈ X . The corresponding label is
YL = y1, y2, . . ., yl, yi ∈ C, C is the number of data categories.
The n− l samples other than the labeled samples constitute
the unlabeled dataset, XU = xl+1, xl+2, . . ., xn, xi ∈ X . The
purpose of the classification task is to train a classifier by XL

and use this classifier to correctly classify XU .

A. Unsupervised Pretraining Based on Stacked AE

In order to make better use of the information contained
in unlabeled samples, this article first designs a stacked AE
(SAE), which uses backpropagation to perform unsupervised
learning on labeled samples and unlabeled samples and perform
feature extraction together. Then, input the features into the
corresponding classifier for end-to-end training. The purpose
of the AE is to learn an effective representation of the input
data. AE uses a fictitious three-layer network, assuming that the
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Fig. 1. Self-encoder structure.

original data are also the target output, and uses the loss of the
real output and the target output to construct a supervision error
for training. After the training is completed, the output layer is
removed to obtain the feature expression of the input data. The
structure of AE is shown in Fig. 1.

The training process of the AE is expressed as follows:

y = fθ(x) = h (Wx+ b) (1)

x̂ = gθ′(y) = h (W ′y + b′) (2)

L(x, x̂) = L(x, g(f(x)). (3)

In order to learn more meaningful expressions and prevent AE
from becoming a linear encoder and learn identity expressions,
this chapter adds regular constraints to the hidden Layer L2
and constructs AE as a sparse AE. Specifically, by adding a
sparsity penalty during training to reconstruct the error as (3).
In order to limit the sparsity of AE hidden layer neurons, use
KL divergence to constrain the average activation value of most
of the hidden layer neurons: Specify a sparsity parameter that
represents the average of hidden neurons on the training set
activity, use KL divergence to measure the relative entropy of
the expected activation and the actual activation of the actual
neuron, and then add it as a regular term to the objective function.
Finally, the loss function of AE can be expressed as

L = L(x, g(f(x)) + β

h∑
j=1

KL(ρ||ρ̂)

= L(x, g(f(x)) + β

h∑
j=1

(
ρlog

ρ

ρ̂j
+ (1− ρ)log

1− ρ

1− ρ̂j

)

(4)

ρ̂ =
1

m

m∑
i=1

(aj(xi)). (5)

m represents the dimension of the input data, ajrepresents
the activation value on the hidden layer neurons j, and β is the
weight of the sparsity penalty item. Since KL divergence is a
measure of the asymmetry of the difference between two prob-
ability distributions, the introduction of the sparse regular AE
of KL divergence in this chapter can better learn the similarity
information of samples of XL and XU as the same kind. In deep

Fig. 2. SAE structure.

learning, the deep network can learn multiple expressions of the
original data layer by layer. Based on the same principle, this
article uses an SAE structure to stack three AEs, the input of
each AE is based on the output of the previous AE, learning
a more abstract representation of features. The structure of the
stack AE is shown in Fig. 2.

In order to implement an SAE for shared feature extraction
and layer-by-layer unsupervised pretraining, a labeled dataset
and an unlabeled dataset are used to train the AEs that have
undergone KL divergence sparse regularization step by step.
For the input vector x, the high-level representation of x is first
obtained, and then, the second-order feature representation of
the original data x is obtained in the input. The last self-encoder
is input, and after the processor, a softmax layer is added. The
output of this softmax layer serves as the input to the next layer,
and the high-level feature representation of x is output after
processing. After unsupervised and training, the softmax layer
and the last AE are canceled, and the final SAE with a three-layer
structure is obtained. The pretrained SAE fits the structure of
the training data to a large extent. This SAE serves as the shared
feature extractor of the labeled data and unsupervised data of the
image, which can well obtain the unsupervised data contained
in the whole sample. The supervision information reflects the
relationship between sample similarity and corresponding label
similarity.

