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National Scale Land Cover Classification Using the
Semiautomatic High-Quality Reference Sample
Generation (HRSG) Method and an Adaptive

Supervised Classification Scheme
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Abstract—The advent of new high-performance cloud comput-
ing platforms [e.g., Google Earth Engine (GEE)] and freely avail-
able satellite data provides a great opportunity for land cover
(LC) mapping over large-scale areas. However, the shortage of
reliable and sufficient reference samples still hinders large-scale
LC classification. Here, selecting Turkey as the case study, we
presented a semiautomatic high-quality reference sample gener-
ation (HRSG) method using the publicly available scientific LC
products and the linear spectral unmixing analysis to generate
high-quality ground samples for the years 1995 and 2020 within
the GEE platform. Furthermore, we developed an adaptive ran-
dom forest classification scheme based on Koppen—Geiger climate
zone classification system. Qur rationale was related to the fact
that large-scale study areas often contain multiple climate zones
where the spectral signature of the same LC class may vary within
different climate zones that can lead to a poor LC classification
accuracy. To have a robust assessment, the generated LC maps were
evaluated against independent test datasets. In regard to the pro-
posed sample generation method, it was observed that HRSG can
generate high-quality samples independent of the characteristics of
scientific LC products. The high overall accuracy of 92% for 2020
and 90% for 1995 and satisfactory results for producer’s accuracy
(ranging between 83.4% and 99.3%) and user’s accuracy (ranging
between 86.1% and 99.7%) of nine LC classes demonstrated the
effectiveness of the proposed framework. The presented method-
ologies can be incorporated into future studies related to large-scale
LC mapping and LC change monitoring studies.

Index Terms—Global land cover (LC) products, Google Earth
Engine (GEE), LC classification, linear spectral unmixing (LSU),
reference samples.
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I. INTRODUCTION

AND cover (LC) map is among the key component of

different research, such as climate change, sustainable
development, natural hazards risk assessments, and ecological
protection [1], [2]. Remote sensing (RS) data have long been
used to observe, identify, and monitor LC types at various spatial
and temporal scales [3]. In this manner, the launch of Landsat-1
in 1972 marked the beginning of a new era in LC mapping, as the
first systematic observations of the earth’s surface were made
available [4]. Over the last few decades, significant progress
has been made in the development of up-to-date and accurate
LC mapping. In particular, the availability of high-resolution
data (i.e., Landsat and Sentinel) and the emergence of cloud
computing platforms [i.e., Google Earth Engine (GEE)] have
sped up the generation of LC maps over large-scale studies [5],
[6].

Access to high-quality training and validation sample is
among the fundamental parts of the LC classification procedure
[7]. Traditionally, these sets of samples (training and validation)
were often small and acquired via field surveys and/or expert
visual interpretation of very high-resolution imagery. However,
in the case of large-scale studies (e.g., national and continental
scales) and inaccessible/remote regions, it is very challenging to
organize field surveys involving thousands of field plots and to
access very high-spatial resolution satellite imagery [8]. More-
over, in recent years, machine learning (ML) algorithms have
been broadly implemented in LC mapping, where the collection
of a large set of training samples is required in order to be
effective [9]. Therefore, there is a pressing need for developing
robust methodologies to deal with the shortage of reliable and
sufficient reference samples for large-scale LC mapping.

To deal with this obstacle, a range of publicly available
datasets and techniques have been introduced by the RS com-
munity. For instance, the first all-season sample (FAST) dataset
[10], providing nearly 90 000 samples, and the Geo-wiki dataset
[11], including about 150 000 samples, were two valuable
datasets that have been developed in recent years. Such datasets
undoubtedly fill a crucial gap, but they cannot be directly used in
the classification task of another year(s) as they are limited to a
specific year [12]. For instance, the FAST dataset was collected
based on the high-resolution Google Earth imagery circa 2015,
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and therefore may not be applicable for LC mapping in the years
before or after 2015.

In recent years, several methodologies have also been devel-
oped to address the shortage of high-quality reference samples
in LC mapping. For instance, Radoux et al. [13] proposed an
automated approach to produce reference samples using the
MODIS LC products. Additionally, Zhang and Roy [14] col-
lected only high-quality pixels (stable pixels between 2009 and
2011) from 500-m MODIS to produce a 30-m resolution LC
map at a continental scale. However, the quality of the generated
reference sample data using these methodologies is criticized
due to the inherent classification errors (i.e., misclassified and
misplaced pixels) from the coarse resolution LC products [11].
Recently, Li et al. [15] developed an automatic phenology learn-
ing (APL) method for producing high-quality reference samples
using publicly available scientific datasets. However, the APL
method highly relies on the quality of selected datasets, whereas
only global and national LC products with moderate accuracy
and spatial resolutions are available for most parts of the world.
Therefore, the APL method may not achieve reasonable results
at a global scale level. Additionally, numerous studies have
been devoted to generate samples for a specific LC class. These
methodologies are, however, restricted to a specific LC class.
For example, Lin et al. [16] and Ma et al. [17] introduced robust
techniques to generate reliable reference samples for built-up
class based on GlobeLand30 products. Generally speaking, al-
though the proposed methods and datasets are valuable assets in
monitoring LC mapping, they cannot fully meet the users’ needs
for large-scale LC classification.

