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Deep Adversarial Cascaded Hashing for Cross-Modal
Vessel Image Retrieval

Jiaen Guo and Xin Guan

Abstract—In recent years, cross-modal remote sensing image
retrieval has attracted a lot of attention in remote sensing (RS)
information processing. It is worth mentioning that land cover
scenes, whether unimodal or cross-modal, are the primary research
contents of remote sensing image retrieval, and there are few studies
on vessel images captured by RS satellites, let alone cross-modal re-
trieval tasks. Vessel images have smaller scale, lower resolution, and
less detailed information than land cover images, so it is difficult to
retrieve the exact images we want. In this article, a hashing method
called deep adversarial cascaded hashing (DACH) is proposed to
address these problems. To extract the subtle and discriminative
features contained in RS vessel images accurately, we build a deep
cascaded network that fuses multilevel features boosted both in
depth and width, and the self-attention mechanism can further
enhance the fused features. Combined with hash learning, we also
design a weighted quintuplet loss to supervise the transition of
discrimination and similarity between different metric spaces, and
reduce cross-modal discrepancy at the same time. In addition, we
apply the deep adversarial constraint to both feature learning and
hash learning, trying to bridge the modality gap and achieve a
cross-modal retrieval as precise as unimodal retrieval. Compre-
hensive experiments on two public bimodal vessel image datasets
compared with several excellent cross-modal retrieval methods are
conducted to demonstrate the effectiveness of our DACH, and the
results show that the proposed method is effective and competitive
on cross-modal vessel image retrieval tasks, outperforming state-
of-the-art methods.

Index Terms—Cross-modal vessel image retrieval, deep
adversarial learning, deep hash learning, multilevel feature fusion.

I. INTRODUCTION

R ETRIEVING interesting target information from massive
ocean monitoring data is a key point of marine situation

awareness, and the rapid development of remote sensing (RS)
technology provides powerful support for accurate observations
and perceptions of the ocean. Under these circumstances, min-
ing and analyzing vessel images can effectively facilitate the
management of RS big data [1].

Nowadays, a large quantity of military and civilian RS satel-
lites bring all kinds of high-quality RS images and promote
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the research on information retrieval indirectly. Emerging tech-
nologies, such as text-based retrieval [2], [3], [4], content-based
retrieval [5], [6], unimodal retrieval [7], [8], [9] and cross-modal
retrieval [10], [11], [12], have brought the RS big data analysis
into a new era. Especially, the development of deep neural
network (DNN) makes it possible to capture the deep semantic
information hidden in RS images, so the retrieval accuracy
has improved significantly. Take the widely-used unimodal RS
dataset UC-Merced for example, Song et al. [13] used a deep
hashing convolutional neural network (DHCNN) for retrieval
and classification and achieve a mean average precision (MAP)
of 98.08% on UC-Merced. Shan et al. [14] carried out retrieval
experiments on UC-Merced and the MAP@20 even reached to
99.7%. In other words, we can get almost everything we want
from huge databases accurately.

Recently, cross-modal retrieval tasks have drawn more at-
tention and researchers start to explore the possibility of re-
trieving relevant scene images from different sources. [15] was
the first attempt for this topic, which proposed source-invariant
DHCNNs to cope with the modality differences, and a bimodal
(panchromatic and multispectral) RS image dataset DSRSID
is also constructed for evaluation. Xiong et al. [16] gave a
basic mapping framework based on cycle-identity-generative
adversarial network, which can generate images into the target
domain, and the MAP on DSRSID is up to 97.55%. Further-
more, in [17], They tried to distill the information of the source
domain images and then migrate the acquired knowledge to the
target domain, so that cross-modal features can get closer with
parameter transferring. The experimental results show that it
can achieve a MAP of 98.98%, even higher than [16]. Another
research [18] by Xiong’s team gave research on cross-modal
retrieval between SAR and optical RS images, and the highest
MAP is up to 87.17%. Based on the above research we can see
that the retrieval between multimodal RS images has developed
quickly and achieved great retrieval results.

Although emerging methods have been proposed for RS
image retrieval, the target level retrieval hasn’t attracted much
attention, and the retrieval for land cover scenes remains the main
research topic. It is worth noting that vessel target is far different
from terrain features, the main differences can be summarized
as follows.