B. Few Shot HSI Classification Framework With Shared
Unsupervised Information

In order to alleviate the overfitting problem caused by the
small number of labeled samples, this article proposes a train-
ing framework (Shared Unsupervised Information Classification
Framework, SUICF) that shares the unsupervised information
contained in all samples into the supervised classification pro-
cess, using the loss function. The way to guide the supervised
classification model is as shown in Fig. 3.

The model is completed in two steps. On the one hand, SAE
uses backpropagation to perform feature extraction on raw data
through unsupervised learning, and the extracted features of
labeled data and unlabeled data are input into the supervised
feature extractor and unsupervised feature extractor respectively.
On the other hand, all data are extracted. This article uses the
K-means clustering algorithm, the parameter k is set to the
number of categories of the input data, after clustering, all the
data get the pseudolabel of their own category.

Specifically, based on KL sparse stack automatic encoder
structure, an SFEM is designed to extract tagged data and
unlabeled data in the feature extraction phase to obtain their con-
sistency information. The supervised learning and unsupervised
clustering processes are used to classify and cluster two kinds
of data in the same dataset. Because unsupervised clustering is
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Fig. 3. Few shot HSI classification framework for sharing unsupervised information. The upper part is SAE: Layer-by-layer pretrained network based on
backpropagation algorithm to update parameters, and the lower part is K-means: to get pseudolabels from the fused data.

introduced, the information obtained from unsupervised learn-
ing is introduced into the supervised learning process in the way
of classification loss. The interclass similarity between the data
captured by the K-means algorithm is trained by CNN using
the pseudotags generated by clustering, and the unsupervised
information input is effectively strengthened in a supervised
way.

The pretrained stack self-encoder fits the structure of train-
ing data to a large extent. As the shared feature extractor of
image-tagged data XL and unsupervised data XU , this SAE can
well obtain the unsupervised information contained in the whole
sample, that is, the relationship between sample similarity and
corresponding tag similarity.

The interclass similarity between the data captured by the
K-means algorithm is trained by the CNN using the pseudolabels
generated by the clustering, and the unsupervised information
is effectively strengthened in a supervised way. The feature
extraction module based on the pretraining of the shared SAE
effectively shares the unsupervised information in the data,
makes the unsupervised information flow to the supervision
task, and provides an effective regularity for the network. In
this framework, the input data of the three branches are calcu-
lated through three softmax layers to calculate the probability
that each pixel belongs to a certain category. Cross-entropy is
calculated for supervised data supervision features and their
corresponding pseudo labels as regular term J1. Similarly, J2
is the cross-entropy for the unsupervised features of the super-
vised data and their corresponding pseudolabels as the regular
term, and J3 is the cross-entropy of unsupervised data and its
corresponding pseudolabel as a regular term

J1 =

l∑
i=1

ysi log (ŷsi) (6)

J2 =

l∑
i=1

yui log (ŷui) (7)

J3 =

n∑
i=l

yui log (ŷui) . (8)

In our classification model, a KL discrete stack AE is de-
signed. Its function is to perform feature extraction on the labeled
data and unlabeled data in the sample in the same way. In
addition, the unsupervised pretraining method retains its weight,
reduces the training parameters of the classifier, reduces the
structural risk of the classification model, and improves the
classification accuracy.

C. Classification Model Design Based on 3-D CNN

In order to extract the spatial and spectral features of the
input raw hyperspectral data at the same time, 3-D CNN is
used as the backbone network for sharing the unsupervised
information classification model. 3-D CNN is usually used
to process video files because it takes three-dimensional data
as the input attribute so that it can capture two-dimensional
pictures and one-dimensional time features in video files at
the same time, so it has made achievements in dynamic target
recognition and human behavior understanding. As far as this
topic is concerned, HSIs are different from images in ordinary
computer vision tasks. They are a collection of one-dimensional
features that record the spectral response of an object and two-
dimensional features that characterize the spatial distribution
of the target. Therefore, the use of 3-D CNN to process HSIs
directly obtains the spectrum space joint representation of the
original data and then performs end-to-end training, which is
easier and more accurate for the implementation of classification
tasks.