Generating up-to-date, reliable, and cost-effective LC maps
for large-scale areas require the use of highly automated ad-
vanced algorithms [18]. To this end, the emergence of GEE,
which not only offers easy visualizations and analysis of big
RS data but also hosts a variety of classification algorithms [5],
has effectively aided in LC mapping over large-scale areas [19],
[20]. Besides all the advantages, several limitations of GEE in
large-scale LC mapping have been reported. For example, Ghor-
banian et al. [20] and Amani et al. [21] stated that large-scale
LC mapping within GEE may involve considerable practical
difficulties when a large number of features is required due to
the user memory limit of GEE. In another study, Shafizadeh-
Moghadam et al. [22] claimed that large-scale LC classification
using GEE is still a time-consuming task and may fail to execute
when the number of input features is high. Given that increas-
ing the number of input features (e.g., vegetation indices and
topographical data) is one of the most common ways to boost
LC classification accuracy [2], [23], employing a classification
scheme that can handle large-scale LC classification without
decreasing the number of input features is critical.

Large areas (e.g., national and continental scales) naturally
comprise multiple climate zones where the spectral signature
within the same LC class often varies at different climate zones
[22]. It has been reported that the intraclass variability of spectral
signatures in different climates, which is caused by variations of
vegetation covers and artificial materials, may result to poor LC
classification accuracy [24]. To address this issue, employing
an adaptive classification scheme that executes a large-scale
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Location of the study area.

area into smaller sections based on the climate zones can be
considered as an effective solution [25]. This procedure can
shorten processing time and substantially decrease the impact
of climate zone variation in large-scale LC classification.

As the accessibility to LC data is limited over large areas,
the available global LC products (i.e., GlobeLand30) are widely
used in different studies. For example, Chen et al. [26] claimed
that the GlobeLand30 products have been utilized by scholars
and users over 120 countries across five continents. However, the
accuracy of global LC products varies for different parts of the
world. For example, although the satisfactory overall accuracy
(OA) of GlobeLand-30 was reported as 77.90% for Iran [27],
80% for Italy [28], 80.1% for Nepal [29], and 82.4% for China
[30], Sun et al. [31] reported a poor OA of 46% for Central
Asiaregion (Kazakhstan, Turkmenistan, Tajikistan, Kyrgyzstan,
and Uzbekistan). Given that the accuracy of recently released
the GlobeLand-30 product for the year 2020 has yet not been
investigated over a large-scale area, the present study seeks
to evaluate the accuracy of GlobeLand-30 version 2020 at a
national scale.

Here, we present a semiautomatic high-quality reference sam-
ple generation (HRSG) method and an adaptive classification
scheme to generate LC maps for Turkey, as an experiment site,
in 2020 and 1995 at 30-m resolution. We have selected the year
2020 because there are several available global LC products
(e.g., GlobeLand-30) for the year 2020 that can be used for
comparison purposes. On the other hand, we have selected the
year 1995 to assess whether or not the proposed method (HRSG)
can identify high-quality samples using outdated LC products.
Our ultimate goals are 1) introducing a robust workflow for
generating high-quality reference sample data applicable for
large-scale studies in different parts of the world and 2) introduc-
ing an efficient classification scheme for large-scale LC mapping
using GEE.

II. STUDY AREA

The focus of the present work is Turkey, as a transcontinental
country in both Asia and Europe, which is home to nearly 84
million inhabitants with an area of about 783 562 km?”. This
country is extended between 26°-45° E and 36°-42° N (see
Fig. 1). The reason for taking Turkey as the case study is twofold:
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to the best of our knowledge, Turkey lacks a country-wide LC
map at 30-m resolution, and, the country has a wide range of
climatic conditions, elevation levels, and spatial distributions
of LC classes that allow us to comprehensively evaluate the
robustness of the proposed methods in this study. Turkey consists
of a wide range of LC classes, dominated by forest in the
northern part and cropland, grassland, and bare land in the center
and southern parts. The mean annual minimum/maximum air
temperature varies from —30 °C in February in the eastern part to
45 °CinJuly in the south-eastern part. Mean annual precipitation
ranges from 2220 mm in the north-eastern part (Black Sea costs)
to 258 mm in the central and south-eastern parts. It is worth
mentioning that nine major LC classes namely forest, grassland,
shrub land, cropland, built-up, water bodies, wetland, permanent
snow and ice, and bare land were considered to generate national
scale LC maps for Turkey in 2020 and 1995.

III. MATERIALS AND METHODS

As shown in Fig. 2, the general steps of the present work
can be divided into five parts: 1) study area subdividing, 2)
generating input features, 3) collecting reference samples us-
ing the HRSG method, 4) applying the adaptive classification
scheme, and 5) accuracy assessment of the generated LC maps
and GlobeLand30 version 2020 product for Turkey.

