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A Feature-Map-Based Method for Explaining the
Performance Degradation of Ship

Detection Networks
Peng Jia, Xiaowei He , Bo Wang , Jun Li , Qinghong Sheng , and Guo Zhang

Abstract—The unknowability of the inner workings limits the
magnitude of performance improvement of ship target detection
networks in synthetic aperture radar (SAR) images under Gaussian
noise. However, none of the existing interpretation methods explain
the phenomenon of network changes under noise. The feature map
can visually reflect the changes in image delivery in the network,
and some metrics can quantitatively characterize the degree of
network performance degradation in a noise environment. So, in
this article, we propose a comprehensive analysis method that
integrates texture and brightness features of the internal feature
map of the network to clarify the change process of target features
under Gaussian noise. First, we analyzed the degradation of three
target detection networks under different levels of Gaussian noise;
then, the feature maps of four convolution layers were sampled and
visualized for qualitative analysis; finally, the texture and bright-
ness features were extracted for quantitative characterization of the
feature amount changes. We experimentally validated the method
on publicly available SSDD radar datasets. The networks were
extremely sensitive to Gaussian noise, and the mean Average Pre-
cision decreased by up to 96.3%. The angular second moment and
entropy texture feature values of the feature map could drop and
rise 59.10% and 97.81%, respectively, while the brightness value
could increase up to 100.92%. This indicates that noise changes
the structure of feature maps and reduces the amount of effective
information.

Index Terms—Interpretability, ship detection, synthetic
aperture radar, visualization.

I. INTRODUCTION

THE all-day, all-weather, and high-resolution characteristics
of synthetic aperture radar (SAR) imagery have led to its

application in the field of sea surface situational awareness [1],
[2], [3], [4]. Therefore, ship target detection on SAR images has
become more important in military and civilian fields [5], [6],
[7]. However, as SAR technology is increasingly used in military
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environments, noise techniques for SAR imaging are rapidly
evolving. When the test data and the training data meet the condi-
tion of independently identically distribution, the convolutional
neural networks do show great advantages in feature extraction
of complex images [8]. Gaussian noise is simple in principle
and can significantly degrade the detection performance of
target detection networks, but how it leads to degradation of
network performance due to the poor interpretation of the deep
learning algorithms themselves remains to be investigated. At
present, for the problem of ship target detection on SAR images,
many scholars have proposed many innovative algorithms from
various perspectives, among which deep learning algorithms
are an important breakthrough [9], [10], [11], [12], [13]. Most
of these methods are currently dedicated to solving scenario
complexity and multiscale problems of ship targets or improving
the detection accuracy of nearshore ships [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. If we want to optimize the
network to an optimal state in a targeted manner, we must
explain the network principle and clarify its internal working
state.

Current deep learning explanation methods are divided into
two main types: exante design and expost explanation. Exante
design methods improve network interpretation by introducing
mathematical physical models of known principles or designing
a network structure that can be interpreted by itself. Zhang et
al. [24] modified the traditional convolutional neural network
(CNN) into an interpretable CNN, which allows training without
additional annotation of objects for supervision purposes and can
explicitly represent the knowledge in the higher hidden layers
of the CNN. They also introduced a decision tree structure to
clarify, which parts of the training object activate which neurons
in the CNN, explaining how the CNN works at the semantic
level [25]. Wan et al. proposed a similar idea. They designed a
neural-backed decision tree to improve the interpretability of the
neural network while ensuring the accuracy of the network as
much as possible [26]. In addition, Wang and Yeung [27] com-
bined Bayesian models with deep learning models to improve
the interpretability of deep learning. However, the limitations of
these approaches are that they somewhat weaken the powerful
computational power of neural networks, and it is difficult and
tedious to design interpretable networks with satisfactory results
by choosing the appropriate mathematical physical model for
each task. The existing ship target detection networks have
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deep hidden layers and more convolution kernels. Thus, it is
challenging to tessellate or change a structure into an
interpretable model, without any guarantee of accuracy
degradation.

