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TCIANet: Transformer-Based Context Information
Aggregation Network for Remote Sensing

Image Change Detection
Xintao Xu, Jinjiang Li , and Zheng Chen

Abstract—Change detection based on remote sensing data is an
important method to detect the earth surface changes. With the
development of deep learning, convolutional neural networks have
excelled in the field of change detection. However, the existing neu-
ral network models are susceptible to external factors in the change
detection process, leading to pseudo change and missed detection in
the detection results. In order to better achieve the change detection
effect and improve the ability to discriminate pseudo change, this
article proposes a new method, namely, transformer-based context
information aggregation network for remote sensing image change
detection. First, we use a filter-based visual tokenizer to segment
each temporal feature map into multiple visual semantic tokens.
Second, the addition of the progressive sampling vision transformer
not only effectively excludes the interference of irrelevant changes,
but also uses the transformer encoder to obtain compact spa-
tiotemporal context information in the token set. Then, the tokens
containing rich semantic information are fed into the pixel space,
and the transformer decoder is used to acquire pixel-level features.
In addition, we use the feature fusion module to fuse low-level
semantic feature information to complete the extraction of coarse
contour information of the changed region. Then, the semantic
relationships between object regions and contours are captured by
the contour-graph reasoning module to obtain feature maps with
complete edge information. Finally, the prediction model is used
to discriminate the change of feature information and generate
the final change map. Numerous experimental results show that
our method has more obvious advantages in visual effect and
quantitative evaluation than other methods.

Index Terms—Attention mechanism, bitemporal remote sensing
images, change detection (CD), graph convolutional network
(GCN), transformers.
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I. INTRODUCTION

A S AN important application of remote sensing images,
change detection aims to analyze the images of the same

geographical area captured at different moments and detect the
change information of surface features. The purpose of the
research is to find the change information of interest and filter
out the irrelevant change information that appears as interfer-
ence factors. With the rapid development of remote sensing
technology, change detection technology has been applied in
various fields such as disaster monitoring and assessment [1],
[2], land surveying [3], [4], and urban planning [5]. In most of
the change detection applications, the commonly used methods
are still visual interpretation and human–computer interaction
interpretation, which consumes a lot of manpower, time, and
other resources and has low processing efficiency. Therefore, an
efficient and automatic method for remote sensing image change
detection is particularly important.

In change detection, changes in the surrounding environment
can make it more difficult to extract important information from
remote sensing images. Therefore, some traditional methods
have been proposed by domestic and foreign scholars to solve
various problems in change detection [6], [7], [8]. Chen and
Lin [6] used a multithreshold strategy for the change detection
of urban buildings by Lidar and aerial images. Bourdis et al. [7]
proposed an optical-flow-based change detection method to
solve the parallax problem. In addition, Benedek and Szirányi [8]
used a multilayer conditional mixed Markov model for change
detection in aerial images. However, these methods are vulnera-
ble to parameters and other environmental factors (e.g., shadows
and obscured objects). And these methods require expertise to
construct and select features manually, with low generalization
performance across regions and datasets.

In recent years, with the development of artificial intelligence
technology, remote sensing image change detection methods
based on deep learning are gradually applied to the field of
change detection by virtue of their ultrahigh accuracy and au-
tomation. Convolutional neural networks (CNNs) can extract
high-level semantic features of interest from each temporal
image due to their powerful recognition ability, which pro-
vides better robustness compared to traditional methods. Most
deep-learning-based change detection methods [9], [10], [11],
[12] usually first use CNN models based on Siamese net-
works (e.g., UNet [13] and DeepLab [14]) to extract deep-level
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Fig. 1. Bitemporal remote sensing images with seasonal changes in the CDD
dataset. (a) and (b) Remote sensing images before and after the change, re-
spectively. (c) Ground truth. (d)–(f) Results obtained by IFN, STANet, and our
method, respectively.

feature information from dual-temporal remote sensing images.
The full convolutional network is then used to obtain the final
change detection results. In addition, many new techniques have
been introduced in recent networks in order to highlight the
change information and improve the feature discrimination of
the network. These include the use of deeper CNN models [15],
[16], multiscale feature fusion [12], [17], and the application
of dilated convolution [15]. For example, Zhang et al. [16]
designed a feature difference CNN to generate feature difference
maps at different scales and depths. Xu et al. [17] proposed a
multiscale fusion network with multichannel information flows,
which makes data transmission more flexible and can highlight
important features.

Based on the prior analysis, although many deep-learning-
based models have been proposed and used for remote sensing
image change detection tasks, they still have some problems.
First, the existing methods ignore spatiotemporal context infor-
mation in the feature encoding and decoding process and do
not link high-level features with low-level features. This often
leads to unclear boundaries of the changing target area as well
as ignoring changes in small objects, as shown in Fig. 1(d).
Second, bitemporal remote sensing images are easily affected by
factors such as light and seasonal changes during the acquisition
process, resulting in many differences in the images with irrel-
evant geographical elements. These differences can cause the
feature mapping of the bitemporal images to be underutilized,
resulting in pseudo change in the final results, as shown in
Fig. 1(e). In addition, as the transformer is widely used in the
field of computer vision (CV), change detection tasks have also
started to try to use the transformer to process remote sensing
image features with good results. However, the extraction and
processing of feature information in bitemporal images need to
be enhanced.

To address the above problems, in this article, we propose
a transformer-based context information aggregation network

(TCIANet) for remote sensing image change detection. First,
we use the Siamese backbone network to extract the features at
different levels of the bitemporal remote sensing images. Then,
the deep feature information is extracted by a filter-based visual
tokenizer (FVT) [18] into several compact semantic tokens that
contain high-level semantic information of the image. Immedi-
ately after, we employ a progressive sampling vision transformer
(PS-ViT) [19] and a transformer decoder (TD) to model and
aggregate the rich spatiotemporal context semantic information
in the token set, so as to better reveal the changes in the fea-
ture targets of interest. Moreover, the interference of irrelevant
factors is excluded, and the change features can be extracted
more accurately. In addition, we use a feature fusion module
(FFM) and a contour-graph reasoning module (CGRM) [20] to
strengthen the intrinsic connection between higher level features
and lower level features. Thus, we can better retain the edge
information of the target change region, reduce the boundary
error, and enhance the feature representation. Finally, we pass
the feature difference map through the prediction module (PM)
to obtain the final change detection result. As shown in Fig. 1(f),
our method can detect the changing buildings and roads well,
and the results are more satisfactory.

The main contributions of this article can be summarized as
follows.

1) We propose a novel change detection method for remote
sensing images based on transformer architecture. Com-
pared with the existing methods, our method achieves
better change detection performance on all three public
change detection datasets. The effectiveness and superi-
ority of our method in image processing is demonstrated.

2) In order to strengthen the spatiotemporal connection of
objects of the same type, we use an FVT. The tokenizer
can express the feature map as multiple compact semantic
tokens and represent high-level concepts through a set of
tokens.

3) We process the semantic information in tokens with the
PS-ViT, which uses a progressive iterative sampling strat-
egy to locate regions of change. And PS-ViT can model the
spatiotemporal context information in the set of tokens to
detect changes of interest and exclude irrelevant changes.
In addition, we use an improved TD model to project the
learned high-level semantic concepts back into the pixel
space, thus helping the original features to be optimized.

4) We use the FFM to fuse low-level semantic feature in-
formation to obtain rough contour feature maps. Mean-
while, we introduce an effective CGRM. This module
can capture the semantic relationship between regions
and contour features through graph reasoning, thus re-
ducing boundary errors and improving change detection
performance.

The rest of this article is organized as follows. Section II
presents the related work, which describes the current de-
velopment of remote sensing image change detection tech-
niques. Section III gives the detailed description of the proposed
method. Section IV conducts some experiments and discusses
the experimental results. Finally, Section V concludes this
article.
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II. RELATED WORK

Over the past few decades, change detection technology has
been gradually developed, and many scholars at home and
abroad have conducted intensive research on it and achieved
many results. According to the principle of remote sensing image
change detection method and the way of processing data, we
briefly introduce several common change detection methods,
including change detection based on traditional methods and
change detection based on deep learning. In addition, we briefly
review the development and application of transformer and
graph convolutional network (GCN).