1) Vessel images have lower resolution, smaller size than
land covers, and have more complex backgrounds such as
ports, rocks, waves, clouds, etc.

2) The texture features of vessel images are not significant
and the color information is poor, so there are not enough
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Fig. 1. Different images captured by panchromatic sources.

discriminative details for extraction, only the limited ves-
sel contour and surface features can be used.

3) Vessels are moving targets, causing vessel images to de-
form easily, and different imaging mechanisms of RS
satellites can also lead to misjudgment of vessels of dif-
ferent sizes.

Fig. 1 shows some example images of land covers and vessels
captured by Panchromatic RS satellites. By contrast, we can
see that information contained in vessel images is very poor,
and there lie huge similarities between different vessel images.
Whether it is to extract the features such as color and texture in
advance or to extract the features in an end-to-end manner using
DNN directly, it is very difficult to capture sufficient discrimi-
native information for retrieval. Therefore, it is an arduous task
to achieve an accurate vessel image retrieval. Current research
mainly improves some RS image retrieval methods to adapt to
the particularity of vessel image retrieval. In [19], Hu et al. used
bag of visual words (BoVWs) to describe vessel images and the
improved construction of visual dictionary effectively improved
the efficiency of retrieval. Using BoVW as well, Tian et al.
[20] utilized a convolutional neural network (CNN) to contract
dictionary databases which consist of numerous convolution
features, experiments indicated that the proposed method is
much better than traditional methods. Aside from the research
mentioned earlier, there is not much relevant research on ves-
sel images retrieval. The poor condition makes it necessary
to develop an appropriate retrieval system for marine vessel
targets.

To meet the needs for cross-modal retrieval of RS vessel im-
ages, this article uses dual-stream CNN as the feature extractor
and adopts hash learning to realize rapid retrieval. Firstly, based
on Resnet50 [21], a feature cascaded subnetwork is designed to
enhance the discrimination of extracted features both in width
and depth. This branch can effectively solve the difficulty of fea-
ture extraction from RS vessel images by combining low-level
color and texture features with high-level semantic features of
vessel targets. Second, to realize the rapid cross-modal retrieval
of vessel targets, a hash learning module is constructed to convert
the fused features into high-quality hash codes, and different
constraint ensures the complete transition of similarities and
discrimination from feature space to hash space. Finally, to
eliminate the retrieval difficulties caused by cross-modal dif-
ferences, adversarial learning is introduced to model training,
so that the features and hash codes of different modalities can

compete in their respective semantic space, resulting in a free
transformation between the source domain and target domain,
which can effectively improve the accuracy of retrieval.

The main contributions of this article can be summarized as
follows.

1) As far as we know, this is the first attempt at cross-modal
RS vessel image retrieval. The study provides a basic
framework DACH for the retrieval task at the target level,
and the design of the feature learning module as well as
the introduction of many competitive learning strategies
can meet the needs of fine target image retrieval.

2) We propose a general cascaded fusion network for micro-
target feature extraction, which can extract discriminative
features from coarse to fine layer by layer. In addition, the
self-attention mechanism can help to realize the adaptive
fusion of different levels of features.

3) We design a hash learning module to transfer the metric
space, combined with a new weighted quintuplet loss
which can reduce information loss in the transferring
process and enhance the discrimination of the learned hash
codes.

4) To eliminate the modality gap, we add an adversarial train-
ing mechanism to both the feature learning part and hash
learning part, which can realize the consistent expression
of cross-modal features throughout the retrieval process.

The rest of this article is organized as follows. Section II
summarizes the current research on cross-modal retrieval, hash
learning, adversarial learning, and other related technologies.
Section III introduces the framework of DACH in detail. In
Section IV we analyze the retrieval effect of DACH and compare
it with some state-of-the-art methods. Finally, a conclusion is
given in Section V.