A. Study Area Subdividing

The large extent of the study area and an immense size of input
features caused “computational time out” and “user memory
limited” errors while processing the entire Turkey at once. Our
initial analysis also illustrated that climate variation could lead to
poor classification accuracy for some spectrally similar classes,
such as grassland, cropland, and shrub lands. Therefore, to ad-
dress the aforementioned issues, the study area was divided into
nine subareas based on the major climate zones of the study area
as suggested by Shafizadeh-Moghadam et al. [22] and Ebrahimy
etal. [25]. To this end, the Koppen—Geiger climate classification
system was used to divide the study area into smaller subareas
[see Fig. 3(a)]. The K&ppen—Geiger [32] integrates the average
monthly and yearly precipitation and temperatures as well as
seasonal precipitation to split the study region into relatively
homogeneous areas.

Fig. 3. (a) Location of introduced subareas based on the Koppen—-Geiger
climate classification. (b) Spatial distribution of tests samples.

B. Input Features

In this study, 3413 and 3400 atmospherically-corrected Tier
I Landsat-8 and Landsat-5 scenes with <75% cloud cover
were processed to generate LC maps for Turkey in 2020 and
1995. Enhanced by Calderon-Loor et al. [33], to minimize cloud
interference and missing data, at each time-step, a stack of
Landsat images for the target year + one year was generated
(e.g., Landsat-5 images from 1994 to 1996 were used to generate
the year 1995 mosaic). It should be noted that, to ensure the
reliability of generated samples, normalized difference vegeta-
tion index (NDVI) values of each candidate sample were derived
from Landsat images (see Section IT1I-C4) in the growing seasons
(from February 15th to September 15th) because the growing
season is the most suitable time for spectral change detection
[12].

From the available spectral bands of Landsat images, six spec-
tral bands, including near-infrared, green, blue, red, short-wave
infrared 1, and short-wave infrared 2, were utilized. Then, the
FMASK algorithm [34], which is available in the GEE platform,
was applied to remove clouds and cloud shadows. Furthermore,
a mean function was applied to all Landsat images to merge all
datasets into a single mosaic image for the classification task.
Additionally, based on a random forest (RF) feature selection
method [35], the following variables were appended to the
cloud-free stack: soil-adjusted total vegetation index (SATVI),
NDVI, modified normalized difference water index (MNDWI),
normalized difference built-up index (NDBI), modified soil-
adjusted vegetation index (MSAVI), enhanced vegetation index
(EVI), slope, elevation, and aspect. The calculation formulas of
these indices can refer to Table I.

C. Reference Sample Generation

As discussed earlier, the reliability and sufficiency of
reference sample data are the foundation of an accurate su-
pervised LC classification task [23], [42]. However, it is very
difficult to collect the in-situ sample for LC mapping over large
areas using the traditional reference collecting methods. Here,
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TABLE I
VEGETATION INDEX FORMULAE

Abbrev. Formula Reference
NDVI NIR — Red [36]
NIR + Red
NDBI SWIR — NIR [37]
SWIR + NIR
SATVI 15 x SWIR1 — Red + SWIR2 [38]
"~ 7 SWIR + Red + 0.5 2
MSAVI 2 xNIR+1—+/b(2xNIR+1)2—8 x (NIR—Red) [39]
MNDWI Green —ZSWlRl [40]
Green + SWIR1
EVI NIR — Red [41]

2.5

><NIR+6><Red—7.5>< Blue +1

we presented the HRSG method to deal with the shortage of
reliable and sufficient reference samples for LC mapping over
large-scale areas. The HRSG method assumes that none of the
scientific LC products are error-free [43] and limited training
samples/endmembers (representative spectra of each LC class)
samples can represent intraclass diversity [44]. Therefore, to
identify high-quality samples for each LC class, the HRSG
extracts estimated pixels of the target class from the available LC
products/maps, first. Then, based on a linear spectral unmixing
(LSU) analysis and limited endmembers, it identifies high-
quality pixels for the target class. Fig. 4 shows the main steps of
HRSG as follows: 1) extracting all pixels of the target class from
the available LC product(s) and clipping cloud-free stacks based
on the obtained pixels; 2) introducing limited endmembers and
applying the LSU analysis; 3) producing candidate samples; and
4) identifying high-quality samples.

1) Extracting All Pixels of the Target Class From the Avail-
able LC Product(s): In this study, MCD12Q1, GlobeLand30,
JRC Global Surface Water, and the Tsinghua FROM-GLC Year
of Change to Impervious Surface datasets were allocated to
identify high-quality samples for different LC classes based on
their characteristics (see Table II). It should be noted that the
classification systems of the MCD12Q1 and GlobeLand30 were
reclassified based on the classification system of the present
work (see Table III). For example, to generate samples for forest
class, six different forest classes of MCD12Q1 product merged
into one class and labeled as forest class according to the target
classification system of this study.