The expost interpretation method is based on the trained
model and data for analysis. Representation visualization meth-
ods use a saliency map as a presentation to clearly show the
output results of the layers within the neural network, visualize
the attention of the network during sample training, and provide
a reference for locating image features [28], [29], [30], [31].
Simonyan et al. [32] proposed two methods for visualizing
image classification models and established a link between
gradient-based visualization methods for convolutional net-
works and deconvolution methods. Springberg et al. [33] pro-
posed a “deconvolution approach” to visualize the features
learned by the network for the purpose of interpretation. Zhou
et al. [34] explained how CNNs work when performing scene
classification tasks by showing the object detectors inside the
network during training. Furthermore, Bach et al. [35] pro-
posed a method to visualize the contribution of individual
pixels to the prediction of a kernel-based classifier in the
form of a heat map. Based on the previous attribution meth-
ods, Sundararajan et al. [36] proposed the integrated gradi-
ent attribution method, which extracts rules from the network
by invoking the standard gradient operators of the network
several times to facilitate the user to understand the model.
In addition, the class activation mapping method is also a
common representation visualization method. Zhou et al. [37]
explained the important role of the global average pooling
layer using the class activation mapping technique (CAM).
Selvaraju et al. [38] proposed a gradient-weighted class-
activation mapping (Grad-CAM) method to highlight important
areas in images, which can be used to explain the principle of
image classification. Based on the Grad-CAM method, Chat-
topadhay et al. [39] proposed the Grad-CAM++ model, which
has a better effect in explaining the model prediction pro-
cess. Moreover, Wang et al. [40] designed Score-CAM, which
achieved better visual performance and fairness for interpreting
the decision-making process than Grad-CAM and Grad-CAM
++. Fong and Vedaldi [41] attributed network decisions to a
feature of the input through meaningful perturbations. Zhang et
al. [42] developed a simple and effective method to learn feature
maps that reveal the component hierarchy of object components
encoded in the convolution layer of a pretrained CNN. However,
the abovementioned visualization methods for characterization
based on factors such as gradients or perturbations were mainly
designed to analyze the regions in the input image that have an
impact on the decision and the magnitude of their impact. The
process of change of features in feature maps under noise is
not addressed, but the methods shed some light on explaining
the degradation of target detection network performance under
Gaussian noise. We conjectured that we could make a summary
of the causes of network degradation under the influence of
Gaussian noise based on successive feature maps of the same
change process since the visualization method can visualize the
phenomenon inside the network.

In addition to representational visualization methods, expost
interpretations include sample-based interpretations and natural

language interpretations. Sample-based interpretation methods
are used to mathematically associate variables with prediction
results, such as substitution variables, to explain the effect of in-
formation features on the prediction performance of the network.
Li et al. [43] constructed an interpretable deep neural network
by combining deep learning and sample-based inference with
interpretability. Arik and Pfister [44] proposed an approach that
combines a coded representation with a small number of samples
to achieve high-quality interpretability. Hendricks et al. [45]
proposed a model that focuses on visible object recognition
properties to explain the fundamentals of network classification
decisions from a natural language perspective. These two meth-
ods have more demanding conditions and higher complexity
than the methods for characterization visualization. They are
not applicable to the SAR image ship detection task covered in
this article.

Inspired by the representation visualization interpretation
method, we designed an interpretation analysis method that
integrates the texture and brightness features of feature maps;
conducted an experimental validation on the publicly available
SSDD radar dataset; conducted a comparative analysis of the
feature changes of the target and background in the feature
map under different intensity Gaussian noise; corresponded the
results to the changes of the network detection performance, and
summarized the relevant conclusions.

II. METHODOLOGY

The interpretation of the degradation of the target detection
networks is important for their performance optimization in the
environment with Gaussian noise. Current network interpre-
tation methods, both exante design and expost interpretation,
have unavoidable problems when migrating to the interpretation
of target detection networks in SAR images under Gaussian
noise. Most of the exante design methods include inherently
interpretable network structures by introducing knowable math-
ematical physical models. The most comprehensively developed
of the expost interpretation methods are the representation vi-
sualization methods, but most of them are devoted to analyz-
ing the degree of influence of each region in the image on
the decision result while ignoring the overall change pattern.
Feature maps, especially those of convolution layers, as the
results of feature extraction from convolution kernels, contain
low-dimensional features such as brightness and texture, as well
as high-dimensional features that are difficult to be distinguished
by the human eye. Starting from the feature maps, we analyzed
the changes in the low-dimensional features of the same hidden
layer feature maps and the changes of the low-dimensional
features of different hidden layer feature maps under different
intensities of Gaussian noise in target detection networks, first.
Then, we corresponded these changes to the performance of
target detection networks under different intensities of Gaussian
noise. Finally, we summarized the relevant conclusions and
partially explained the phenomenon of network performance
degradation. To achieve this purpose, this article takes a fourfold
approach, with the following aims:

1) characterize the network performance under different in-
tensity Gaussian noise with four accuracy metrics, namely,



1974 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

precision, recall, F1, and mean Average Precision (mAP),
and quantitatively analyze the performance degradation of
three networks, namely, Yolov5, Faster R-CNN, and SSD;

2) output the feature maps of four convolution layers of the
three networks in four sheets with a layered sampling
method;

3) extract the texture features of the images with gray-level
co-occurrence matrix (GLCM) to generate two feature
volumes, which are combined with the brightness features
for quantitative analysis;

4) assess the correspondence between the results of 1), 2)
and 3), and summarize the analysis to draw conclusions
related to the degradation of network performance under
Gaussian noise.

A. Evaluation Indicator

Currently, there are four main metrics to evaluate the accuracy
of target detection networks: precision, recall, F1 score, and
mAP. In the PASCAL visual object classes (VOC) Challenge
[46] and ImageNet Large Scale Visual Recognition Challenge
[47], the organizers used the precision/recall curve and mAP as
evaluation metrics to measure the effectiveness of the partici-
pating teams’ target detection. Precision denotes the percentage
of all detected objects above the threshold that is correct. Recall
denotes the percentage of all positive examples ranked above a
given rank. mAP is obtained by combining the average correct
rates of all categories in a combined weighted average when the
Intersection over Union (IoU) is 0.5. Gidaris and Komodakis
[48] proposed the concept of IoU, a metric defined as the overlap
rate between the target window generated by the model and the
labeled window. The F1 score is a statistical indicator defined
as the summed average of precision and recall.

We used precision, recall, F1, and mAP to evaluate neural
networks’ performance. These four metrics can be defined as
follows:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 = 2× precision × recall
precision + recall

(3)

mAP =

∑M
j Pj

M
(4)

where TP, TN, FP, FN, and M represent true positives, true
negatives, false positives, false negatives, and type of targets,
respectively. The meaning of Pj is determined by

P i
j =

Ai
j

Bi
j

(5)

Pj =

∑N
i P i

j

N
(6)

where i, j, Ai
j , Bi

j , and N represent, respectively serial number
of the image, serial number of the target category, number of

detected targets, and real number of targets and number of
samples.

IoU =
area (Bt ∩Btt)

area (Bt ∪Btt)
. (7)

The definition of IoU can be seen in (7), where Bt and Btt

represent predicted and real target boundaries, respectively. And,
in this article, IoU was set at 0.5.

B. Feature Map Visualization

In this article, four convolution kernels were selected in four
convolution layers as the visualization objects of the feature
maps. Since the method in this article started from the variation
of the feature maps to explain the network-related principles,
we chose four feature layers in three networks with different
stages of the feature extraction module. These feature maps are
effective for detection and classification. Because the number of
convolution kernels in each convolution layer is different, and the
maximum can be 1024, stratified sampling was used to extract
four convolution kernels in each convolution layer with the
total pixel value as the index and visualize the feature map. We
first calculated the total pixel values of each convolution kernel
feature map according to (8) and arranged them in descending
order. Then, we divided the number of convolution kernels in
this layer into four equal parts. Finally, the first image of each
part was selected and visualized. As images are transmitted in
the form of tensors in the network, the process of feature map
visualization was to extract the tensor of the target convolution
kernel and output it in the form of two-dimensional images

Pixel value =

N∑

i=1

M∑

j=1

valueji (8)

here N , M , (i, j), and value represent width, length, position
of the pixel, and value of the pixel, respectively.