II. RELATED WORK

A. Cross-Modal Retrieval

Unimodal image retrieval is a long-term hot spot and has
attracted a lot of attention. There are two key points to solve
this problem: feature extraction and similarity measurement.
Xiong et al. [17] divided RS visual features into three categories:
low-level; mid-level; and high-level. Before CNN is widely
adopted in the field of computer vision, feature extraction has
long relied on various hand-crafted low-level features, such as
color, texture, and shape, as well as mid-level visual aggregation
features, such as BoVW and fisher vector. However, the extrac-
tion needs to reasonably select appropriate visual description
features from images with different characteristics, which is
a great test for researchers’ domain expertise and engineering
skills, and it is difficult to ensure that the extracted features can
fully describe the characteristics of images. Therefore, feature
extraction of RS images entered a bottleneck before the advent
of CNN, and the retrieval accuracy has not improved for a long
time. CNN provides a new paradigm for visual understanding.
Neural networks composed of a series of convolution layers and
activation layers show strong visual feature description ability,
and the convolution kernels are equivalent to a series of filters,
which can fully extract the features such as color, edge, and
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texture of the images. With the deepening of networks, the
nonlinear fitting ability of networks is enhanced, and the deep
semantic information is extracted as well. Therefore, compared
with the low-level and mid-level features, high-level semantic
features extracted by CNN have stronger representativeness and
interpretability. Nowadays, DNN methods represented by CNN
have been the primary choice for feature extraction [22].

After feature extraction, we need to measure the similarity to
retrieve similar samples in metric space. Generally speaking,
Minkowsky distance and histogram intersection method are
often used for color features, whereas Euclidean distance and
Mahalanobis distance are mainly used for texture features. A
similarity measurement method based on weighted distance was
proposed by calculating the weight of image categories [23], and
the effect is better than the above conventional methods.

When it comes to cross-modal retrieval tasks, there is another
challenge besides the above two key problems: the modality
gap between heterogeneous data [24]. Satellites in different
imaging mechanisms provide RS images with different char-
acteristics. For example, multispectral (Mul) images usually
have four channels, whereas panchromatic (Pan) images only
have one. Synthetic aperture radar (SAR) images can work
under any weather conditions, while visible images are easily
affected by clouds, light, and seasons, etc. Chaudhuri et al. [25]
tried to learn a discriminative common feature space for all
modalities, and the proposed CMIR-NET can handle the Pan–
Mul and image-audio cross-modal retrieval tasks adaptively.
Based on hashing methods’ powerful computati on efficiency,
a fusion-based deep hashing method MsEspH [26] was pro-
posed for retrieval between very-high-resolution (VHR) optical
images and SAR images. Unlike conventional methods that
used shared feature space to model the modality interactivity,
MsEspH used Mul images generated by a generative adversarial
network (GAN) to remove the spatial-spectral discrepancies,
and an explicit semantic preserving-based function was used to
preserve the intraclass similarity and interclass discrimination.
What is more, a VHR-SAR bimodal dataset was constructed for
evaluation.

As text and audio can also describe images, some predeces-
sors conducted some research on visual-text and visual-audio
retrieval. Ning et al. [27] considered that the intramodality
and nonpaired intermodality representations also play an im-
portant role in semantic consistency modeling, so they built a
consistency representation space to model these relationships,
which is more effective than several excellent methods. DTBH
[28] combined hash learning and relative semantic similarity
relationship learning in an end-to-end network and improved the
triplet loss with a selection strategy and a regularized method
for visual-audio retrieval. In the domain of multimedia, the
explosion of multimodal data also promotes the development of
retrieval technologies, and a large number of advanced methods
[29], [30], [31], [32] have emerged, which are roughly similar to
the RS methods and greatly improve the accuracy of cross-modal
retrieval. However, the target level retrieval hasn’t attracted
much attention yet, several published studies [33], [34], [35],
[36], [37] mainly focus on unimodal tasks, and the cross-modal
retrieval of target images needs further concentration.