As shown in Table II, since the JRC provides surface water
bodies since 1985 at global scale (30-m resolution) [45], the
JRC dataset solely was used for generating samples for water
class. Following the same logic, the Tsinghua FROM-GLC Year
of Change to Impervious Surface [46] dataset was used for
generating samples for the built-up class. For the remaining
classes, the MCD12Q1 and GlobeLand30 products were used to
generate samples for other classes. More specifically, in the case
of the year 2020, the MCD12Q1 version 2020 and GlobeLand30
version 2020 were overlaid, and their common pixels were
extracted, whereas for the year 1995, the MCD12Q1 version
2001 and GlobeLand30 version 2000 products were utilized.
After extracting pixels for the target class, the final stacks of the
target years (1995 and 2020) (see Section III-B), including six
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method.

spectral bands, six vegetation indices, and three topographical
data, were clipped based on the extracted pixels.

2) Introducing Limited Endmembers and Applying the LSU
Analysis: After extracting pixels for the target class, limited
training samples (pixels/objects) were introduced as the end-
members to contribute to the LSU analysis. Given that intraclass
variation of RS images is one of the main factors of uncertainty in
LSU analysis [47], using the precise interpretation, multiple end-
members were selected using the random sampling technique.
For manual interpretation, as suggested by Yang and Huang
[48], we referred to freely available very high spatial resolution
Google Earth images, Landsat images, and their NDVI time
series. In some more detail, first, the samples were collected
based on Google Earth images and Landsat images. Then, their
NDVI times series were calculated based on Landsat images.
If the NDVI time-series of a given endmember was stable, it
was determined as the true label. For each class, the number
of endmembers was limited to 50 endmembers (pixels and/or
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TABLE II
INFORMATION OF USED LC PRODUCTS IN THIS STUDY

Global LC product Resolution Temporal Class
Tsinghua FROM-GLC Year of Change to Impervious Surface 30 m 1985-2018 Built-up
JRC Yearly Water Classification 30m 1985-2020 Water
MCD12Q1.006 MODIS Land Cover Type Yearly Global 500 m 2001-2019 Forest
Cropland
Shrub land
GLOBELAND-30 30m 2003 (’)22(()) 10, G]rga;:;::: d
Snow/Ice
Wetland

TABLE III
REDESIGNING THE CLASSIFICATION SYSTEM OF THE GLOBAL LC PRODUCTS BASED ON THE TARGET CLASSIFICATION SYSTEM OF THE PRESENT STUDY

Target legend GLOBELAND30 MCD12Q1.006
Evergreen needleleaf forests (ID=1)
Evergreen broadleaf forests (ID=2)
Deciduous needleleaf forests (ID=3
Forest Forest (ID=20) Deciduous broadleaf forests ((ID=4))
Mixed forests (ID=5)
Woody savannas (ID=8)
Closed shrub lands (ID=6)
Shrub land Shrub land (ID=40) Open shrub lands (ID=7)
Savannas (ID=9)
. Croplands (ID=12
Cropland Cultivated Land (ID=10) Cropland/naglral Ve(getatioz (ID=14)
Grasslands Grasslands (ID=30) Grasslands (ID=10)
Wetlands Wetlands (ID=50) Permanent wetlands (ID=11)
Bare land BZ?:?;E (1(1(11)];1(9)2)) Barren (ID=16)
Water bodies Water bodies (ID=60) Water bodies (ID=17)
Built-up Artificial Surfaces (ID=80) Urban and built-up lands (ID=13)

Snow and ice Snow and ice (ID=100)

Snow/ice (ID=15)

objects) covering at least 1% of the pixels obtained in the
previous stage, following Manohar Kumar et al. [49]. Based
on the collected endmembers, the LSU method was utilized
to generate an initial batch of high-quality reference samples.
The LSU model assumes that the reflectance of a given pixel
equals the linear weighted sum of the pure spectra of the
components present in that pixel weighted by their proportional
coverage [50]. The LSU model is mathematically described as
follows:

P = Z(rm‘-fc) +e, =1, ...,nb ey
i=1

where P, represents the value (reflectance) of a pixel inband i, r.;
represents the value of endmember ¢ in band i, f,. is the fraction
of endmember C, ¢, illustrates the residual error in band i, nc
is the number of endmembers, and nb is the number of spectral
bands.

The LSU model can be represented in matrix form as follows:

Ppx1) = Rnbxne)- Flnex1) T Embx1)- (2)

3) Producing Candidate High-Quality Samples: In the
present work, the high-quality pixels of the target class were
determined through a series of trials and errors. After acquiring
pixels of the target class, a stratified random sample generation
technique was used to produce the first batch of the candidate
samples for the target class from the obtained area. To be
included in the initial batch of candidate high-quality samples
of the target class, a pixel must meet two requirements. First,
its values for one of the target endmembers (considering the
intraclass variation of the target class) have to be higher than
0.6. Second, its values for all nontarget endmembers should be
less than O.1.