A. Change Detection Based on Traditional Methods

Depending on the unit of image analysis, traditional change
detection methods can be divided into pixel-based and object-
based methods [3]. The pixel-based approach simply analyzes
the pixel-by-pixel spectral differences in the remotely sensed
image and selects a suitable threshold to classify the pixels, so
as to obtain the final change detection difference map [21], [22],
[23], [24]. For example, change vector analysis [21] obtains a
change feature vector by calculating the difference between the
corresponding bands of the image. The length of the change
vector represents the change intensity, and the direction of the
change vector describes the type of change. Principal component
analysis (PCA) [22] is used to enhance the change information
in multisensor data by first calculating the difference images
and then extracting the principal components using PCA. Mul-
tivariate alteration detection [23] is based on the criterion of
maximum variance of the projected feature differences, thus
minimizing the radiometric variability in the differences to
highlight the change information. Slow feature analysis [24]
extracts time-dimensional invariant features from multitemporal
remote sensing images and suppresses the differences between
unchanged pixels, so as to better separate the changed pixels.
Generally speaking, pixel-based methods are more suitable for
low- and medium-resolution remote sensing images.

In contrast, the object-based approach treats the feature object
as the minimum processing unit. Differences in temporal images
are analyzed by making full use of the spectral and spatial
features of the objects [25], [26], [27], [28], [29]. For example,
Qin et al. [25] proposed an object-based land cover change
detection method for cross-sensor remote sensing images. Feng
et al. [26] can effectively improve the accuracy of change de-
tection by combining visual saliency and random forest. Huo
et al. [28] enhance the ability to discriminate between change and
nonchange classes by object-level features and use progressive
change feature classification to improve performance. Chen
et al. [29] used the image object detection approach to identify
changing regions in high-resolution satellite images.

B. Change Detection Based on Deep Learning

In recent years, deep learning methods have been widely
used in the field of remote sensing [30], [31], [32] due to their
powerful feature extraction capability, and change detection
methods based on deep learning have emerged. Since the input

of the change detection task is bitemporal or multitemporal
remote sensing data, the change detection method based on
deep learning can be divided into a single-stream network [13],
[33], [34], [35] and a dual-stream network [36], [37], [38], [39]
according to the process of feature extraction or potential feature
representation of different temporal remote sensing data.

Single-stream networks are usually semantic segmentation
networks. The bitemporal remote sensing images are usually
fused directly, and the fused data are fed into a classification
network for change detection. Peng et al. [13] first connected
bitemporal remote sensing images in the channel dimension and
then fed into a modified UNet++ network [40] for change detec-
tion, which directly outputs the final change detection difference
map. The dual-stream network processes the bitemporal remote
sensing images separately by using the Siamese network, and
then, the relationship between the two is considered to obtain the
final change detection difference map. Zhang et al. [36] proposed
a Siamese network framework with hierarchical fusion strategy
for change detection tasks. Owing to its features, such as weight
sharing strategy and improved detection accuracy, dual-stream
networks have become the dominant framework for most change
detection tasks.

Although convolutional networks can process multispectral
and hyperspectral images well, the results obtained are still
flawed due to the infrequent spectral information in remote
sensing maps and the complexity of objects in different scenes.
In addition, consider that pure convolutional networks are in-
trinsically limited by the size of the received field (RF) per
pixel. Many recent studies use attention mechanisms [9], [41],
[42], [43] to further extend the RF of the model and increase
the distinction between parts of interest, so as to better utilize
the rich spatial information in remotely sensed images. Chen
et al. [41] used a dual-attention module to emphasize the change
information in diachronic features. Liu et al. [43] used a stacked
attention module consisting of multiple attention modules to
fully extract multilevel information from remote sensing images.

Different from the existing deep-learning-based approaches
that directly model dense relationships between any elements
in pixel-based space, we are modeling the global semantic
information in the bitemporal feature maps. Specifically, we
aggregate the feature information extracted from the images
into several compact semantic tokens and model the context
based on these tokens. Then, the tokens that have learned rich
semantic information are used to enhance the original features in
the pixel space. In addition, we use graph convolution to capture
more spatiotemporal information features and further improve
the change detection capability of the network.

C. Transformer

Vaswani et al. [44] first proposed the transformer due to
its unique design endowing the transformer with the ability to
handle indefinitely long inputs, capture long-distance depen-
dencies, and sequence-to-sequence properties. Since then, the
transformer has achieved excellent results in natural language
processing tasks [45]. Compared with the CNN, the transformer
mainly uses the self-attention mechanism to extract the intrinsic
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features of the target, which can effectively extract and process
the global features. With its own powerful feature representation
capability, researchers have gradually applied transformer to CV
tasks, including image classification [46], super-resolution [47],
[48], image segmentation [16], [49], and object detection [50].

In view of the high performance of transformer and the
absence of human-defined perceptual bias, it has also attracted
the interest of researchers to apply it in the field of remote
sensing, including hyperspectral image classification [51], [52],
remote sensing image captioning [53], [54], and scene classifi-
cation [55]. For example, He et al. [51] proposed a HIS-BERT to
capture the global dependencies between pixels in hyperspectral
images and can realize flexible and dynamic input areas. Shen
et al. [53] used a transformer to decode image features into
multiple sentences and improve the quality of sentences through
reinforcement learning. Bazi et al. [55] used the multihead
attention mechanism as the main module to acquire the remote
context relationship between pixels in an image. Since the
transformer has achieved good results in several fields of remote
sensing images, researchers have also started to try to apply it to
change detection tasks. Chen et al. [18] used the transformer to
better learn the context of bitemporal images, which facilitates
the identification of changes of interest and excludes irrelevant
changes. Feng et al. [56] extracted local and global features
of images by the CNN and the transformer, respectively, and
used the attention module for interactive communication. In this
article, we also apply the transformer to our change detection
network, so as to acquire the global environment of the input
image and capture the dependence between pixels.

D. Graph Convolutional Network

Since CNNs cannot handle unstructured graph data, many
researchers began to extend neural networks in the hope of pro-
cessing graph data, thus giving birth to graph neural networks.
The proposed GCN is a highly landmark stage in the develop-
ment of graph neural networks. The GCN realizes convolution
operation in the spatial domain by using approximation in the
frequency domain and has made great progress in many fields.

In recent years, graph convolution methods have been grad-
ually applied to remote sensing due to the powerful analysis
capability of the GCN for graph data. Liu et al. [57] used the
CNN and the GCN to learn features for areas of different sizes
and generate complementary spectral spatial features, respec-
tively. Zhang et al. [58] used graph convolution to construct a
graph structure in the generated feature objects, which is used
to leverage the relativity between objects to produce accurate
classification. Tang et al. [59] captured short- and long-range
contextual patterns in feature maps by a multiscale dynamic
GCN to fully extract the changed and unchanged regions. Qu
et al. [60] proposed a novel dual-branch difference amplifica-
tion GCN method by extracting and amplifying the difference
features of multitemporal remote sensing images for change
detection. For our remote sensing image change detection task,
we introduce a new CGRM. This module uses graph reasoning to
capture the correlation between contour features and contextual
information of different regions.

III. METHODOLOGY

In this section, we describe in detail the architecture of the
proposed network. First, the overall architecture of the network
proposed in this article is introduced. Then, the various parts of
the model are described in detail. Finally, the loss function we
use is presented.

A. Network Architecture

The overall structure of the proposed network is shown in
Fig. 2. We use multitemporal image pairs as input to the net-
work. First, we use two weight-shared ResNet18s [61] to feed
bitemporal remote sensing image pairs (I1 and I2) into the
feature extractor in order to obtain features at different levels
of each input image for multiscale representation. The feature
mapping of each image is then converted into compact visual
semantic tokens using the FVT [18] with differential fusion.
Immediately after, they are fed into the PS-ViT [19] to obtain
the global semantic information in the token sets and generate
a rich context representation for each temporal. Subsequently,
a modified TD is used to project the corresponding semantic
tokens into the pixel space to obtain the features of each temporal
refinement. In addition, we use the FFM to fuse the feature infor-
mation of low-level semantics to generate a rough initial contour
map. Then, the contour and deep feature maps are fed into the
CGRM [20], which learns the intrinsic graph representation to
capture the semantic relationships between regions and edges
to obtain a refined feature map. Next, the bitemporal features
extracted in the TD and the CGRM are pixel-subtracted to obtain
two feature difference maps, respectively. Finally, we connect
the two feature maps and go through the PM to get the final
change map.