B. Deep Hash Learning

The mapped features in Hamming space are all binary forms,
so the feature transformation from Euclidean space to Hamm-ing
space can reduce the storage costs and improve the retrieval
speed tremendously, which received extreme attention during
the last decade. Benefitting from the rapid development of
DNN, deep hash learning shines brightly in retrieval tasks, and
developed many branches such as supervised hashing [38], [39],
semisupervised hashing [40], [41], unsupervised hashing [42],
[43], asymmetric hashing [44], [45], discrete hashing [46], [47],
and so on. To directly use hash codes instead of original features
to achieve an accurate and efficient retrieval, the most funda-
mental thing is trying hard to ensure that the intraclass similarity
and interclass discrimination hidden in original features can be
transferred smoothly and completely into the generated hash
codes. Many researchers have made many meaningful attempts
to solve this. Cheng et al. [48] tried to adopt hash learning to
multilabel RS image retrieval and proved the feasibility with the
proposed semantic-preserving deep hashing model. Using labels
as supervised information, Li et al. [49] built a similar hashing
network to common hashing methods and added an evaluation
on classification. Ji et al. [50] and Nie et al. [51] explored the
effectiveness of multiscale features on retrieval, both of them
extracted multiscale features based on DNN and embed the mul-
tiscale semantics into the hash codes, which are more expressive
in feature extraction. The method in [52] mainly focused on
the quantization loss caused by relax constraint of hash code
and the proposed DADH directly learning the discrete binary
codes without relaxation. What is more, Li et al. [53] and Meng
et al. [54] learned hash codes in an asymmetric way, which only
need to learn the hash function of query samples, and directly
learn the hash code of the database, which further improves the
training and retrieving speed. The above research shows that
hashing methods’ effectiveness in improving the retrieval speed
is amazing and they are generally common in principles, which
all rely on DNNs and appropriate loss constraints to ensure the
consistency between feature space and hash space. Similarly, we
can also migrate the above methods to RS vessel image retrieval
tasks, but how to better model the similarity between different
spaces still needs further exploration.

C. Deep Adversarial Learning

Adversarial learning is derived from GAN, which is composed
of a generator and a discriminator generally. The unsupervised
architecture makes it possible to regenerate fake samples similar
to real samples under an adversarial training strategy, realizing
the confusion of samples finally. GAN’s powerful ability of
modeling data distributions makes it popular in many fields and
developed greatly in recent years.

When replacing samples with modalities, we can apply ad-
versarial learning to cross-modal retrieval tasks. Many papers
draw lessons from the adversarial idea of GANs, and they train
different modalities in an adversarial way that can compete with
each other, and all of them can learn better representations of
the opponent modality. Hu et al. [55] used a modality-specific
discriminator to eliminate the cross-modal discrepancy and
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Fig. 2. Framework of our proposed DACH.

presented a multimodal discriminative analysis loss optimizing
the above process. In another research, Hu et al. [56] designed
two modality-specific generators, two modality-specific dis-
criminators, and a cross-modal discriminative mechanism to
achieve a confusion of modalities, and abundant experiments
on several multimedia datasets proved the proposed method’s
effectiveness. Using GAN learning the shared feature semantic
space of all modalities, Hong et al. [57] easily handled the
fine-grained cross-modal retrieval tasks. Using GAN as well,
the method in [58] paid more attention to feature semantic
correlation in feature transformation, and enhanced the above
process by sampling more semantically related and unrelated
samples. Wu et al. [59] was one of the early attempts to bring
adversarial learning to cross-modal hash methods. Specifically,
it maximized the semantic relevance of different adversarial
networks and used a self-supervised network generating label
information to supervise the exploration of high-level seman-
tic correlation. Huang et al. [60] designed a transfer network
similar to distillation networks to transfer the knowledge from
source to target domain, and the adversarial learning is used
to improve the semantic consistency of cross-modal features.
Besides, some other hashing methods [61], [62], [63], [64]
adopted adversarial learning as well to eliminate the modal-
ity gap and enhance semantic correlation and consistency, but
most of the above methods only impose adversarial learn-
ing on feature extraction or hash code generation separately,
thus the similarity between feature space and hash space can-
not be well maintained, causing information losing to some
extent.

III. PROPOSED METHOD

This section introduces the details of the proposed DACH.
First, we make a preliminary of the cross-modal vessel image re-
trieval and give the formulation of the problem and some descrip-
tions in math terms, then we introduce the feature learning part,
hash learning part, and adversarial learning part successively,
finally we discuss the optimization and some implementation
details of the proposed DACH.

Fig. 2 shows the basic framework of our proposed method,
which consists of three parts mentioned above. We call the
feature learning part attention-based cascaded network (ABCN)
and use it to extract discriminative features from RS vessel im-
ages. The deep hashing network (DHN) is designed for mapping
the extracted features into compact hash codes, and the deep
adversarial network (DAN) tries to enhance modal similarity in
the above two subnetworks.