Based on the network structure of 3-D CNN, this section
presents the main processing units included in the proposed
framework, namely the SAE, supervised and unsupervised fea-
ture extraction modules, the parameterization details of the clas-
sifier, and the regularization of the model. The implementation
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TABLE I
SAE PARAMETERS

process of clustering operations. Finally, this section introduces
the training process of this classification model.

1) Stack-type AE: The SAE designed in this section has two
AEs based on KL divergence and a softmax classifier.
The purpose of unsupervised pretraining is to reduce the
hidden weight W and bias term of the network within the
parameter space. Generate a better starting point than ran-
dom initialization for the subsequent supervised training
phase.
Specifically, the two hidden AEs use the same structure,
but their input parameters are different; the input to the
second AE comes from the output of the first AE, and the
parameters are set in Table I.
After pretraining the SAE, the decoder is separated, the
weight of the encoder is saved, and SAE is added to the 3-D
CNN-based classification model. This main classification
model uses the loss function generated by three cross-
entropy for training.

2) Supervised and unsupervised feature extraction module:
The main steps of the supervised feature extraction mod-
ule include global average pooling (GAP), batch nor-
malization (BN), and nonlinear activation. The use of
GAP instead of full-connection operation here reduces
the redundancy of full connection parameters. Set the
BN operation to improve the training speed, and it is
no longer sensitive to the weight scale. Use LeakyReLU
for nonlinear activation to increase the convergence
rate. The unsupervised feature extraction module uses
the same settings as the supervised feature extraction
module.

3) Classifier settings: This article sets up three classifiers to
classify supervised features, unsupervised features, and
fusion features. The classifiers are all implemented with
the softmax layer, and the purpose is to map different input
features to the real label space and the cluster label space.

4) Clustering algorithm: The important part of the informa-
tion in the shared unsupervised information classification
model in this article is the prior knowledge of the sam-
ple. The prior knowledge from unsupervised clustering
is introduced into the supervised classifier to provide a
regularity for the classification model, thereby reducing
the model’s sample dependence. This article uses the
K-means algorithm to cluster all pixels and characterize
the sample prototype. Set the value of k to the number of
true categories in the sample. That is, the pseudolabels
obtained by the clustering algorithm are used as input
data.

5) Loss function: The loss function in this article is given
by the cross-entropy combination obtained by the three

classifiers. The specific formula is as follows:

ltotal =
λ1

l
J1 +

λ2

l
J2 +

λ3

n
J3. (9)

Among them, λ1, λ2, and λ3 are balance coefficients, J1,
J2, and J3 are cross-entropies between the output of the
three classifiers and the real labels and the pseudolabels
produced by clustering, respectively. Since the three losses
are distinguishable, the backpropagation algorithm can be
used to effectively train this framework in an end-to-end
manner.

IV. EXPERIMENTS RESULTS AND ANALYSIS

This section conducts different experiments on four HSI clas-
sified datasets [Pavia University, Kennedy Space Center (KSC),
Indian Pines, Salinas] to verify the effectiveness of the proposed
method.

A. Datasets

This article uses four internationally popular public bench-
mark hyperspectral datasets to evaluate the experimental results
of the proposed HSI classification algorithm, namely 1) Pavia
University, 2) KSC, 3) Indian Pines, and 4) Salinas.

1) Pavia University is a scene captured by ROSIS sensors
during a flight mission over Pavia in northern Italy. The
size of the original data is 610×610×103, the geometric
resolution is 1.3 m, and it contains nine types of ground
objects, such as asphalt, gravel, grass, and trees.