C. Texture and Brightness of Feature Maps

After qualitative analysis, two feature quantities generated by
GLCM and brightness value were used for quantitative analy-
sis. Texture features can express information about the spatial
arrangement of colors or intensities in selected areas of an image
and are important references when analyzing image properties.
Texture features consist of spatial relationships between pixels
as well as neighboring pixels and are local in nature. Local
texture information presents different degrees of repetitiveness.
The GLCM is a common method for extracting image texture
features, reflecting the pixel correlation by the distance between
pixel values as well as the angle. It integrates the information
of the image in terms of direction, interval, and magnitude of
change and speed, and expresses it through the matrix. Based
on GLCM, 14 statistics could be calculated: energy, entropy,
contrast, uniformity, correlation, variance, sum average, sum
variance, sum entropy, difference variance, difference average,
difference entropy correlation information measure, and maxi-
mum correlation coefficient. The feature quantities selected in
this article were angular second moment (ASM) and entropy
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TABLE I
MEAN AND VARIANCE OF LEVEL 0–LEVEL 5 DATASETS WHEN ADDED

GAUSSIAN NOISE

(ENT). ASM can measure the total value of feature map infor-
mation and ENT can describe the degree of uniformity of the
grayscale distribution. They give us some insights in terms of
the amount of information. Their equations are shown in (9) and
(10) as follows:

ASM =
∑

i

∑

j

p(i, j)2 (9)

ENT = −
∑

i

∑

j

p (i, j) logp (i, j) (10)

where p(i, j) refers to the normalized GLCM.
When brightness values were calculated, we first counted the

pixel values of R, G, and B, and then followed

brightness =
(
0.241× r2 + 0.691× g2 + 0.068× b2

) 1
2

(11)
where r, g, b represent pixel values for the three channels of the
image.

After analyzing the performance degradation of the three
networks and the changes in the feature maps under the Gaussian
noise by the abovementioned three methods, we synthesized and
summarized the results to obtain relevant conclusions.

III. EXPERIMENTAL AND DISCUSSION

A. Datasets

In this article, we used the SSDD dataset of ships in SAR
images, constructed in 2017 [44]. It has 1160 images and 2456
ships, with between one and 13 ships per image. The resolution
of this dataset is below 3 m. Because the target detection network
depends on the dataset, the more images in the dataset, the more
accurate the target detection result. Therefore, we expanded the
number of noise-free images to 2000, in which the ratio of the
training set, validation set, and test set was 81:9:10. Then, based
on the noise-free image, we added five different levels of noise
using the variance of Gaussian noise as the level classification
criterion, which was shown in Table I. In the end, we acquired
a total of 12 000 SAR ship images.

B. Network Degradation Characterization

Table II through Table IV represents the results of the Yolov5,
Faster R-CNN, and SSD networks trained with a noise-free ship
dataset, which we tested with noisy datasets with different levels
of Gaussian noise effects after obtaining the three models.

As can be seen from Table II to Table IV, the detection
capability of all three target detection networks decreases rapidly

TABLE II
CHARACTERIZATION OF YOLOV5 NETWORK DEGRADATION UNDER DIFFERENT

LEVELS OF GAUSSIAN NOISE

TABLE III
CHARACTERIZATION OF FASTER R-CNN NETWORK DEGRADATION UNDER

DIFFERENT LEVELS OF GAUSSIAN NOISE

TABLE IV
CHARACTERIZATION OF SSD NETWORK DEGRADATION UNDER DIFFERENT

LEVELS OF GAUSSIAN NOISE

as the level of Gaussian noise increases. Among the four evalu-
ation metrics, the recall, F1, and mAP consistently decrease.
The precision metrics of Faster R-CNN and SSD fluctuate,
differing from the consistent decrease of Yolov5. With noise
enhancement, the precision of SSD and Faster R-CNN even
increases and reaches 1.0, while the precision of Yolov5 always
decreases. The definition of precision [Function (1)], indicates
the probability of the actual true target in the sample of detected
true targets. As the metric recall, which describes the true target
detection rate, always decreases, it is known that this particular
phenomenon is caused by a decrease in the number of samples
detected as true targets, and it so happens that most of them
are true targets. When there is no Gaussian noise, Yolov5 has
the best detection, with 95.2% for precision, 91.1% for recall,
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Fig. 1. Feature maps of four convolution layers in Yolov5 for image 1 with different levels of Gaussian noise.