A. Problem Formulation

Without losing generality, in this article, we mainly focus
on the bimodal retrieval tasks. Assuming we have a collection
of paired bimodal RS image samples, donated as D = {di}Ri=1,
di = {mi, ni}, wheremi donates the image of the first modality
in ith paired instance, and ni donates the image of the second.

The bimodal dataset D assigns each bimodal image pair a
semantic label additionally, donated asL = {li}Ri=1, where li =
[li1, li2, . . . , lic] is the label vector of instance i, and c is the total
number of D’s semantic categories. If instance di belongs to the
jth semantic category, lij = 1, otherwise lij = 0. The goal of
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Fig. 3. Structure of DHCNN.

DACH is to learn the feature extraction functions F ∗ and hash
code mapping functions H∗{

f ∗c,f
∗
cas = F ∗(∗,Θ∗)

h∗ = H∗(f ∗cas, θ
∗) (1)

where ∗ ∈ m,n, f ∗cas ∈ Rd, and f ∗c ∈ Rc, respectively, donates
the learned cascaded features and predicted probability distri-
bution of bimodal images, and h∗ ∈ RK donates the learned
continuous hash code, Θ∗, θ∗ are trainable parameters of cor-
responding functions. As the bimodal paired instances di =
{mi, ni} are all images, we transform them to the same length
d and K both in feature space and hash space, so that we can
compare them directly in the metric space. The hash code in
discrete form for retrieval is generated by an element-wise sign
function sign(·)

b∗ = sign(h∗) ∈ {−1, 1}K . (2)

B. Attention-Based Cascaded Network for Discriminative
Feature Extracting

We have introduced the difficulties of the comprehensive
feature extraction of RS vessel images in Section II-A, based
on those analyses, the main challenge is to capture the com-
plex information contained in images in a coarse-to-fine way
completely. The structure of DNN exactly provides us with con-
venience to solve the above challenge, so we use DNN’s special
structure to construct the cascaded subnetwork to enhance the
feature representation. What is more, the self-attention module is
used to determine the weight of different levels of features and
adjust them to the proper dimension. Now we introduce their
detailed structures. Without special instructions, the following
math terms all refer to the ith instance, and we omit the subscript
i for simplicity.

1) Deep Cascaded Network: To explore the multiscale infor-
mation embedded in RS vessel images, we use Resnet50 as the
backbone to extract features layer by layer. As is shown in Fig. 3,
Resnet50 transforms images with one preprocessing stage and
four transformation stages. The pre-processing stage converts
the input image with a size of 3×224×224 into 64×56×56,
and the following four stages can extract the discriminative
features with the deepening of the network. It is known that the

higher-level feature has more semantic information, whereas the
lower-level contains more visual information like texture, shape,
and color. The ABCN tries to integrate them to achieve a more
discriminate and comprehensive feature representation.

Fig. 3 shows the specific structure of the ABCN and the
left part is the deep cascaded network. We use the different
processing stages in Resnet50 to build the cascaded network and
integrate the features in two levels: depth and width. In specific,
the four transformation stages in Resnet50 use the convolution
kernels to halve the size and double the dimension of the feature
maps from the previous stage, so we learn from the idea of
Resnet50’s shortcut connections and integrate the information
extracted from the previous stage and the current stage with a
batch normalization (BN) layer and a 3×3 convolution kernel
[stride = (22)]. The feature extracted from the current stage can
be re-expressed as follows:

f̂ ∗cur = conv
(
BN

(
f ∗pre

))
+ f ∗cur (3)

where conv indicates the convolution operation with a 3×3
convolution kernel and 2×2 stride, f ∗cur and f ∗pre indicates the
feature map of the current stage and previous stage, respectively.
f̂ ∗cur is the feature map of the current stage after summing. So,
the final feature representation at the depth level f ∗dep can be
formulated as follows:

f ∗dep = BN(conv (BN (conv (BN

× (conv (BN (f ∗1)) + f ∗2)) + f ∗3)) + f ∗4) (4)

where f ∗1,f
∗
2,f

∗
3,f

∗
4 are the multiscale features extracted from

the corresponding stage, and the final feature map size is
2048×7×7, equal to f ∗4. The BNs and convs of different stages
cascading with each other by orders constitute a cascaded sub-
network eventually. We can see that the final output feature map
is fused with multiscale information, which enhances the feature
representation greatly in depth.