The algorithm flowchart of our proposed method is shown in
Algorithm 1.

B. Feature Extractor

The detailed structure of the feature extractor is shown in
Fig. 2(a), where we use the Siamese-network-based ResNet. The
Siamese network is to extract the remote sensing image features
at moments I1 and I2 with the same network structure and shared
parameters. For ResNet, it not only has strong feature extraction
ability, but also does not show performance degradation with
the increase in the number of network layers. Therefore, in this
article, we use the improved ResNet18 to extract bitemporal
image feature maps. Since the original fully connected layer is
removed from the classical ResNet18, our feature extractor con-
tains two convolutional layers, four residual blocks (ResBlocks),
and a bilinear interpolation layer. The detailed configuration of
the feature extractor is shown in Table I.

As can be seen in Table I, the first convolutional layer in the
feature extractor with a step size of 2 to extract shallow features
is half the size of the original image. The features of 1/4 of the
image are then obtained using a maximum pooling layer of 3 × 3
with a step size of 2, and the important features can be filtered. In
addition, each ResBlock contains two convolution layers, a batch
normalization layer, and a rectified linear unit (ReLU) function.
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Fig. 2. Overall structure of the proposed network model. (a) Network architecture. (b) Components of the FFM. (c) Components of the PSM.

TABLE I
DETAILED CONFIGURATION OF THE FEATURE EXTRACTOR

Since the step size of the first convolution layer in ResBlock1
and ResBlock4 is 1, the size of the output feature map is the
same as the input. The step size of the first convolution layer in
ResBlock2 and ResBlock3 is 2, so the output feature map is half
the size of the input feature map. In addition, to compensate for
the reduction of global semantic information in the deep network
due to successive downsampling operations, we added a bilinear
difference layer and a convolutional layer of 3× 3 to the back
of ResNet. Thus, the perceptual field can be increased and the
loss of spatial information can be reduced, and richer semantic
features can be extracted. Finally, the feature extractor outputs
the feature map size of 64× 64 and the number of channels
is 32.

C. Filter-Based Visual Tokenizer

Since remote sensing images of different temporal phases are
imaged in different seasons and lighting conditions, it may result
in ground targets with the same semantic concept exhibiting
different spectral characteristics in different times and different
spatial positions. We think that the changes between two im-
ages can be described by several high-level concepts (semantic
tokens). For this purpose, we introduce the FVT [18] in the
network to extract compact visual semantic tokens from each
temporal feature map. In simple terms, our tokenizer is to split
the whole image into parts and represent each part with a token.
Moreover, the semantic information between bitemporal images
can be shared, so we use the Siamese tokenizer. Fig. 3(a) shows
the detailed processing of the FVT.

In Fig. 3, we use Xi ∈ RH×W×C (height H , width W ,
channel dimensionC, i = 1, 2) to represent the input bitemporal
feature maps. For each pixel in the feature maps Xi(i = 1, 2),
we apply 1× 1 convolution to divide it into L semantic groups,
and these semantic groups represent the semantic information of
the feature map. Then, within each semantic group, we use the
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Algorithm 1: Transformer-Based Context Information Ag-
gregation Network.

Input: Bitemporal remote sensing images I = {(I1, I2)}
Output: Predicted change map M ∗

1: // Obtain different levels of features by feature
extractor

2: for i in {1, 2}do
3: for j in {1, 2, 3, 4}do
4: Xij = Feature_Extractor(Ii)
5: end for
6: end for
7: // Use FVT to convert each temporal feature into the

compact semantic token
8: for i in {1, 2}do
9: Si = FV T (Xi4)

10: end for
11: S = Concat(S1, S2)
12: // Use PS-ViT to get compact global context tokens
13: Snew = PS−V iT (S)
14: N1, N2 = Split(Snew)
15: // Use transformer decoder to get refined pixel-level

features
16: for i in {1, 2}do
17: Zi = Transformer_Decoder(Xi4, Ni)
18: end for
19: // Use FFM and CGRM to refine the boundaries of the

change region and get accurate feature maps
20: for i in {1, 2}do
21: Ci = FFM(Xi1, Xi2, Xi3)
22: Yi = CGRM(Ci, Xi4)
23: end for
24: // Generate feature difference maps
25: Z = |Z1 − Z2|
26: Y = |Y1 − Y2|
27: M = Concat(Z, Y )
28: // The final change map is obtained through the

prediction module
29: M ∗ = PM(M)

softmax function to operate on their H ×W spaces to generate
the spatial attention maps Ai(i = 1, 2). Finally, we multiply
the spatial attention feature maps Ai by Xi. And the weighted
average sum operation is performed on the pixels inXi to obtain
L compact visual sets, i.e., semantic tokens Si. Formally

Si = (Ai)
TXi = (softmax (ϕ (Xi;WA)))

TXi (1)

where ϕ(·) denotes 1× 1 convolution, WA ∈ RC×L is the
semantic group formed on the basis of Xi, and Si ∈
RL×C(L � HW ) denotes the generated semantic tokens. L
is the number of tokens, which is set to 64 in the module.
softmax(·)denotes regularizing each semantic group with soft-
max function and converting its activation into spatial attention
map Ai ∈ RHW×L.

Fig. 3. Illustration of the FVT. (a) Running process of the FVT. (b) Process
of differentiated fusion.

After we obtain the semantic tokens Si ∈ RL×C(i = 1, 2) of
two remote sensing images, we perform the subtraction opera-
tion of these two semantic tokens with each other to generate
two new semantic token differencesS1 − S2 andS2 − S1. Then,
these two semantic token differences are connected with the cor-
responding semantic tokens Si(i = 1, 2), respectively, to obtain
two new token sequences. Immediately after, these two token
sequences are fed into a shallow CNN (consisting of one convo-
lutional layer and two linear layers) to obtain two differentially
fused semantic tokens S∗

i ∈ RL×C(i = 1, 2), respectively. And
the generated differentially fused semantic tokens S∗

i (i = 1, 2)
and Si(i = 1, 2) have the same dimensionality. The specific
process is shown in Fig. 3(b).

D. Progressive Sampling Vision Transformer

ViT [62] can simply divide the image into tokens of fixed
length and use the transformer to learn the semantic relationships
between these tokens. Therefore, after obtaining two sets of
differentially fused semantic tokens S∗

i (i = 1, 2) of bitemporal
feature images, we make full use of the global spatial–temporal
semantic relations based on the tokens by the transformer so that
we can extract rich context information in each temporal. How-
ever, we consider that the traditional ViT [62] simply segments
the image, which destroys the inherent object structure and
makes it difficult for the network to focus on the important object
regions. Therefore, we introduce the PS-ViT [19]. As shown in
Fig. 2(a), the PS-ViT is composed of a progressive sampling
module (PSM) and a transformer encoder module (TEM). This
module follows the architecture used in ViT [62] and reduces
the damage of tokenization on the image structure by adopting a
progressive iterative sampling strategy to locate discriminative
regions. Moreover, it tends to sample object regions that are
relevant to the semantic structure, thus detecting changes in the
feature target of interest and excluding irrelevant changes.

1) Progressive Sampling Module: Fig. 2(c) shows the de-
tailed structure of the PSM. It can be seen that the PSM is an
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Fig. 4. Running process of PSM. During each iteration, given the sampling
position pt and the feature map F , the initial token is first sampled at pt of F
to obtain the initial sampled token Tt. Then, Tt, the position encoding Pt, and
the output token Tt−1 from the previous iteration are added element by element
and transmitted to the transformer encoder layer to obtain the predicted output
tokenTt+1. In addition,Tt+1 is passed through a fully connected layer to obtain
the offset matrix ot. Finally, pt and ot are added to obtain the next sampling
position pt+1. The running process requires N iterations.

iterative framework consisting of multiple sampling iteration
blocks. In addition, Fig. 4 illustrates the operation process of the
PSM in each iteration.