0.93 for F1, and 96.6% for mAP. The precision, recall, F1, and
mAP of SSD at this time are 90.6%, 49.5%, 0.64, and 61.2%,
respectively, while for Faster R-CNN, the precision, recall, F1,
and mAP are 39.1%, 61.9%, 0.48, and 47.6%, respectively. In
terms of mAP values, Yolov5 is at least 35% higher. With the
enhancement of Gaussian noise, although Yolov5’s detection
performance decreases the most, it still detects a small number
of targets with a value of at least 0.3% for mAP when level 4
and level 5 noise affects it, which is significantly better than the
other two networks. This indicates that the impact of Gaussian
noise on the target detection network is huge.

C. Feature Map Visualization

Figs. 1–6 represent feature maps of four convolution layers of
three target detection networks, named Yolov5, Faster R-CNN,
and SSD, respectively.

In layer 1 of Yolov5, we made horizontal and vertical compar-
isons. The vertical comparison shows that the total pixel value of
the image is taken as the standard for stratified sampling, which
reflects the brightness features of the whole image rather than
the brightness features of the target on the image. Therefore,
the edge, brightness, and texture of the target do not decrease
as the total pixel value decreases. So, we can find that the lowest
and lower phases are visible to the naked eye. The object is
brighter than the other two phases, and the edges are clearer,
indicating a higher contrast with the background. The effect
of feature maps in four different stages is inconsistent, which
also indicates that the types and quantities of features extracted
by each convolution kernel are not the same, which is also the

significance of the weighted results of each convolution kernel.
The horizontal comparison shows that with the enhancement of
the noise, the target is gradually covered by the noise, especially
in the lower stage. Moreover, the brightness of the background
increases with the enhancement of the fifth level of noise.
In the other stages, the contrast between the background and
the target does not decrease linearly with the noise level, but
the target is covered, and the background brightness increases.
This nonuniform change also reflects the inhomogeneity of
the influence of Gaussian noise on each convolution kernel.
Therefore, this phenomenon can be understood as follows: The
Gaussian noise leads to the reduction of the target features
extracted by the neural network, which leads to the rapid decline
of the detection effect of the Yolov5 network. It is clear that
feature maps gradually become combinations of color blocks as
data travels through Yolov5. In layer 4, there is no specific shape
of the target in feature maps, because the transfer of the image
in the network is a downsampling process, and the further it
goes, the bigger the region of the feature map mapped on the
original image, and the more high dimensional and abstract the
extracted features.

In layer 1 of Faster R-CNN, the vertical comparison shows
that with the decrease of the overall pixel value, the target
features in the feature maps gradually decrease, and the contrast
with the background decreases until the lowest stage when the
target is almost invisible. The horizontal comparison shows
that similar to Yolov5, with the enhancement of noise, the
contrast between the target and background gradually decreases,
and the target features disappear obviously, especially in the
highest and higher layers. Similarly, as Faster R-CNN deepens,
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Fig. 2. Feature maps of four convolution layers in Yolov5 for image 2 with different levels of Gaussian noise.

Fig. 3. Feature maps of four convolution layers in Faster R-CNN for image 1 with different levels of Gaussian noise.

feature maps gradually become abstract and targets pattern fades
away. However, in layer 4 of Faster R-CNN, different from the
abstraction of the last convolution layer of Yolov5, the target and
background can still be clearly distinguished in the feature map.
The vertical and horizontal changes are consistent with layer 1.

With the enhancement of noise, the contrast between the tar-
get and background decreases, and the background brightness
increases significantly, resulting in the disappearance of target
features. Therefore, it can be concluded that because the Gaus-
sian noise covers the important features of the target, the features
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Fig. 4. Feature maps of four convolution layers in Faster R-CNN for image 2 with different levels of Gaussian noise.

Fig. 5. Feature maps of four convolution layers in SSD for image 1 with different levels of Gaussian noise.

extracted by the network are reduced, which reduces the target
detection accuracy of Faster R-CNN.

In layer 1 of SSD, the vertical comparison shows that similar
to Yolov5, the brightness of the target does not decrease with
the decrease in pixel value, because the total pixel value of the

image reflects the global feature of the image. The horizontal
comparison shows that similar to the other two networks, with
the enhancement of noise, the contrast between the target and
the background gradually decreases, and the target is gradually
covered by the background. Therefore, it can be concluded
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Fig. 6. Feature maps of four convolution layers in SSD for image 2 with different levels of Gaussian noise.