4) Identifying High-Quality Samples: Since the first batch of
candidate samples may include potential errors, two different
techniques were used to ensure the reliability of generated
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samples. First, time-series of NDVI values (bimonthly) in the
growing season (see Section III-B) were calculated for each
candidate sample because it is reported that NDVI time-series
are sensitive to changes in vegetation covers [51]. To this end,
based on the literature, several rules were introduced to confirm
the candidate samples. For example, the maximum NDVI value
of 0.15 was implemented to filter out any possible vegetation
samples from the bare land class [52]. Additionally, cropland
samples with NDVI values lower than 0.3 in the growing sea-
son were also eliminated because the highest NDVI values of
cropland classes often appear in the growing season because of
the management role [48]. Second, following Huang et al. [12],
samples were finalized after visual interpretation assessments
by senior image interpreters who had experience in land change
monitoring and image interpretation practices. The equation was
used to evaluate the accuracy of the samples generated for each
LC class
N"

Accuracy = NN (3)
where N" represents the total number of correctly identified
samples for a given LC class and N™ represents the number of
incorrectly identified samples for that class.

D. Adaptive RF Classification

RF, as a computationally efficient ensemble classifier [53],
effectively distinguishes among spectrally similar LC classes
[54]. Generally speaking, when a sample is entered into the
RF classifier, each decision tree model determines the category
of the sample, and the algorithm ultimately selects the most
frequently reported category (majority voting) as the class cat-
egory. It has been reported that RF often outperforms single
decision tree models while maintaining some of the advantages
of decision tree models (e.g., ability to interpret relationships
between predictors and outcomes) [54]. The low sensitivity of
RF to the normality of training data and its high performance in
different landscapes have led to widely utilizing RF for LC clas-
sification over large areas [20], [55], [56] where various kinds
of landscapes can be found and collecting normal distribution
training data is a time and budget-consuming task.

Considering two main assumptions, an adaptive RF classifica-
tion method was adopted in this study. First, spectral signatures
of LC types are different at various climate zones. Second,
producing an LC map for large-scale studies is time-consuming
and challenging [22] when the number of input features is high.
Accordingly, specific RF classifiers were developed for all nine
subareas (see Section III-A), and the results for subareas were
mosaicked to generate the final LC map at each time step. It
should be noted that the number of decision trees and the number
of variables per split were adjusted at 250 and the square root of
the number of variables, respectively, after testing various tuning
settings for the RF classifiers.

E. Performance Evaluation

To date, visual assessment and comparison of generated
samples against the trusted and well-known LC products have
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Fig. 5. Example of poor classification accuracy of MCD12Q1-2020 product
in the experiment site. (a) Cloud-free Landsat stack for 2020. (b) MCD12Q1
product for 2020 (detailed information about the LC classes is available in
Table II).

been used to evaluate the quality of sample generation methods.
To this end, a visual assessment was conducted to assess the
accuracy of the acquired samples for the years 1995 and 2020.
In this study, we did not use the available global LC products for
the performance evaluation of the HRSG because it has been
reported that all the available LC products include a certain
amount of errors [12], [23]. For example, Fig. 5 shows that the
MCD12Q1.006 product misses a large extent of snow cover in
2020 for the northeastern part of Turkey.

Three well-known accuracy assessment metrics, namely OA,
user’s accuracy (UA), and producer’s accuracy (PA), were cal-
culated based on independent test datasets (over 6000 sam-
ples at each time step) to evaluate the generated LC maps of
Turkey (2020 and 1995) and GlobeLand30 (2020 version) [see
Fig. 3(b)]. The validity of each sample (true label) is determined
based on the visual interpretation of the very high-resolution
images in Google Earth, Landsat images and their NDVI time
series.

IV. RESULTS
A. Performance Evaluation of HRSG

In this study, the HRSG method was presented to deal with the
shortage of high-quality reference samples in LC classification
over large areas. Turkey was selected as the study area to assess
the performance of the HRSG method as this country comprises
various climate zones and elevation ranges. Using LSU and
multiple endmembers, a total of nearly 22 000 samples were
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Results for visual assessments of the generated samples by the HRSG

generated for the years 2020 and 1995. Later, a visual assess-
ment was conducted to generate the final dataset. The visual
assessment of generated samples for the years 2020 and 1995
illustrated that less than 5.5% of the generated samples [1129
samples in 1995 (~ 5.1%) and 1181 samples in 2020 (~ 5.4%)]
by the HRSGM method were noisy (see Fig. 6). The highest
errors were witnessed in shrub land (11.5% error in 2020 and
14.3% error in 1995) and grassland (7.5% error in 2020 and
7.1% error in 1995) classes. In contrast, forest, snow, and water
classes were noise-free. These results show that HRSG is a viable
and effective technique for generating abundant and high-quality
reference samples.