Besides, we also enhance the feature representation in width.
In specific, we use an adaptive average pool to compress the size
of feature maps to 1×1 and restrain the useless features, and
then we concatenate different features in channel. For clarity,
the final feature representation in width level f ∗wid is formulated
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as follows:

f ∗wid = AAP (f ′∗
1)⊕AAP (f ′∗

2)⊕AAP (f ′∗
3)⊕AAP (f ′∗

4)
(5)

where f ′∗
1,f

′∗
2,f

′∗
3,f

′∗
4(f

′∗
4 = f ∗dep) are the feature maps after

BNs, "⊕" indicates the concatenation operation, and the final
number of feature channels is 3840(256 + 512 + 1024 + 2048).

The final feature representation at the width level contains
not only low-level features but also features enhanced at depth,
so we use it as the final enhanced feature and feed it into the
self-attention module for further optimization.

2) Multihead Self-Attention Module: The core idea of the
self-attention mechanism is to assign weights to different feature
vectors and capture the internal correlation of features. The
cascaded featuref ∗wid contains abundant multiscale information,
which is captured in a balanced way. Whereas some of them
are redundant and helpless, and features of different levels have
different contributions to retrieval. Under these circumstances,
the main idea of the application of the self-attention module is
trying to focus on the important and discriminative information,
and eliminate redundant information. It is generally accepted
that the effect of the multihead self-attention mechanism is better
than that of a single head because the former can capture more
information, so we apply a multihead self-attention module to
enhance the multiscale information even further.

As explained in [65], the attention module tries to map a
query and a set of key-value pairs to an output, and the output
is computed by weighting the values, where the weights are
computed by the query and the corresponding key. The above
process can be formulated as follows:

Attention (Q∗,K∗,V ∗) = softmax

(
Q∗K∗T
√
dk

)
V ∗ (6)

where dk is the dimension of queries, keys, and values, and
Q∗,K∗,V ∗ are their packed matrix. Indeed, Q∗,K∗,V ∗ are
linear transformation matrices of stacked cascaded feature vec-
tors, where Q∗,K∗ are used to calculate the attention matrix to
obtain the weight, which is then multiplied by V ∗ to obtain a
more discriminative cascaded feature representation. The mul-
tihead self-attention module divides queries, keys, and values
into several heads and calculates the attention vector for them,
and then concatenates them together, which can be summarized
in formulation as follows:{

f ∗cas = Concat (head∗1, . . . ,head
∗
R)W

O∗

head∗r = Attention
(
Q∗WQ∗

r ,K∗WK∗
r ,V ∗W V ∗

r

) (7)

where WQ∗
r ,WK∗

r ,W V ∗
r ∈ Rdk×(dk/G) and WO∗

r ∈ Rdk×dk

are parameter matrices, G is the number of heads, f ∗cas ∈ Rd

indicates the final learned cascaded features. As the attention
mechanism can only deal with feature vectors, before seeding
f ∗wid into the multihead self-attention module, we first need to
flatten it into a vector, and then map it into the dimension we need
through a linear layer when generating queries, keys, and values.
The multihead self-attention module contains trainable param-
eters so that the final attention vector will get more and more
discriminative under the constraints of various loss functions

with training, then we get the enhanced feature representation
for precise retrieval exactly.

To embed the semantics into f ∗cas, We also add a category
attention constraint to the network referring to [66], and utilize
the cross-entropy loss function to increase the discrimination of
different categories of samples and the similarity of similar sam-
ples. In specific, we send f ∗cas to the classifier which consists of
two linear layers, the output of the classifier f ∗c is the probability
distribution for categories. The math definition of attention loss
is

Latt = − 1

R

R∑
(l log (fm

c ) + l log (fn
c )) . (8)

C. Deep Hashing Network for Hash Code Generating

Compared with measuring the similarity between feature vec-
tors in Euclidean space, converting continuous features into hash
code significantly reduces the storage consumption and improve
the correlation speed, so we try to convert the metric space to
achieve a hashing retrieval. As is introduced in Section II-B,
the key to realizing metric space transformation is to ensure that
the similarity and discrimination of features in the original space
can transit to the hash space completely. In Section II-B, we
have designed an attention constraint to embed the semantics
into f ∗cas, and in this section, we try to transfer those similarities
and embedded discrimination through the proposed weighted
quintuplet loss, we also adopt binary constraints to make the
real-valued hash codes follow the discrete uniform distribution
as much as possible. Now, we introduce the DHN in detail.