2) KSC is the data collected by NASA’s AVIRS Research
Center at an altitude of approximately 20 km at the KSC in
Florida. AVIRIS collected data in 224 10-nm-wide bands,
the center wavelength of the data was 400–2500 nm, and
the spatial resolution was 18 m.

3) Indian Pines. This scene was collected by the AVIRIS
sensor at the Indian Pine test site in northwest Indiana.
It consists of 145×145 pixels and 224 spectral reflection
bands, with a wavelength range of 400–2500 nm. This
scene is a subset of the larger scene. The Indian Pine scene
includes two-thirds of agriculture and one-third of forests
or other natural perennials.

4) Salinas. This scene was captured by the 224 band AVIRIS
sensor over Salinas Valley, California, with a high spatial
resolution (3.7 m pixels). The coverage area includes
512 lines by 217 samples. Like the Indian pines, Salinas
discarded 20 water absorption bands, which in this case are
[108–112], [154–167], 224. This image is only available
as sensor radiance data. It includes vegetables, bare soil,
and vineyards. Salinas ground truss contains 16 classes.



JI et al.: HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON UNSUPERVISED REGULARIZATION 1877

TABLE II
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON PAVIA UNIVERSITY

DATASET

B. Comparison Methods

In order to verify the effectiveness of the algorithm proposed
in this chapter, the four datasets are compared with the classic
algorithms in the field of HSI classification. The comparison
algorithms are SVM, DBN, and 3-D CNN [37]. SVM is a typical
example of traditional algorithms for HSI classification. It can
still play a better role in the case of limited training samples.
DBN is a generative model used to represent the probability
distribution between predicted data and labels. The fine-tuned
and pretrained DBN has good performance in HIS classification
tasks. 3-D CNN is a successful example used to extract the
spatial–spectral features of HSIs synchronously in recent years.
The backbone network of the algorithm in this chapter is 3-D
CNN.

In addition, in order to further compare the performance of our
algorithm, we compare our algorithm with some newer models,
such as SSUN [43], SAGP [44], CAG [45], MCNN-CP [46],
and BTA-Net [47].

In the experiment, the proportion of samples used for training
on the four datasets is 5%, and the remaining samples are used
for testing.

C. Evaluation Criterion

We use three different methods including overall accuracy
(OA) [38], average accuracy (AA) [39], [21], and Kappa coef-
ficient [41], [42] in this section to compare the performance of
different measures.

D. Experiments Results

Under the premise of using the same experimental settings, we
conducted a series of classification experiments with different
methods of four hyperspectral datasets, and the results were
summarized in Tables II–V. And it is worth mentioning that
the test data did not participate in unsupervised learning.

We use supervised learning and unsupervised clustering pro-
cesses to classify and cluster two kinds of data in the same
dataset. Because unsupervised clustering is introduced, the in-
formation obtained from unsupervised learning is introduced
into the supervised learning process in the way of classification

TABLE III
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON KSC DATASET

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON INDIAN PINES DATASET

TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON SALINAS DATASET
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loss. This process not only provides information of similarities
and differences between classes but also can obtain more infor-
mation from supervised learning.

1) Comparison Results on the Pavia University Dataset: For
the classification of bitumen, self-blocking bricks, and painted
metal sheets, the algorithm proposed in this chapter can achieve
100% accuracy, which shows the ability of this algorithm to
distinguish man-made materials. It can be calculated from Ta-
ble II that on the Pavia university dataset, compared with the
traditional algorithm SVM, the average classification accuracy
of the algorithm proposed in this chapter has increased by
11.14%, and the overall classification accuracy has increased by
11%. The Kappa coefficient increased by 0.1316. In addition,
compared with the method based on deep learning, the average
classification accuracy of the algorithm proposed in this chapter
has increased by more than 5%, the overall classification accu-
racy has increased by 5%, and Kappa has increased by 0.0537.