B. LC Classification

Within GEE, an adaptive RF classification scheme was
adopted to generate LC maps for the entire of Turkey in 2020
and 1995 (see Section III-D). As discussed earlier, precision
and vision assessments were used to evaluate the performance
of generated maps. Our analysis showed that the produced final
LC maps for the years 2020 and 1995 are noise-free and provide
satisfactory representations of all nine LC classes, according to
visual interpretation with freely available very high-resolution
photographs (see Fig. 6). The estimated areas for each LC class
can be seen in Fig. 7. The dominant LC class was cropland
covering 28.3% and 33.7% of Turkey in 1995 and 2020, respec-
tively. In contrast, the least area of the country was covered by
snow class (1995 = 0.1% and 2020 = 0.1%). Additionally, the
generated maps showed OA of about 92% and 90% for the years
2020 and 1995, respectively. As shown in Table IV, the PA of
different LC classes ranged from 86.8% to 99.3% for 2020 and
ranged from 83.4% to 98.2% in 1995, whereas the UA of the
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nine LC classes varied between 87.5% and 99.7% in 2020, and
ranged from 86.1% to 97.7% in 1995. The water class showed
the highest PA (> 98.2%) and UA (> 97.7%) values among all
the LC classes. In contrast, the lowest UA (~ 86.1%) and PA
(~ 83.4%) values belonged to the grassland class.

C. GlobeLand-30 for Turkey

In this study, the GlobeLand-30 (2020 version) product, as
one of the widely used and well-known global LC products, was
used to compare with the generated LC map of Turkey in 2020.
Table V presents accuracy assessment results for the GlobeLand-
30 product version 2020 based on the independent reference
test dataset (see Section III-E). As can be seen in Table V, the
GlobeLand-30 product showed OA of nearly 60% where UA and
PA accuracy considerably varied among different LC classes.
Water class showed the highest PA and UA values with 93.7%
and 97.3%, respectively. In contrast, the bare land class had the
lowest UA (~ 3.4%) and the shrub land class showed the lowest
PA (~20%). Regarding the mapped area proportions calculated
for each LC class (see Fig. 8), it was witnessed that the grassland
class covers most part of Turkey (~40%), and the wetland and
snow classes cover the least of Turkey (nearly 1% for each class).

V. DISCUSSION
A. Performance of the HRSG

This study proposed a semiautomatic method for generating
reference samples, namely HRSG, based on LSU and multi-
ple endmembers, for LC classification over large areas. Based
on the conducted experiments, the maximum number of per
class endmembers was limited to 50 (pixel/object) because
the additional numbers of endmembers no further significantly
increased/decreased the mean spectral signatures for each LC
class that was used in target/nontarget class separation process.
Adopting limited endmembers has two main advantages: it can
decrease the computational efficiency because less spectra need
to be processed, and increase the accuracy and less spectral
confusion may occur [44], [57].

The bimonthly values of NDVI time-series were used in
the sample generation procedure because the NDVI value is
sensitive to changes in vegetation covers [51]. Our findings
showed that a distinct temporal pattern for generating NDVI
time-series could help to increase the accuracy of generated
samples. For example, samples for the bare land class should not
have obvious differences in their NDVI values during a year. The
cropland class had the highest variation in NDVI values because
of the management role. In contrast, samples for grassland/shrub
land showed a peak greenness in March and April. This finding
is in line with [15] where the importance of NDVI time series in
generating reliable reference samples for LC classification has
been stressed.

Using the HRSG method, approximately 22 000 reference
samples of nine LC classes for 2020 and 1995 were initially
generated where about 5.5% of them (each year) were removed
during the visual assessment procedure (see Fig. 6). The ob-
tained reasonable accuracy for the generated reference samples
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Fig. 7. Generated LC map for Turkey in 2020 and their estimated area for each LC class.
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Fig. 8. GlobeLand-30 LC product for Turkey in 2020.
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TABLE IV
(A) ACCURACY ASSESSMENT RESULTS FOR THE GENERATED MAP OF ENTIRE TURKEY (1995) BASED ON THE INDEPENDENT TEST DATASET (THE UNCERTAINTY
OF THE ACCURACY IS PROVIDED AT 95% CONFIDENCE LEVEL). (B) ACCURACY ASSESSMENT RESULTS FOR THE GENERATED MAP OF ENTIRE TURKEY (2020)
BASED ON THE INDEPENDENT TEST DATASET (THE UNCERTAINTY OF THE ACCURACY IS PROVIDED AT 95% CONFIDENCE LEVEL)

(a) Forest Bare land Cropland Built-up Shrub land Grassland Snow/Ice Wetland Water Total UA
Forest 827 9 9 0 26 34 0 3 0 908 91.1+1.9
Bare land 0 1030 41 42 0 48 0 0 0 1161 88.7+1.8
Cropland 13 21 956 8 13 40 0 1 0 1052 90.8 +1.7
Built-up 0 35 20 698 0 3 0 0 0 756 923+1.9
Shrub land 31 0 11 0 558 27 0 5 0 632 88.3+25
Grassland 0 22 51 6 45 804 6 0 0 934 86.1+22
Snow/Ice 0 3 0 0 2 4 95 0 3 107 88.7+6
Wetland 2 0 6 0 3 3 0 135 5 154 87.6+52
Water 0 3 0 0 0 1 0 6 437 447 977+14
Total 1369 1126 1099 754 647 964 96 147 445 6151