As depicted in Fig. 2, the f ∗cas obtained in ABCN first trans-
forms into real-valued hash codes h∗ through DHN, which
consists of a fully connected (FC) layer and the Tanh activation
function. The linear layer is employed to resize the feature vector
into the proper length we need, and Tanh can map the real-valued
hash codes close to 0 and 1. It is no doubt that the hash module
causes the information omission and the original feature loss, so
we design a weighted quintuplet loss based on triplet loss to solve
this, which comprehensively considers the samples of the same
modality and cross-modality. Specifically, we build quintuplets
of the first modality in the form (bm, bm+ , bm− , b

n
+, b

n
−) in hash

space, where “+” indicates the instance is semantically relevant
to bm and “-” is on the contrary.

With the quintuplets we demonstrate the novel weighted
quintuplet loss of the first modality as follows:

Lm
qui =

R∑(
max

(
ωH

(
bm, bm+

)− μH
(
bm, bm−

)
+ p, 0

)
+max

(
ωH

(
bm, bn+

)− μH
(
bm, bn−

)
+ q, 0

))
(9)

where p, q are margin parameters, H(·) denotes the Hamming
distance, ω is a weight-control constant larger than 1, and μ is
less than 1. As is shown in Fig. 4, with the same threshold ω
and μ, the distance between similar instances should be smaller
while the distance between unsimilar instances should be larger,
which can facilitate the discriminating ability of the network.

Equation (9) is a function in discrete form, which is hard to
optimize. To avoid the NP-hard problem, we relax the discrete
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Fig. 4. Weighted quintuplets we built in hash space.

hash code to be continuous, and replace b∗ with h∗, so that we
can directly optimize (9). The replaced objective function is

Lm
qui =

R∑(
max

(
ωE

(
hm,hm

+

)− μE
(
hm,hm

−
)
+ p, 0

)
+max

(
ωE

(
hm,hn

+

)− μE
(
hm,hn

−
)
+ q, 0

))
(10)

where E(·) indicates the Euclidean distance. Following the
same manner, the quintuplet loss of the other modality can be
formulated as follows:

Ln
qui =

R∑(
max

(
ωE

(
hn,hn

+

)− μE
(
hn,hn

−
)
+ p, 0

)
+max

(
ωE

(
hn,hm

+

)− μE
(
hn,hm

−
)
+ q, 0

))
(11)

and the total quintuplet loss is the combination of (10) and (11)

Lqui = Lm
qui + Ln

qui. (12)

In (12), continuous hash code is used to approximately replace
the binary codes. In fact, we use binary codes when retrieving,
the quantization loss in the construction of discrete hash code
with the sign function cannot be ignored. In other words, we
need to make the real-valued hash codes as close as binary form,
and we use the binary loss to achieve this, which is defined as
follows:

Lbin =

R∑(
‖bm − hm‖2F + ‖bn − hn‖2F

)
. (13)

D. Deep Adversarial Network for Modality Confusing

In Section III-B and Section III-C, we mainly explore the
maintenance of discrimination and the transfer of similarities,
although the weighted quintuplet loss considers samples from all
modalities, there are still great differences between cross-modal
features and hash codes. Increasing the similarities of cross-
modal samples with the same semantic label and eliminating the
modality gap can improve the effect of cross-modal RS vessel

image retrieval, and following this, we add the deep adversarial
constraint to both ABCN and DHN, trying to achieve a consistent
representation across modalities.

In specific, we modify the generator and discriminator in
GAN and design two discriminators for cross-modal features
and hash codes separately, which are used to distinguish the
belonging modality, and the networks of different modalities are
used as generators. Take the deep adversarial feature learning as
an example, the output cascaded feature fm

cas is considered as the
real feature whereas fn

cas is fake, and the feature discriminator
Df tries to distinguish which one is true. When Df cannot
distinguish features from different modalities, the modalities
confusion is achieved. In other words, the discriminator can
distinguish the differences between different modality features,
and the hash discriminator Dh acts in a similar way to Df . The
above process can be considered as a classification problem, so
we use cross-entropy loss to realize it, and the deep adversarial
loss is formulated as follows:

Ladv = Lf
adv + Lh

adv

= − 1

R

[∑
(log (Df (f

m
cas; Φf ))

+ log (1−Df (f
n
cas; Φf )))+

∑
(log (Dh (h

m
cas; Φh))

+ log (1−Dh (h
n
cas; Φh))

)]
(14)

where Lf
adv, L

h
adv donate the deep adversarial loss of features and

hash codes and Φf ,Φh are trainable parameters of discrimina-
tors.