TABLE V
GRAY-LEVEL COINCIDENCE MATRIX OF IMAGE 1 IN YOLOV5

that with the enhancement of Gaussian noise, the target fea-
tures extracted by the network are reduced, which degrades
the detection performance of the SSD network. In layer 4, the
features extracted from the network are abstract, and it can be
seen that with the enhancement of the noise, the feature map
hardly changes, indicating that the compression noise affects
the shallow convolution layer more.

By comparing layer 1 of the three networks under the con-
dition of no noise, it can be found that the convolution kernels
of Yolov5 can extract more target information, and the edge,
brightness, and texture features are more obvious, which can
partly explain why the detection effect of Yolov5 network is
significantly better than that of the other two networks under the
condition of no noise. With the enhancement of Gaussian noise,
the target features that can be extracted by the three networks
decreases, so the detection effect decreases rapidly.

D. Feature Map Texture and Brightness

Tables V–X show the changes in the two feature quantities,
ASM and ENT, of the feature maps of the four convolution layers

of Yolov5, Faster R-CNN, and SSD target detection networks
calculated from GLCM under the influence of Gaussian noise
with different intensities. Here, the values of ASM and ENT
were the sum of the values of four stages, named highest, higher,
lower, and lowest.

Table V shows that with the increase of the noise intensity,
the value of ASM decreases in layer 1 of Yolov5, and the
value of the entropy increases in this layer. Values of ASM
and ENT change in opposite directions. The former drops up to
48.67%, while the latter rises to 62.48%. This shows that with
the enhancement of Gaussian noise, the values of each pixel
of feature maps in layer 1 of Yolov5 become gradually close,
and the randomness enhances. It means the feature structure of
feature maps is changed. Since Gaussian noise affects the whole
image, convolution kernels learned by the image with noise have
a lot more Gaussian noise features than noise-free images. ASM
and ENT change differently at layer 2 and layer 3 than they do
at layer 1. The values of ASM even increase. We speculate that
this is a method for Yolov5 to resist Gaussian noise, and also
proof that different convolution kernels extract different features.
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TABLE VI
GRAY-LEVEL COINCIDENCE MATRIX OF IMAGE 2 IN YOLOV5

TABLE VII
GRAY-LEVEL COINCIDENCE MATRIX OF IMAGE 1 IN FASTER R-CNN

TABLE VIII
GRAY-LEVEL COINCIDENCE MATRIX OF IMAGE 2 IN FASTER R-CNN

TABLE IX
GRAY-LEVEL COINCIDENCE MATRIX OF IMAGE 1 IN SSD

TABLE X
GRAY-LEVEL COINCIDENCE MATRIX OF IMAGE 2 IN SSD
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However, in layer 4 of Yolov5, the changes of ASM and ENT
are similar to those in layer 1, but the magnitude is significantly
reduced. Compared with the case without noise, the former drops
up to 24.10%, while the latter rises to 17.18%. This indicates
that the similarity between every pixel is gradually increasing.
The descending amplitude and direction of each convolution
kernel are different, which indicates that the influence degree of
noise on each convolution kernel is different. Table VI shows
changes in ASM and ENT of another image with different
levels of Gaussian noise in Yolov5. On the whole, feature map
changes of the four convolution layers are similar, but the change
results in layer 2 are different from those in the first image. This
indicates that the performance of different images in the same
network is not the same, although the noise with the same pa-
rameters is added, on the whole, it conforms to the same change
rule.