Before entering the PSM, we first concatenate two sets of
differentially fused semantic tokens together. The connected
set of tokens is then reshaped into a 2-D feature mapping
F ∈ RH×W×C (heightH , widthW , and channel dimensionC),
and F is used as the input to the PSM. Then, after progressive
sampling, it is expanded into a token setTN ∈ RC×(n×n), where
(n× n) denotes the number of samples in the input feature map
and N is the total number of iterations of the PSM, which we
set to 4 in the module. The detailed process is shown in Fig. 4;
during the tth iteration, the initial token is first sampled at the
sampling position pt in the input feature map

Tt = F (pt) , t ∈ {1, . . ., N} (2)

whereTt ∈ RC×(n×n) is the initial sampling token at the tth iter-
ation,F (·) represents the sampling operation in the feature map,
and pt ∈ R2×(n×n) represents the sampling position matrix.
Then, we send the sampling position pt to the position encoding
layer to obtain the coding matrix Pt of size C × (n× n). Next,
we add the initial sampling token Tt generated during the tth
iteration, the token Tt−1 output from the (t− 1)th iteration, and
the position encoding matrix Pt generated in the tth iteration

element by element to obtain the intermediate token Ht. Finally,
Ht is conveyed to the transformer encoder layer to get the output
token Tt+1 of the current iteration. Formally

Pt = Wtpt (3)

Ht = Tt ⊕ Pt ⊕ Tt−1 (4)

Tt+1 = Transformer (Ht) , t ∈ {1, . . ., N} (5)

where Wt ∈ RC×2 denotes the linear transformation operation
of the position encoding layer, and ⊕ denotes element summa-
tion. Transformer(·) is the transformer encoder layer based
on multiheaded attention, and the detailed structure will be
described in the next subsection. In addition, except for the
last iteration, the output token Tt+1 is passed through a full
connection layer to obtain the predicted offset matrix ot. Then,
the current sampling position pt is added to the generated offset
vector ot to obtain the next sampling position pt+1:

ot = MtTt+1, t ∈ {1, . . ., N − 1} (6)

pt+1 = pt + ot, t ∈ {1, . . ., N − 1} (7)

whereMt ∈ R2×C is the learnable linear transformation matrix,
Tt+1 is the output token of the current iteration, pt ∈ R2×(n×n)

denotes the sampling position matrix, and ot ∈ R2×(n×n) de-
notes the offset matrix.

By using the progressive sampling strategy, the PSM continu-
ously updates the sampling position in an iterative manner. And
by using the transformer’s ability to capture global information,
it makes the network adaptively focus on the region of interest in
the object by combining the local context and the current tokens’
position.

2) Transformer Encoder: Since the transformer model can
capture the dependency between pixels in the image by cascad-
ing multiple transformer layers to obtain the global environment
of the input image. Moreover, the transformer can generate rich
token representation for each temporal image by exploiting the
global semantic relations in the token. Therefore, we use the
TEM to model the context in TN after obtaining the final output
token TN by the PSM. As can be seen from Fig. 2(a), the TEM
consists of multiple transformer encoder layers. Here, we should
note that the positional information is already preserved in the
token TN output by the last iteration in the PSM. Therefore,
we do not need to add additional positional embedding. Fig. 5
shows the detailed structure of the transformer encoder layer.
From the figure, it can be seen that the transformer encoder layer
has a standard transformer structure [55], which consists of NE

layers of multihead self-attention (MSA) blocks and multilayer
perceptron (MLP) blocks. And, a layer normalization (LN) block
is used before both MSA and MLP for normalizing the activation
values of each layer. In addition, the residual connections in the
figure are used to prevent network degradation.

According to Fig. 5, MSA contains different heads, and each
head cannot share parameters between them. Among them, each
head contains two steps: linear transformation and scale dot
product attention (SDPA). First, in each layer l, three learnable
linear projection layers are applied to map the input tokenT (l−1)

N

into different weight matrices, i.e., query (Q), key (K), and value
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Fig. 5. Illustration of the transformer encoder layer. (a) Basic structure. (b)
Details of the MSA block. (c) Details of the MLP block.

(V ), and use them as inputs to the MSA. This can be expressed
as

Q = T
(l−1)
N WQ (8)

K = T
(l−1)
N WK (9)

V = T
(l−1)
N WV (10)

whereWQ,WK , andWV are the weights of the linear transform
layers where the maps Q, K, and V are located, respectively.
Then, the correlation between Q and K is calculated in SDPA
using dot product operation and softmax activation function and
generates an attention map as the weight of V as follows:

SDPA(Q,K, V ) = softmax
(
QKT /

√
d
)
V (11)

where KT denotes the transpose of K, and d is the number of
columns of Q and K matrices. softmax(·) denotes softmax
operation on each row of the weight matrix in the channel
dimension. Finally, since MSA performs multiple independent
attention heads in parallel, we concatenate the output of each
attention head to obtain the final output. Therefore, we connect
the outputs of multiple attention heads together and pass them
into a linear mapping layer to obtain the final output of the MSA.
The formula is expressed as follows:

headi=SDPA
(
T

(l−1)
N WQ

i , T
(l−1)
N WK

i , T
(l−1)
N WV

i

)
(12)

MSA(Q,K, V ) = Concat (head1, . . ., headh)W
O (13)

where WQ
i , WK

i , and WV
i denote the weights of the linear layer

of the ith head for the maps Q, K, and V , respectively. h is the
number of attention heads, WO is the weight of the last linear
layer in the MSA, and Concat(·) denotes stacking in column
vectors.

Fig. 6. Specific structure of the TD model. The ⊕ represents elementwise
addition.

Also, as seen in Fig. 5, the MLP block consists of two
linear transform layers and a Gaussian error linear unit (GELU)
function. Formally

MLP
(
T (l−1)

)
= φ

(
T (l−1)W1

)
W2 (14)

where W1 and W2 are the projection matrices in the linear layer,
respectively, and φ(·) is the GELU function.

E. Transformer Decoder

With the PS-ViT [19] module, we have extracted two new sets
of tokens Ni(i = 1, 2) with context information for the bitem-
poral images. These tokens allow the network to better focus
on regions where changes occur between bitemporal images.
Then, we need to project these high-level semantic information
into pixel space to obtain pixel-level features of the image.
Therefore, we use the improved Siamese TD [44] to refine the
image features for each temporal, allowing the network to clearly
distinguish the difference between the two new feature maps
generated. The detailed operation is shown in Fig. 6. First, we
represent the feature mapsXi(i = 1, 2) by two sequences. Then,
improved TDs obtain refined feature mapsZi(i = 1, 2) based on
the association of each pixel with each semantic token Ni.

As can be seen in Fig. 6, our TD has a similar structure to
the encoder layer, consisting of ND layers of multihead cross
attention (MCA) block and an MLP block. Also, an LN block
is used before both MCA and MLP. Here, we do not use the
MSA block to avoid too much computation of dense information
between pixels inside Xi. For the input of the MCA block, it is
different from the input of the MSA block in the transformer
encoder. We consider that the compact semantic token can be
used to represent each pixel on the feature map. Therefore, we
use the pixels in the original image features Xi(i = 1, 2) as
query (Q) and tokens Ni(i = 1, 2) as key (K) and value (V ). In
each layer l, MCA can be expressed by the following formula:

headj = Atten
(
Xi,(l−1)W

Q
j ,MiW

K
j ,MiW

V
j

)
(15)

MCA(Q,K, V ) = Concat (head1, . . ., headh)W
O (16)
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Fig. 7. Detailed structure of the CGRM. Take contour map and region map as
inputs to generate high-quality feature maps.

where WQ
j , WK

j , and WV
j denote the weights of the linear layer

of the jth head to the maps Q, K, and V , respectively. h is the
number of attention heads, WO is the weight of the last linear
layer in the MCA, and Concat(·) denotes stacking in column
vectors.