2) Comparison Results on the KSC Dataset: Both traditional
methods and deep-learning-based method classification results
on the KSC dataset have merits from Table III. The method based
on deep learning obtains better performance than the traditional
method SVM due to its deep feature extraction ability. The
classification results on the category shrubs (Scrub) and salt
marsh (Salt Marsh) are significantly better than SVM. But the
classification effect of SVM on category 13 graminoid marsh is
better. Grass swamps account for a small proportion in the KSC
dataset, because SVM is not sensitive to high-dimensional data,
and methods based on deep learning, including the algorithm
in this chapter, have poor performance in categories with a
small number of samples because of too many parameters.
Compared with the current classification algorithm, the AA
value of the algorithm proposed in this article is increased
by 2.2%, OA is increased by 4.2%, and Kappa is increased
by 0.0221.

3) Comparison Results on the Indian Pines Dataset: The
classification accuracy of 3-D CNN on the wheat category is
higher than the algorithm in this chapter. However, in most
categories, the algorithm in this chapter is better than 3-D CNN.
In general, the algorithm proposed in this chapter improves AA
by more than 6.3%, OA by 5.32%, and Kappa by more than 0.04
on the Indian Pines dataset from Table IV.

4) Comparison Results on the Salinas Dataset: It also can
be seen from Table V, on the Salinas dataset, our experimental
results are still better than SVM, DBN, and 3-D CNN. In general,
the accuracy in many classes has reached 100%. Also, OA
is increased by 2%–7% and AA is increased by 2%–4% than
others.

5) Other Hyperspectral Classification Frameworks: From
Tables VI and VII, we can see that our model is much better than
other models in the dataset of Pavia University. We found the
Grass-pasture-mowed and Oats categories of the Indian Pines
dataset have only 28 and 20 samples, respectively. Even if 5%
of the samples were selected, only one sample was available for
training in this experiment. However, because our algorithm can
regularize the supervised classification model by making full use
of the unsupervised information learned from the unlabeled data,

TABLE VI
ACCURACY OF DIFFERENT METHODS ON INDIAN PINES DATASET

TABLE VII
ACCURACY OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATASET

TABLE VIII
ACCURACY OF DIFFERENT METHODS ON SALINAS DATASET

TABLE IX
TEST TIMES OF OUR MODEL AND OTHER METHODS ON DIFFERENT DATASETS

which can effectively alleviate the overfitting problem caused
by the small sample phenomenon. Because the Pavia University
dataset has a larger sample size than the Indian Pines dataset,
the accuracy of the classification is relatively high, our algo-
rithm also has obvious advantages over SAGP, MCNN-CP, and
others.

In Table VIII, the sample distribution of the Salinas dataset
is more balanced than the Indian Pines and Pavia University
datasets, and the classification difficulty is lower. Because our
algorithm effectively strengthens the input unsupervised infor-
mation in a supervised way, and the feature extraction module
efficiently shares the unsupervised information in the data, the
unsupervised information flows to the supervised task in the
classification process, providing an effective regularity for the
network, so the experimental results are more robust.

E. Runtime Analysis of Algorithm

Table IX shows calculation times for our algorithm and other
comparison algorithms. As shown in the table, the proposed
model is faster than SSUN and SAGP. Especially on dataset
Salinas, our algorithm is two times and six times faster than
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Fig. 4. Classification accuracy under different training sample ratios (%).

Fig. 5. Visual classification results on the Pavia University dataset. (a) PaviaU_RGB. (b) Groundtruth. (c) SVM. (d) DBCN. (e) 3-D CNN. (f) Ours.

SAGP and SSUN, respectively. Besides, compared with BTA-
Net algorithms, although our algorithm is slightly lacking in
computational complexity, in combination with OA, AA, and
Kappa on Indian Pines, Pavia University, and Salinas datasets,
our algorithm still has certain advantages. In general, our al-
gorithm has greatly improved its accuracy while maintaining a
relatively good computational complexity.