Compared with Yolov5, in Table VII, layer 1 of Faster R-CNN
has enhanced disorder of ASM and ENT change. If we add the
values for the highest, higher, lower, and lowest phases as a
whole, the value of ASM tends to decrease with increasing noise
intensity, especially for the fifth noise level, up to 54.72%. On the
contrary, the value of ENT has an upward trend, up to 86.93%.
This indicates that Gaussian noise destroys the texture structure
of the whole image and makes every pixel homogeneous. The
nonlinear change relationship between noise level and the values
of ASM and ENT reflects the nonlinear operation mechanism of
Faster R-CNN. ASM and ENT change at Layer 2 and Layer 3
similar to their change at Layer 1. The change of ASM in layer
4 of Faster R-CNN is different from that in other layers in that
exhibits a rise followed by a fall, but the magnitude is small
and can be approximated as constant. The value of ENT still
shows a small rise and can also be approximated as constant.
This approximate invariance indicates that the effect of noise
on this convolution layer is not significant. Table VIII shows
changes in ASM and ENT of another image with different levels
of Gaussian noise in Faster R-CNN. On the whole, feature map
changes of the four convolution layers are similar. However, the
values of ASM of feature maps with noisy images are always
lower than the value of feature maps with noise-free images, and
the values of ENT change the opposite.

As Table IX shows, in layer 1 of SSD, the value of ASM
decreases by a maximum of 59.11%, and the value of ENT in-
creases by a maximum of 97.81%. So, a conclusion similar to the
abovementioned two networks can be drawn: The enhancement
of noise leads to a change in the feature structure of feature maps,
and the pixel values on the feature maps are gradually close to
each other, resulting in the masking of target features and the
degradation of SSD network detection performance. In another
three layers, there is a small change between feature maps of
images with different levels of Gaussian noise. It can also be
seen from Figs. 5 and 6 that the feature maps of layer 2, layer
3, and layer 4 do not change significantly with the increase in
noise intensity.

Based on the analysis results of the three networks, it can
be concluded that with the introduction of Gaussian noise,
feature structure of feature maps extracted by the network
convolution kernel changes, the similarity of each pixel in the

feature maps increases, the texture structure decreases, and the
high-dimensional feature structure also changes. These reasons
make the decision basis of the network decrease, and it is difficult
to make a correct judgment, thus causing a decrease in network
detection accuracy. Among these convolution layers analyzed,
reduction of ASM can reach up to 59.11%, and the minimum
approximation is 0. Increase of ENT value can reach up to
97.81%, and the minimum approximation is also 0.

Tables XI–XIII show the brightness feature extracted from
the feature maps of the four convolution layers of the Yolov5,
Faster R-CNN, and SSD networks.

The brightness feature is a global feature that integrates the tar-
get and background. At layer 1 of Yolov5, we took the brightness
values for the highest, higher, lower, and lowest phases as one.
As we can see, the overall brightness value increases as the noise
increases, and the range is up to 100.92%. In the image, the size
of the target is limited, and under normal conditions, the target
is the brightest part of the image. Therefore, the enhancement
of the feature map brightness caused by noise is more likely
to enhance the background brightness. With the enhancement
of background brightness, the target is gradually covered, and
the features that can be extracted by the network are reduced,
resulting in the degradation of network detection performance. It
is worth noting that the influence of Gaussian noise on the image
is global. The noise feature extracted from the feature maps will
also cover the features of the target, making the target difficult to
be found. Using the same analysis method as layer 1, we can find
that the growth of brightness value is not linearly related to the
noise level, and the growth range is significantly reduced or even
negative in layers 2, layer 3, and layer 4. So, what causes this
nonlinear change? We speculate that the nonlinear mechanism of
convolution calculation leads to the different features extracted
from each convolution kernel. Since Gaussian noise affects the
overall image structure, some regional features extracted from
a single convolution kernel will not necessarily linearly weaken
due to noise enhancement. Since the object only occupies a
small area on the image, the brightness value depends on the
number of background features and noise features extracted by
the convolution kernel.

In layer 1 of Faster R-CNN, the overall brightness value
increases with the enhancement of noise. The maximum increase
in total brightness is 68.14%. Similarly, we can speculate that
the increase in brightness values is mainly on the background,
resulting in a reduction in the contrast between the target and the
background. In layer 2, layer 3, and layer 4 of Faster R-CNN,
the overall brightness value increases with the enhancement of
noise. The largest increases in total brightness in these three lay-
ers are 93.92%, 90.28%, and 83.12%. Thus, the same conclusion
can be reached for layer 1.