F. Contour-Graph Reasoning Module

Since the initial features Xi(i = 1, 2) of our obtained bitem-
poral images contain more semantic and global information,
but lack image details, only the approximate area where the
object has changed can be estimated. Therefore, we first use the
Siamese FFM to fuse the low-level semantic feature information
in each temporal and use the rich texture, edge, and other
features in it to generate rough initial contour prediction maps
Ci(i = 1, 2). The details of the FFM are shown in Fig. 2(b).
Then, we feed feature maps Xi(i = 1, 2) with more semantic
information and initial contour maps Ci(i = 1, 2) containing
detail information in each temporal to the Siamese CGRM [20].
The aim is to learn the intrinsic graph representation to capture
the semantic relationships between regions and contours. The
overall composition architecture of the CGRM is shown in Fig. 7.
It can be seen that the CGRM block consists of three main parts:
contour-guided graph projection, graph reasoning, and graph

reprojection. In this way, the CGRM can map the original feature
map to vertices guided by contour maps and interpret the rela-
tionships between vertices in the graph. Then, the learned graph
representation is reprojected to the pixel space of the original
feature map, thus reducing the boundary error, enhancing the
feature representation, and obtaining a more accurate feature
map.

1) Contour-Guided Graph Projection: According to Fig. 7,
we use the initial contour maps Ci ∈ RHW×2(i = 1, 2) and the
region feature maps Xi ∈ RHW×C(i = 1, 2) as the input of the
CGRM block, where H and W are the height and width of the
original image, respectively, and C is the number of channels.
In this section, the most important content is to construct the
projection matrices Pi(i = 1, 2) by mapping Xi to the vertices
of a graph with Ci as a priori. Therefore, we first downscale
the region feature maps Xi using 1× 1 convolution layer to
obtain the new features Hi ∈ RHW×T (T < C, i = 1, 2). To
facilitate the computation, we make the dimensionality of the
contour maps Ci consistent with that of Hi. Then, Hi and
Ci perform Hadamard product operation to fuse the contour
information into the projection. Our purpose of using Hadamard
product is to assign weights to the features of contour pixels,
so that the pixel information in the contour feature map can
be made to have a larger weight. Next, the anchor points of
the vertices are obtained by averaging the pooling layers with
span s and size 6× 6. Here, the anchor point we mentioned
is the center of each pixel region. Subsequently, we transpose
Hi and multiply the result of the transposition with the anchor
points to capture the similarity between the anchor points and
each pixel. Finally, we use the softmax function to normalize
the result of the phase multiplication to obtain the projection
matrices Pi ∈ RHW/s2×HW (i = 1, 2). It can be expressed as

Hi = ϕ (Xi) (17)

Pi = softmax
(
σ (Hi � Ci) (Hi)

T
)

(18)

where ϕ(·) is the 1× 1 convolution layer, σ(·) denotes average
pooling operation, and � represents the Hadamard product. In
(18), the contour attention and the pooling operation are the
two key steps. The contour attention emphasizes the feature
information of the contour by assigning greater weights to
the contour pixels. The pooling operation eliminates redundant
information and obtains a compact feature representation.

After we obtain the projection matrices Pi, we project the
region feature maps Xi onto the image domain as follows:

Ji = Piφ (Xi) (19)

where φ(·) denotes the 1× 1 convolution operation. The projec-
tion operation in (19) allows aggregating pixels that share similar
features at each node, i.e., subregions in the image can be rep-
resented intrinsically by vertices. Therefore, we associate sim-
ilar pixels with relevant regions by introducing contour-guided
graph projection to obtain the features of projected vertices in
graph Ji ∈ RHW/s2×K(i = 1, 2).

2) Graph Reasoning: After we get the vertex features, we
need to further learn the connectivity between vertices in Ji, i.e.,
the relationship between region features and contour features.
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Furthermore, these relations can be reasoned about during the
propagation of information between vertices, so that higher
level semantic information can be learned. Based on the above
considerations, we use a single-layer GCN to implement it. In
essence, the GCN is a first-order local approximation of spectral
graph convolution. As shown in Fig. 7, we feed the vertex
features in Ji into the GCN to obtain the graph representations
Ĵi ∈ RHW/s2×K(i = 1, 2). It can be expressed as

Ĵi = δ [(I −A)Piφ (Xi)W ] (20)

where I denotes the identity matrix, A denotes the adjacency
matrix of the learning graph connection, W is the weight of the
GCN, and δ(·) denotes the ReLU activation function. Note that,
similar to [63], A is randomly initialized and learned from the
vertex features.

3) Graph Reprojection: We need to reproject the learned
graph representations Ĵi into the original pixel space in order
to obtain the final feature maps Yi ∈ RHW×C(i = 1, 2). Ac-
cording to Fig. 7, we first transpose the projection matrices
Pi. However, we consider that Pi are not square matrix and
the calculation steps are more complicated. Therefore, we use
the reprojection matrices [64] as the transpose matrices of Pi.
Then, Ĵi are multiplied with Pi

T , i.e., the graph representations
are reprojected to the pixel grid. Immediately after, we use the
convolution operations of 1× 1 to add feature channels that
are consistent with the region feature maps Xi. Finally, we add
the original region feature maps with the refinement features
obtained after reprojection, and the resulting sums are used as
the output pixel-level feature maps Yi. It can be expressed as

Yi = Xi + ϑ
(
(Pi)

T Ĵi

)
(21)

where ϑ(·) denotes the 1× 1 convolutional layer.

G. Network Details

As shown in Fig. 2(a), we perform pixel subtraction operations
on the feature mapsZi(i = 1, 2)output by the TD and the feature
maps Yi(i = 1, 2) output by the CGRM to obtain two feature
difference maps: Z, Y ∈ RH0×W0×C (H0 and W0 are the height
and width of the original image, respectively). Then,Z andY are
connected together to obtain the feature map M ∈ RH0×W0×C .
In addition, a PM is added to make better use of the extracted
high-level semantic features. The model uses a very shallow
FCN for change discrimination to generate the predicted change
result M ∗ ∈ RH0×W0×2. The formula is expressed as follows:

M ∗ = σ (g (|Z1 − Z2|+ |Y1 − Y2|)) (22)

where g(·) : RH0×W0×C ⇒ RH0×W0×2 is the change classifier,
and σ(·) denotes a pixelated softmax operation on the channel
dimension of the classifier output. Our change classifier mainly
consists of two 3× 3 convolutional layers and batch normaliza-
tion.

For the selection of the loss function, we use the minimized
cross-entropy loss to optimize the network parameters. The loss

function is defined as follows:

L =
1

H0 ×W0

H,W∑
h=1,w=1

l (Phw, Yhw) (23)

where l(Phw, y) = − log(Phwy) is the cross-entropy loss, and
Yhw denotes the label of the pixel at position (h,w).

IV. EXPERIMENTS

In this section, we detail the process of verifying the proposed
method on multiple change detection datasets and proving its
effectiveness and rationality. First, we introduce the three ex-
perimental datasets used, namely, the CDD dataset [65], the
LEVIR-CD dataset [9], and the WHU dataset [5]. Then, the
implementation details of the experiment are described, which
include the experimental settings, evaluation metrics, and com-
parative methods. Immediately after, we analyze the experimen-
tal results qualitatively and quantitatively on each of the three
public datasets. In addition, we design ablation experiments to
verify the rationality of the network structure and the function
of each proposed module. Finally, we visualize the feature maps
of the network model in several main stages.

A. Datasets

1) CDD Dataset: The CDD dataset was proposed by Lebe-
dev et al. [65] in 2018. The dataset has 11 pairs of multispectral
images, including seven pairs of images of different seasons with
a size of 4725× 2200 pixels and four pairs of images with a size
of 1900× 1000 pixels. The spatial resolution of these images
ranges from 3 to 100 cm per pixel. Since the size of the image
pairs is too large for direct processing, the authors crop these
11 pairs into image pairs of 256× 256 pixels in size without
overlapping areas. A total of 16 000 pairs of bitemporal remote
sensing images are generated, of which the numbers of training
dataset, validation dataset, and test dataset are 10 000, 3000,
and 3000, respectively. Some examples in the CDD dataset are
shown in Fig. 8(1)–(3).