PA 94.7+1.5 91.741.6 874+2 92.6+19 862+2.6 834423 94.0+4.7 90+4.8 98.2+1.2 OA=90.1+0.7
(b) Forest Bare land Cropland Built-up  Shrub land Grassland Snow/Ice Wetland Water Total UA
Forest 845 5 5 0 21 28 0 4 0 908 93+1.6
Bare land 0 1094 28 13 0 24 1 0 1 1161 942+1.3
Cropland 1 30 963 6 9 42 0 1 0 1052 91.5+1.7
Built-up 0 25 25 701 0 5 0 0 0 756 92.7+1.8
Shrub land 32 0 12 0 570 15 0 3 0 632 90.2+2.3
Grassland 3 24 47 5 33 817 5 0 0 934 87.5+2.1
Snow/Ice 0 4 0 0 1 6 96 0 0 107 89.7+5.7
Wetland 1 1 10 0 1 3 0 136 2 154 88.3+0.5
Water 0 0 0 0 0 1 0 0 449 447 99.7+1.2
Total 882 1183 1096 725 635 941 102 140 447 6151
PA 95.7+13 925+1.5 88.3+x1.9 96.7+1.3 89.7+23 86.8+2.1 94.1+4.6 94.3+3.8 99.3+0.7 OA=92.1+0.6

TABLE V
ACCURACY ASSESSMENT RESULTS FOR THE GLOBELAND-30 PRODUCT FOR TURKEY (2020) BASED ON THE INDEPENDENT TEST DATASET (THE UNCERTAINTY OF
THE ACCURACY IS PROVIDED AT 95% CONFIDENCE LEVEL)

Forest Bareland Cropland Built-up Shrub land Grassland Snow/Ice Wetland Water Total UA
Forest 813 0 14 0 0 81 0 0 0 908 89.5+1.9
Bare land 18 40 85 85 1 830 1 88 13 1161 34=+1
Cropland 34 1 994 13 0 10 0 0 0 1052 944+14
Built-up 10 0 51 677 0 16 0 2 0 756 89.5+2.2
Shrub land 295 0 37 0 1 299 0 0 0 632 0.15+0.3
Grassland 176 5 113 17 1 619 1 2 0 934 66.2+3
Snow/Ice 17 3 0 0 0 50 37 0 0 107 345+9
Wetland 6 0 28 0 2 12 0 920 16 154 58.4+7.8
Water 0 0 5 0 0 5 0 2 435 447 973+1.5
Total 1369 49 1327 792 5 1922 39 184 464 6151
PA 59342.6 81.6+10 74942 854424 20435 322421 94842 48947 93.7+22 OA=60.2=+1.2

for the year 1995 based on the MCD12Q1 version 2001 and
GlobeLand-30 version 2000 revealed the feasibility of generat-
ing high-quality reference samples using outdated LC products.
The reason can be related to this issue is that the HRSG method
applies the LSU method to bypass the inherent classification
errors from the outdated LC products. As can be seen in Fig. 6,
the shrub land and grassland classes had the highest rates of
error. Based on the visual assessment, the majority of errors in
shrub land samples belong to grassland and vice versa. Besides,
the accuracy of available LC products for shrub land class is

relatively low, making sample generation a quite challenging
task because this class required more endmembers extraction
to reach the satisfactory output. Therefore, similar to Li et al.
[15], it is suggested to integrate these two classes (shrub land
and grassland) into a single class. On the other hand, the zero
error for water, forest, and snow classes was reasonable due to
the distinguishable spectral response of these classes from other
classes (nontarget/target) as well as the high ability of the NDVI
index in extracting different these classes from the other LC
classes [58], [59].
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Generally speaking, the HRSG method’s effectiveness was
related to a combination of LSU analysis, NDVI variations, and
visual interoperation, all of which have been shown to play a
significant role in sample generation [15], [60]. Additionally, be-
cause the presented methodology is based on the GEE and freely
available global LC products, the high expense and complexity
of traditional reference sample collection for LC classification
are sustainably solved by the proposed method.

Overall, the advantages of HRSG can be concluded as follows.

1) It generates high-quality samples independent of the char-

acteristics of scientific LC products.

2) It is applicable in different parts of the world.

3) The high cost and difficulty of traditional reference sample

collection can be effectively obviated by HRSG.

B. Performance of the Proposed Classification Scheme

In this study, two 30-m resolution LC map of Turkey for 2020
and 1995 were generated using an adaptive classification sched-
ule within the GEE platform. Unlike the majority of previous
LC studies over large-scale areas that adopted a single classifier
for LC mapping using the GEE platform [33], [60], this study
merged the results of nine specific RF classifications to generate
an LC map for Turkey at each time step (see Section III-D).
The high accuracy assessment outcomes (see Tables IV and V)
illustrate the effectiveness of the proposed classification scheme.