In layer 1 of SSD, similar to layer 1 of Faster R-CNN, the over-
all brightness value increases with the enhancement of noise,
and the largest is 49.14%. Therefore, the two conclusions are the
same. At layer 2, layer 3, and layer 4 of SSD, the value of bright-
ness can go up, down, or stay the same, which indicates that the
noise has little influence on the convolution layer. And this also
indicates that the brightness features of the deeper convolution
layer of SSD have little influence on the detection results.
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TABLE XI
BRIGHTNESS FEATURES OF YOLOV5

TABLE XII
BRIGHTNESS FEATURES OF FASTER R-CNN

TABLE XIII
BRIGHTNESS FEATURES OF SSD

According to the abovementioned analysis, in the convolution
layer analyzed in this article, with the increase of the Gaussian
noise intensity, the maximum increase of the brightness feature
can reach 100.92%, and the lowest increase can be approxi-
mated to 0. Based on the brightness feature changes of the
four convolution layer feature maps of the three target detection
networks, it can be concluded that the Gaussian noise leads to the
enhancement of the background brightness and the weakening of
the contrast between the target and the background to cover the
features of the target and lead to the degradation of the detection
effect of the network. At the same time, the image brightness
will be increased generally after the feature of Gaussian noise
is extracted from the convolution kernels. As the depth of the
convolution layer deepens, the influence of brightness on the
decision results decreases, so the brightness decreases some-
times. All of these phenomena prove the nonlinearity of the
convolution kernel and the fact that each convolution kernel has
its preference.

Based on the qualitative and quantitative analysis at the fea-
ture map level above, it is clear that with the enhancement of
Gaussian noise, the feature structure extracted from feature maps
changes. Therefore, we can conclude that Gaussian noise causes
a decrease in the effective features extracted by the target detec-
tion network by masking features such as texture and brightness,
which directly leads to a decrease in the prediction results. And,
we can learn that the features extracted from each convolution
kernel are different, and they do not change linearly with the

enhancement of Gaussian noise when processing regional fea-
tures. At the same time, with the deepening of the convolution
layer, the influence of texture and brightness characteristics on
the results is no longer obvious. To improve the detection effect,
we should start from the two perspectives of suppressing image
noise and improving the feature extraction ability of the network.
On the one hand, the data set processing module and feature
extraction module should be optimized. On the other hand, the
convolution kernels need to be designed to extract effective
features in a noisy environment to reduce the impact of noise.

IV. CONCLUSION

In this article, we proposed a method to explain the perfor-
mance degradation of target detection networks by integrating
quantitative and qualitative analysis at the feature map level.
First, we used four accuracy metrics, namely, precision, recall,
F1, and mAP, to characterize the performance of target detection
networks under different intensity Gaussian noise. The degra-
dation of precision, recall, F1, and mAP for Yolov5 was 94.2%,
89.5%, 0.92, and 96.3%, respectively; the degradation of preci-
sion, recall, F1, and mAP for Faster R-CNN was 100%, 61.9%,
0.48, and 47.6%, respectively; and the degradation of precision,
recall, F1, and mAP for SSD was 100%, 49.5%, 0.64, and
61.2%, respectively. The results indicate that the target detection
network is extremely sensitive to Gaussian noise in SAR images.
Second, we used a hierarchical sampling method to extract the
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feature maps of four convolution layers of each network and
extract their texture and brightness features. In the quantitative
analysis stage, we found that as the noise intensity increased, the
value of ASM tended to decrease, with a maximum of 59.10%
and a minimum of approximately 0; the value of ENT tended
to increase, with a maximum of 97.81% and a minimum of
approximately 0; and the value of brightness tended to increase,
with a maximum of 100.92%. We can conclude that the Gaussian
noise degrades the network performance by masking the features
of targets and changing the feature structure of feature maps. The
features extracted from each convolution kernel are different,
and they do not change linearly with the enhancement of Gaus-
sian noise when processing regional features. At the same time,
with the deepening of the convolution layer, the influence of
texture and brightness characteristics on the results is no longer
obvious. Subsequently, the network can be optimized from two
perspectives: suppressing the dataset noise and improving the
feature extraction capability of the network.

The proposed method in this article only provides a pre-
liminary analysis and explanation of the causes of network
performance degradation under Gaussian noise from the feature
map perspective. In the future, the causes of network degradation
can be explained from more perspectives, and the structure can
be targeted and optimized to achieve better ship detection results.
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