2) LEVIR-CD Dataset: The LEVIR-CD dataset is a building
change detection dataset proposed by Chen and Shi [9] in 2020.
The dataset consists of 637 pairs of images, of which the default
numbers of training, validation, and test datasets are 445, 64, and
128, respectively. The spatial resolution is 0.5 m/pixel, and the
image size is1024× 1024pixels. Considering the training mem-
ory consumption problem, we crop each image in the dataset into
16 subblocks of 256× 256 pixels size without overlapping areas
according to the segmentation criterion in [9]. Thus, we obtain
7120, 1024, and 2048 pairs of images for training, validation, and
testing, respectively. Some examples in the LEVIR-CD dataset
are shown in Fig. 8(4)–(6).

3) WHU Dataset: The WHU dataset [5] is a building change
detection dataset proposed by Wuhan University. The dataset
was collected from two aerial remote sensing RGB images of the
Christchurch, New Zealand area in 2012 and 2016, respectively,
with a size of 32 507 × 15 354 pixels and a spatial resolution of
0.075 m/pixel. Considering that the original image is too large,
direct use for network training will result in insufficient video
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Fig. 8. Examples of CDD dataset (1)–(3), LEVIR-CD dataset (4)–(6), and WHU dataset (7)–(9). (a) Remote sensing image at the moment of T1. (b) Remote
sensing image at the moment of T2. (c) Ground truth.

memory. We crop the two images into pairs of 256× 256 pixel
size without overlapping areas. Then, we randomly divide the
cropped images into three parts 6096, 762, and 762 in the ratio
of 8:1:1, which are used as the training dataset, test dataset, and
validation dataset, respectively. Some examples in the WHU
dataset are shown in Fig. 8(7)–(9).

B. Implementation Details

1) Experimental Settings: Our experiment is based on the
Ubuntu 18.04 operating system, and the deep learning frame-
work adopted is Pytorch, written in python. The training, val-
idation, and test of the model are carried out on a server with
multiple NVIDIA RTX 2080Ti graphics cards.

In the training process, the model uses stochastic gradient
descent as the optimization algorithm, setting the parameter
momentum = 0.9 and weight decay = 0.0005. The initial
learning rate is set to 0.01 for all three training datasets, and 200
epochs are trained for each dataset. Considering the limitation
of memory capacity, the batch size of all datasets is set to 8.

2) Evaluation Metrics: The purpose of change detection is
to determine the changed pixels and the unchanged pixels. In
essence, it can be classified as a binary classification problem.
We use evaluation metrics include overall accuracy (OA), inter-
section over union (IoU), precision (P), recall (R), and F1-score
(F1), which can reflect the performance of the proposed method
in several dimensions. They are expressed as follows:

P =
TP

TP + FP
(24)

R =
TP

TP + FN
(25)

F1 =
2PR

P + R
(26)

IoU =
TP

TP + FP + FN
(27)

OA =
TP + TN

TP + TN + FP + FN
(28)

where TP (true positive) indicates the number of pixels where
the change is correctly detected, TN (true negative) indicates
that the number of pixels with no change is correctly detected,
FN (false negative) indicates the number of pixels that actually
changed but no change was detected, and FP (false positive)
indicates the number of pixels that did not actually change but
were detected to have changed.

Among the above metrics, precision (P), recall (R), and OA
are the most commonly used metrics in binary partitioning
problems. F1 is a comprehensive measurement metric, which
performs weighted average reconciliation on precision and re-
call. IoU indicates the degree of overlap between the pixel
area predicted to have change and the real change pixel area.
Therefore, F1 and IoU can better reflect the comprehensive
performance of the model.

3) Comparative Methods: To verify the effectiveness and
superiority of our network model, we selected nine recent
deep-learning-based change detection methods as comparative
methods. These include FC-EF [66], FC-Siam-conc [66], FC-
Siam-diff [66], SNUNet [67], DTCDSCN [11], IFN [12], RDP-
Net [68], BIT [18], and ChangeFormer [69]. The following is a
brief introduction to each method.

FC-EF [66] extracts multiscale features through the U-net
structure that connects bitemporal images together as the input
to the network. FC-Siam-conc [66] is an extension of FC-EF.
Superposition is performed in the channel dimension as a jump
connection in the U-net structure. FC-Siam-diff [66] is an-
other extension of FC-EF. The absolute value of the difference
value is used as a jump connection in the U-net structure.
SNUNet [67] uses the Siamese UNet++ network [40] as a
feature extraction tool and uses the integrated channel attention
module to refine the features at different levels. DTCDSCN [11]
contains two encoding branches and one decoding branch and
adds a dual-attention module in the decoder part to extract
more context features. In addition, to ensure the fairness of
the experimental results, we did not use a semantic segmen-
tation decoder. IFN [12] uses the attention module to fuse the
extracted multilevel deep features with image difference features
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Fig. 9. Change detection of buildings in the CDD dataset by different methods and qualitative comparison of the results. (a) and (b) Remote sensing images
before and after the change, respectively. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-conc. (f) FC-EF. (g) SNUNet. (h) DTCDSCN. (i) IFN. (j) RDPNet.
(k) BIT. (l) ChangeFormer. (m) Ours. In the change map, white pixels indicate actual changes, and black pixels indicate no changes.

and uses deep supervision to train the middle layer of the
network. RDPNet [68] performs nonuniform sampling based
on the importance of individual samples and uses an efficient
edge loss to focus on the detailed information of the bound-
ary. BIT [18] is a transformer-based approach that integrates
Siamese tokenizer and transformer encoder–decoder structures
into a change detection network, thus capturing richer context
information in the spatial–temporal domain. ChangeFormer [69]
is a transformer-based Siamese network. It unifies a transformer
encoder with a hierarchical structure and an MLP decoder so
that multiscale long-range detail information can be efficiently
acquired.

C. Results and Analysis

We compare the nine change detection methods mentioned
above with our method on the CDD, LEVIR-CD, and WHU
datasets, respectively, and analyze the results qualitatively and
quantitatively. In addition, to ensure the accuracy and fairness
of the results, we use the same training and validation datasets
to train the network models for each method, and the same test
datasets for testing. The evaluation results for each method on
each dataset are shown as follows.

1) Evaluation Results on the CDD Dataset: Since the CDD
dataset contains change areas at different scales and a wide
variety of change types, we select three typical scenes of
buildings, roads, and land for change detection, respectively.
Figs. 9–11 show the change detection results of our method
and other advanced methods for different scenes in the CDD
dataset. Although there are obvious geographical differences
between bitemporal image pairs, which are also susceptible
to interference from sensors, sunlight angles, and seasonal

variations, our method can effectively filter out these irrelevant
factors and obtain complete and accurate areas of change.

Fig. 9 shows the change detection results for various building
scenes. As can be seen from the figure, for the first three rows
of small- and medium-sized buildings, most of the methods can
identify the changed areas. For the changes of large buildings
in the fourth to sixth rows, the change results of FC-EF and
DTCDSCN are more fragmented. Although other methods can
obtain the complete change area, some detailed information is
lost, resulting in blurred edges of the change area. Compared
with other methods, our method not only has better ability to
retain detail information at the edges of large-scale change areas,
but also has more complete detection of small scale change areas
(rows 2 and 6 in Fig. 9).

Fig. 10 shows the change detection results of roads. As can be
seen from the figure, FC-Siam-diff, FC-Siam-conc, and FC-EF
show poor results and can only detect the more obvious roads
(rows 5 and 6 in Fig. 10). The change results of DTCDSCN,
IFN, and ChangeFormer show a large number of fragments
although roads are detected (row 4 in Fig. 10). Some of the
roads in the change results of SNUNet, RDPNet, and BIT
are incorrectly detected or not detected (row 3 in Fig. 10).
In comparison, our method can identify more detailed change
information, thus generating high-quality change maps with
clear and continuous boundaries. In addition, the interference of
pseudo change is overcome with better robustness (rows 5 and 6
in Fig. 10).