As can be seen in Tables IV and V, both minority and ma-
jority classes show acceptable UA and PA values, whereas it
has been reported that standard ML classifiers (i.e., RF) often
fail to achieve reasonable accuracies for minority classes [61],
[62]. The reason can be that the proposed classification scheme
divides the study area into smaller subareas and substantially
avoids the occurrence of the data imbalance issue. For example,
in the case of snow class, this class might have been influenced
by the data imbalanced issue if the whole Turkey was classified
using a single classifier because it only covers less than 1% of
the whole country. However, based on the conducted subdividing
strategy, the snow class placed in subclass number 8 (see Fig. 2)
and covered nearly 7% of this subzone, which lead to high UA
(94% in 1995 and 94.1% in 2020) and PA (88.7% in 1995 and
89.7% in 2020) values for this class.

Compared with the GlobeLand-30 product, it was observed
that the proposed method achieving OA = 92.1% in 2020
outperformed the GlobeLand-30 product (OA = 60.2%). Except
the PA value for cropland class and UA value for snow class,
the obtained UA and PA values for all LC classes of the present
work were higher than GlobeLand-30 product (see Fig. 9).

In the case of visual assessment, the generated LC maps in
this study highly reflected the true LC type in the satellite images
(see Fig. 10). As can be seen in Fig. 10, we compared the
obtained LC map for Turkey in 2020 in this study with other
LC products, including GlobeLand-30, Dynamic World [63],
and GLC-FC30 [64]. More specifically, the overall layout of
cropland, forest, and built-up classes of this study is roughly
equivalent to other LC products. In contrast, in the remaining
classes, the outcomes are different among the products that can
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Fig. 9. Comparison in UA and PA values between the GlobeLand30 product
and the generated LC map of present work for Turkey.

be related to the inconsistency in the definition of LC types
for different LC classes. Compared with GlobeLand-30 version
2020, the main difference lies in water and shrub land classes.
For example, Fig. 10 shows some misclassification in water class
for the GlobeLand-30 product. In the case of the GLC-FCS30
product, we identify an overestimation of shrub land class in
some cases. For example, as shown in Fig. 10(a), the GLC-FC30
classified cropland areas as shrub land class. Dynamic World
could identify more built-up and cropland classes than our study
that can be linked to the higher spatial resolution of the Dynamic
World product (10-m resolution). In Fig. 10(a), it can be seen
that bare land areas (dried lake’s bed) were wrongly labeled as
the snow/ice class by the Dynamic World product. Overall, given
the high accuracy assessment results (vision and precision) and
satisfactory visual assessment results, it can be concluded that
our workflow is a robust scheme for large-scale LC mapping.

C. Limitations and Future Work

The HRSG method mainly relies on the quality of the selected
endmembers. Even though the limited endmembers were used
for generating reference samples, it required the manual inter-
pretation by trained image interpreters to achieve reasonable
accuracy. To deal with these issues, further studies can focus
on using the available spectral information. For instance, for
various cities at different parts of the world, multiple urban
spectral libraries have been collected based on various sensors
and spatial resolutions [65], [66]. Additionally, future studies
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Fig. 10.

can focus on automatic spectral unmixing techniques that are
free of the need of endmember extraction [67]. On the other
hand, HRSG requires time-series of Landsat images (see Section
III-C). However, there was a shortage of high-quality observa-
tion for some candidate samples, particularly for 1995 because
of the shortage of Landsat 5 TM scenes in some part of Turkey
(mainly in mountainous areas). Finally, in this study, only NDVI
values in the growing season were used to eliminate possible
errors from the initial batch of candidate high-quality samples.
Future studies can consider the role of other ancillary data in
this manner.

VI. CONCLUSION

This article presents a novel method for generating high-
quality reference samples over large areas, namely HRSG. This
method uses LSU and global LC products (i.e., MCD12Q1
and GlobeLand30) to generate reference sample for LC map-
ping. Additionally, choosing Turkey as a case study, due to
the large extent and climatic variation of the study area, an
adaptive classification scheme was adopted to generate LC maps
for Turkey in 1995 and 2020. Based on a visual assessment,
we found that HRSG can effectively address the shortage of
reliable and sufficient reference samples for LC classification
over large areas. The success of this method is attributed to the
quality of endmembers, NDVI values, and visual assessment. By
evaluating the generated LC maps of Turkey in 1995 and 2020
with two independent datasets obtained, it was observed that
the generated LC maps achieved high OA, UA, and PA values.
Given the obtained high accuracies, the proposed methods can
implement in other parts of the world for generating reliable LC
maps.

Cropland srassland | Snow/Ice ‘ Wetland

Comparison of our results against GlobeLand-30, Dynamic World, and GLC-FCS30 products for the year 2020. The corresponding satellite images for
the two zoomed areas are Landsat-8 annual median compositions in 2020. Center location: (a) = 38° 51’ 20" N —33° 30/ 36" E, (b) = 37° 31’ 58" N —27° 27’
27" E.
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