F. Classification Performance in the Case of Small Samples

In order to verify that the algorithm in this chapter alleviates
the overfitting of the model by introducing regularization and
improves the classification accuracy in the case of small samples.
It alleviates the problem of insufficient classification accuracy
of existing algorithms when the training samples are small and
compares with other experiments under the condition of small
samples. Specifically, the proportion of input training samples to
the total number of pixels is set to 0.5%, 1%, 2%, 3%, and 4% on
these four datasets and compare them with other experiments.
The results are as follows in Fig. 4.

It can be seen that this algorithm proposed in the article
has a small number of training samples, taking 1% and 3% as

examples, and the classification accuracy on the four datasets is
higher than the comparison algorithm. Especially in the case
of 1% training samples, the algorithm OA proposed in this
chapter can take more than 75%, which is a big improvement
compared with the comparison algorithm. Especially the com-
parison with 3-D CNN shows that this chapter introduces the
unsupervised information of the sample species into the training
process, in the case of a very low sample size, the accuracy
of the model did not decrease quickly, which can improve the
effectiveness of the algorithm when the training samples is too
few.

In the third type of object gravel (Gravel), no matter the
traditional algorithm SVM or the method based on deep learning,
there is a phenomenon of misclassification, as shown in Fig. 5.
Part of the gravel is divided into trees (Trees), as shown in Fig.
6. Extracting the spectral information of gravel and trees in the
Pavia University dataset, as shown in Fig. 6, it can be seen that
the spectral curves of gravel and trees are relatively similar, so
it is easy to misclassify. However, the accuracy of the algorithm
proposed in this chapter is above 96% in these two categories,
which can prove the effectiveness of the algorithm in the similar
band.
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Fig. 6. Compare the classification of the algorithm in the gravel and trees categories. (a) SVM and DBN have many wrong marks on the level. (b) Spectral curves
of gravel and trees.

Fig. 7. Visual classification results on the KSC dataset. (a) KSC_RGB. (b) Groundtruth. (c) SVM. (d) DBCN. (e) 3-D CNN. (f) Ours.

Fig. 8. Visual classification results on the Indian Pines dataset. (a) Indian Pines. (b) groundtruth. (c) SVM. (d) DBCN. (e) 3-D CNN. (f) Ours.

It can be seen from Fig. 7 that in the comparison experiments,
some of the shrubs (Scrub) in the upper right corner of the image
were mistakenly classified as salt marsh (Salt Marsh). But our
algorithm avoids this, and the classification accuracy rate in the
salt marsh category is 100%. In addition, the classification ability
of mud flats is also more accurate in this chapter. As can be seen
from Fig. 8, wheat on the Indian Pines dataset is easily classified

as woods. SVM and DBN have low classification accuracy
for these two categories. There are many misclassifications
between stone–steel–towers and buildings–grass–trees–drives
(buildings–grass–trees–drives).

It also can be seen from Fig. 9, on the Salinas dataset, our
algorithm performed better than SVM, DBCN, and 3-D CNN
on the class fallow_rough_plow.
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Fig. 9. Visual classification results on the Salinas dataset. (a) Salinas. (b) Groundtruth. (c) SVM. (d) DBCN. (e) 3-D CNN. (f) Ours.

V. CONCLUSION

Based on the idea of introducing regularization to alleviate
overfitting, this article shares the unsupervised information of
the complete set of samples into the training process of super-
vised classification and designs a 3-D CNN-based shared unsu-
pervised information HSI classification model. Considering that
HSIs have fewer training samples in practical applications, the
classification method that introduces unsupervised information
proposed in this chapter aims to alleviate the overfitting problem
caused by small samples in the depth model. When compared
with the traditional method SVM and the typical methods based
on deep learning, such as DBN and 3-D CNN, this algorithm
proposed in this chapter has higher classification accuracy in
most categories. Also, in the case of reducing training samples,
the algorithm proposed in this article is still advantageous.
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