Fig. 11 shows the change detection results of land. As shown
in the figure, for the first four rows of small- and medium-sized
land changes, the results obtained by the FC-Siam-diff, FC-
Siam-conc, and FC-EF methods are less satisfactory in terms
of visual performance, and only simple areas of change can
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Fig. 10. Change detection of roads in the CDD dataset by different methods and qualitative comparison of the results. (a) and (b) Remote sensing images before
and after the change, respectively. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-conc. (f) FC-EF. (g) SNUNet. (h) DTCDSCN. (i) IFN. (j) RDPNet. (k) BIT. (l)
ChangeFormer. (m) Ours. In the change map, white pixels indicate actual changes, and black pixels indicate no changes.

Fig. 11. Change detection of land in the CDD dataset by different methods and qualitative comparison of the results. (a) and (b) Remote sensing images before
and after the change, respectively. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-conc. (f) FC-EF. (g) SNUNet. (h) DTCDSCN. (i) IFN. (j) RDPNet. (k) BIT. (l)
ChangeFormer. (m) Ours. In the change map, white pixels indicate actual changes, and black pixels indicate no changes.

be identified. The remaining methods are better at identifying
the areas where changes occur. For the large and complex land
changes in the fifth and sixth rows, although these methods can
extract the changed area, our method detects the changed area
of the land more accurately. In addition, our approach performs
better in maintaining internal integrity and recovering details
(rows 4 and 5 in Fig. 11). Therefore, after the above qualitative

analysis, it is clear that the change results obtained by our method
on the CDD dataset outperform other advanced methods in
terms of accuracy and predicted shape, achieving better visual
performance.

To further demonstrate the effectiveness and superiority of
our method, we also perform a quantitative evaluation on the
CDD dataset. The quantitative results of various methods are
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Fig. 12. Change detection by different methods on the LEVIR-CD dataset and qualitative comparison of the results. (a) and (b) Remote sensing images before
and after the change, respectively. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-conc. (f) FC-EF. (g) SNUNet. (h) DTCDSCN. (i) IFN. (j) RDPNet. (k) BIT.
(l) ChangeFormer. (m) Ours. In the change map, white pixels indicate actual changes, and black pixels indicate no changes.

TABLE II
AVERAGE QUANTITATIVE RESULTS OF DIFFERENT METHODS

ON THE CDD DATASET

shown in Table II. As can be seen from the table, our method is
superior to all comparative methods in most evaluation metrics,
with recall, F1, IoU, and OA reaching 93.41%, 95.68%, 92.57%,
and 98.73%, respectively. Compared with other methods, our
method improves at least 1.14% and 2.48% in F1 and IoU
metrics, respectively.

2) Evaluation Results on the LEVIR-CD Dataset: To further
validate that the proposed method has good generalization per-
formance in change detection tasks, we also perform effective
evaluation on the LEVIR-CD dataset. It is worth noting that this
dataset is a building change detection dataset. It focuses only on
building changes and ignores other types of changes.

Fig. 12 shows the change detection results of our method and
other advanced methods in the LEVIR-CD dataset. A qualitative

analysis of Fig. 12 shows that our method predicts the correct
areas of change for both scattered or dense small building change
areas and large building change areas. As can be seen from
the first two rows of the figure, for scattered small buildings,
although all the algorithms can detect the change areas, our
method yields more accurate results with less noise. As can
be seen from the third, fourth, and sixth rows of the figure,
most algorithms do not detect all of the change parts due to
the dense distribution of buildings, irregular changes in shape,
and the interference of more pseudo changes (e.g., road and tree
changes). Even though SNUNet, RDPNet, and ChangeFormer
methods are able to detect all the change areas, there are still
cases of false detections and missed detections. Our method
can be more focused on building changes and can exclude the
interference of other factors, resulting in finer change detection
results. In addition, as shown in the fifth row of the figure, for
large buildings, most of the algorithms obtain change results
that are not clear enough in terms of shape and contour, with
large missed detection areas. Compared with other methods, our
method can better learn the characteristics of buildings, so that
the generated results can maintain accurate edge information
and complete change areas.

Table III shows the quantitative results of various methods
on the LEVIR-CD dataset. As can be seen from the table, our
method achieves the best performance in several evaluation
metrics. Specifically, our method has the best results in pre-
cision, F1, IoU, and OA, reaching 92.51%, 91.59%, 83.50%,
and 99.05%, respectively. Compared with the second-ranked
RDPNet, our method achieves performance improvements of
1.25% and 0.71% in the F1 and IoU metrics, respectively.

3) Evaluation Results on the WHU Dataset: Finally, we
also conduct experiments on the WHU dataset. Similar to the
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Fig. 13. Change detection by different methods on the WHU dataset and qualitative comparison of the results. (a) and (b) Remote sensing images before and
after the change, respectively. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-conc. (f) FC-EF. (g) SNUNet. (h) DTCDSCN. (i) IFN. (j) RDPNet. (k) BIT. (l)
ChangeFormer. (m) Ours. In the change map, white pixels indicate actual changes, and black pixels indicate no changes.

TABLE III
AVERAGE QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE

LEVIR-CD DATASET

LEVIR-CD dataset, the WHU dataset is also a building
change detection dataset that contains only the change areas of
buildings.

Fig. 13 shows the change detection results of our method and
other advanced methods in the WHU dataset. It can be seen that
our method achieves the best visual effect among all the methods
for building changes of different quantities and scales. In detail,
in the first three rows of Fig. 13, the number of change pixels is
relatively small in the whole image and unevenly distributed, and
the shapes of the buildings vary in size. The change detection
results obtained by FC-Siam-diff, FC-Siam-conc, and FC-EF
methods are noisy and contain some unnecessary information.
Other advanced comparative methods are able to detect areas
of change. In contrast, our method generates the most accurate

change maps. In addition, when the number of change pixels
accounts for most of the whole image, that is, the fourth to sixth
rows in the figure, most methods correctly mark the location
of building changes. For densely distributed building change
areas, DTCDSCN, IFN, and BIT methods are able to correctly
mark the change locations, but there are more missed detections
at the edges of the change areas. The change building area
predicted by SNUNet, RDPNet, and ChangeFormer methods
suffers from the problem that the contour segmentation is not
accurate enough. Compared with other methods, our method
not only correctly marks the location of building changes, but
also accurately delineates the boundaries of buildings, enabling
adequate representation of building information.

The quantitative results of the different methods on the WHU
dataset are shown in Table IV. Combining the data in the table
for quantitative analysis of the five evaluation metrics, it can
be obtained that the SNUNet and BIT methods achieve the
best performance in the precision and OA metrics, respectively.
However, our method achieves optimal results in all three metrics
of recall, F1, and IoU, reaching 86.32%, 85.91%, and 75.58%,
respectively. Compared with other methods, our method im-
proves F1 and IoU by at least 1.25% and 1.46%, respectively.

D. Model Efficiency Analysis

In order to further demonstrate the performance of the pro-
posed network model, in addition to the conventional visual and
data comparison of the change detection results of the network,
we also used three evaluation indexes, namely, FLOPs, Params,
and Time, to analyze the efficiency of the network model, in
which FLOPs indicate the number of floating point operations
required to run the network model once. The time complexity
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TABLE IV
AVERAGE QUANTITATIVE RESULTS OF DIFFERENT METHODS

ON THE WHU DATASET

TABLE V
COMPARISON OF THE EFFICIENCY OF DIFFERENT METHODS ON THE

LEVIR-CD DATASET

(length of time) of the model is measured by calculating the
sum of the number of multiplication operations and the number
of addition operations. Params indicates the number of param-
eters of the network model, i.e., the number of parameters to
be learned during the training process, corresponding to the
spatial complexity of the model (the size of the occupied video
memory). Time indicates the time cost required by the network
model to process a single image.

The FLOPs, Params, and Time of our method and other
methods are recorded in Table V. Among them, the smaller
the FLOPs and Params, the less the complexity of the network
model. The smaller the Time, the lower the time cost of the
network model. As can be seen from Table V, compared with
other network models, the network we proposed is in the middle
in terms of FLOPs, Params, and time cost. However, combined
with the previous objective analysis, it is known that our method
achieves the best change detection performance on different
change detection datasets. Thus, our method can achieve a good
balance in terms of model complexity, time cost, and accuracy.
This also reflects the feasibility of our method in change detec-
tion tasks.

TABLE VI
CONTROL OF THE COMPONENT MODULES OF THE NETWORK STRUCTURE IN

THE ABLATION EXPERIMENT

TABLE VII
AVERAGE QUANTITATIVE RESULTS OF THE DIFFERENT ABLATION

EXPERIMENTS ON THE LEVIR-CD DATASET

TABLE VIII
AVERAGE QUANTITATIVE RESULTS OF THE DIFFERENT ABLATION

EXPERIMENTS ON THE CDD DATASET

E. Ablation Study

In our investigation, we conduct ablation experiments on each
component of the network model in order to demonstrate the
design rationality and effectiveness of the proposed method.
Under the premise that the experimental environment, parameter
settings, and picture size are all uniform, we adopt the single-
variable control method and conduct four groups of ablation
experiments separately. The variables controlled for each group
of experiments are shown in Table VI. In addition, in these four
groups of experiments, we use two datasets (LEVIR-CD dataset
and CDD dataset) for training and testing. Tables VII and VIII
show the quantitative results of each set of ablation experiments.

In Experiment 1, we remove the FVT from the original
network to ablate it. Since the function of our FVT is to represent
feature maps with compact semantic tokens, the tokens contain
rich semantic information. As can be seen from the first row of
data in Tables VII and VIII, the network model without FVT
has lower values than the full network model for all evaluation
metrics. For our main evaluation metrics F1 and IoU, the two
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Fig. 14. Change detection results of different ablation experiments on the LEVIR-CD dataset. (a) and (b) Remote sensing images before and after the change,
respectively. (c) Ground truth. (d) No FVT. (e) No PS-ViT. (f) No TD. (g) No FFM+CGRM. (h) Ours. In the change map, white pixels indicate actual changes, and
black pixels indicate no changes.

datasets decreased by 2.04%/1.82% and 1.87%/1.81%, respec-
tively. This proves the rationality of the design of FVT.

In Experiment 2, to demonstrate the effectiveness of the
PS-ViT in the network model, we ablate it. Since PS-ViT uses
a progressive iterative approach to locate the area of change,
the effect of irrelevant changes is effectively avoided. The lack
of PS-ViT module results in the network not being able to
fully extract the spatiotemporal information in the token, which
affects the modeling of the context. Thus, as shown in the second
row of Tables VII and VIII, the network model without PS-ViT is
lower than our method in all the metrics. For our main evaluation
metrics F1 and IoU, the two datasets decreased by 3.69%/4.45%
and 3.95%/5.43%, respectively. This indicates the essential role
of PS-ViT for the overall performance improvement of the
model.

In Experiment 3, we ablate the TD to verify its performance in
the network. Specifically, we use a simple module in the original
network instead of the TD to be able to fuse the tokens from the
PS-ViT with the original features from the feature extractor. As
can be observed in the third row of Tables VII and VIII, the
network model that does not include TD causes some degree
of degradation in all the metrics. This is because the TD uses
cross-attention blocks to project high-level semantic information
into pixel space and generate finer feature maps. For our main
evaluation metrics F1 and IoU, the two datasets decreased by
2.70%/2.28% and 3.49%/3.26%, respectively. This shows that
TD is an essential part of our network model.

In Experiment 4, we regard the FFM and the CGRM as a
whole model and perform an ablation experiment to verify their
effects on the experimental results. The CGRM can combine the
semantic information and the detailed information extracted by
the FFM to fully capture the semantic relationships between
regions and contours. It also improves the accuracy of the
network in processing edge information. Therefore, according to
the data provided in the fourth row of Tables VII and VIII, it can
be seen that the network without FFM and CGRM is degraded in
all the metrics compared to the complete network model. For our
main evaluation metrics F1 and IoU, the two datasets decreased
by 2.28%/2.87% and 2.16%/2.30%, respectively. This shows
that the FFM and the CGRM together can effectively improve
the change detection performance of the network.

In addition, we qualitatively compare the change detection
results of different ablation experiments. Figs. 14 and 15 show
the predicted results of each group of ablation experiments in the
LEVIR-CD dataset and the CDD dataset, respectively. As can be
seen from the two images, the change detection results of the “No
FVT” model contain some unneeded information and misjudge
some changes in the building (e.g., row 5 of Fig. 14 and row 1 of
Fig. 15). The change detection results of the “No PS-ViT” model
have more pseudo changes and poor segmentation of the edges
of the change area (e.g., row 4 of Fig. 14 and row 2 of Fig. 15).
The change detection results of the “No TD” model show a
small amount of fragmentation, and not all of the changes are
detected, and there are some cases of missing detection (e.g., row
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Fig. 15. Change detection results of different ablation experiments on the CDD dataset. (a) and (b) Remote sensing images before and after the change, respectively.
(c) Ground truth. (d) No FVT. (e) No PS-ViT. (f) No TD. (g) No FFM+CGRM. (h) Ours. In the change map, white pixels indicate actual changes, and black pixels
indicate no changes.

Fig. 16. Example of visualizing the main modules in a network. (a) Input bitemporal remote sensing image. (b) Deep features extracted by the Siamese backbone
network (feature extractor). (c) Feature map obtained after CGRM processing. (d) Refined feature map obtained after TD processing. (e) Bitemporal feature
difference map. (f) Predicted change map. The sample is from the LEVIR-CD dataset.

2 of Fig. 14 and row 2 of Fig. 15). The change detection results
of the “No FFM+CGRM” model have more false detections.
Meanwhile, the refinement ability of object edges in the real
change area is weak, and a clear object boundary cannot be
segmented (e.g., row 1 of Fig. 14 and row 3 of Fig. 15). In
contrast, our approach avoids the various problems that arise
in the ablation model mentioned above. The overall effect of

the generated change map is the best, with advantages in both
boundary extraction and false detection.

In conclusion, the qualitative and quantitative analysis of the
results of the ablation experiments illustrates the usefulness of
our method for change detection tasks. Meanwhile, it reflects
the dependence between each module and the rationality and
effectiveness of the complete model design.
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F. Network Visualization

To further understand our network structure, we visualize the
feature maps of several major network modules processed in
the TCIANet model, as shown in Fig. 16. Given the original
bitemporal remote sensing image [see Fig. 16(a)], the Siamese
backbone network (feature extractor) first extracts the high-level
feature mapping [see Fig. 16(b)]. Then, the low-level feature
information extracted from the first three residual layers in the
feature extractor and the semantic information extracted from
the last residual layer are passed through the CGRM to generate
a new feature mapping [see Fig. 16(c)]. Immediately afterward,
we feed the context-rich tokens generated by the PS-ViT to the
TD for processing. The TD projects these semantic tokens into
the pixel space to obtain a refined feature map [see Fig. 16(d)].
Finally, we calculate the feature difference map [see Fig. 16(e)]
and generate the predicted change map [see Fig. 16(f)] by using
the PM.

V. CONCLUSION

In this article, we proposed a TCIANet for remote sensing
image change detection. In the specific network architecture,
we used the FVT to convert the pixel information in the feature
map into compact visual semantic tokens. And the high-level
concept, i.e., the change region existing in the bitemporal image,
was represented by token sets. Next, the PS-ViT was introduced
to reduce the damage of tokenization on the image structure by
adopting a progressive iterative sampling strategy to locate the
discriminative regions. Moreover, the transformer encoder was
used to encode the global context relationships of these token
sets in order to obtain abstract semantic information of feature
images and improve local perception. Then, we used the TD to
project these high-level semantic concepts into pixel space and
refined them, thus making the acquired pixel-level features more
robust and can better reveal changes in the objects of interest. In
addition, the combination of the FFM and the CGRM enhanced
the extraction of texture and detail information and improved the
network’s ability to process edge information. At the same time,
the semantic relationship between regions and contours can be
further obtained to highlight the contribution of important pixels,
thus reducing the boundary error. Finally, through experimental
analysis on three different datasets, it was demonstrated that our
method outperforms other advanced methods both in terms of
visual performance and quantitative evaluation.

In addition, in the future research work, we will further
improve and optimize the performance of the network and apply
it to multiple types of change detection tasks.
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