By optimizing (14), the generators can generate modality-
invariant representations of features and hash codes, when the
boundaries between different modalities disappear, it is much
easier to achieve a precise retrieval.

E. Optimization

In summary, the final objective function includes Latt, Lqui,
Lbin and Ladv four parts and there are ABCN, DHN, and DAN
three modules need to be optimized with training., We combine
ABCN and DHN and optimize them in an end-to-end way, and
the combined loss function is defined as follows:

Lcom = αLqui + βLatt + γLbin (15)

where α, β, and γ are hyper-parameters to control the contribu-
tions to the Lcom, and Ladv is used to optimize DAN separately.

After the combination, there remain two parts to optimize,
and the overall objective function can be formulated as follows:

min
Θ∗,θ∗,Φf ,Φh

(Lcom + Ladv)

= min
Θ∗,θ∗,Φf ,Φh

(αLqui + βLatt + γLbin + Ladv) . (16)

We adopt an alternating strategy to optimize the parameters in
both two parts. In specific, we only optimize the parameters in
one part at a time with the others fixed, and parameters in differ-
ent parts are optimized alternatively. The detailed optimization
algorithm of the DACH is summarized in Algorithm 1, where τ
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Algorithm 1: Optimization for DACH.
Input: The training dataset D and label set L
Output: Parameters Θ∗, θ∗,Φf ,Φh of networks
Initialization: Initialize the network parameters and
hyper-parameters

repeat:
for iteration = 12, …,[R/b] do

Update Θ∗, θ∗ by descending their gradients:
Θ∗, θ∗ ← Θ∗, θ∗ − τ∇Θ∗,θ∗Lcom

Update Θ∗, θ∗ by descending their gradients:
Φf ,Φh ← Φf ,Φh − τ∇Φf ,Φh

Ladv

end
until convergence or reach the maximal training epoch E

is the learning rate, b is the batch size, and the whole network
uses the backpropagation algorithm to update the gradient.

IV. EXPERIMENT AND ANALYSIS

To verify the effectiveness of our proposed DACH on cross-
modal vessel image retrieval tasks, we conduct extensive eval-
uations on two published bimodal vessel image datasets, VAIS
[67] and MPSC [68], the detailed information of the two datasets
is given in Section IV-A, and in Section IV-B we introduce
the implementation details of the DACH and the evaluation
metrics we use in experiments, the following parts are the overall
performance of DACH and some further analysis.

A. Dataset Introduction

1) MPSC: MPSC is acquired by the GF-2 satellite which can
capture panchromatic and multispectral images simultaneously.
The resolution of the panchromatic image is 1 m and that of the
multispectral image is 4 m. Besides, the multispectral images
contain four-band spectral of near-infrared, R, G, and B, whereas
panchromatic images only have one. Li et al. [68] sliced the
images containing vessel targets from the images obtained by
the GF-2 satellite and paired them, they collected 2632 paired
vessel target images in total and divided them into six categories.
They also gave the official division of the training set and the
test set, and 500 paired images are used for testing.

2) VAIS: VAIS is the world’s first published bimodal ves-
sel image dataset in visible (VIS) and infrared (IR) used for
autonomous sea surface vessels, which contains 2865 images
(1623 VIS and 1242 IR) and there are 1088 paired images. The
whole dataset includes 264 uniquely named vessels in total and
the collectors divided them into six coarse-grained categories as
well. Among the VAIS, there are 154 nighttime IR images and
the bounding boxes of the images range from hundreds of pixels
to millions, which makes the feature extraction more challenging
in retrieval tasks. It should also be noted that VAIS is not captured
by RS satellite and we only use the 1088 paired images for
complemental evaluation of the effectiveness of DACH. We
select some representative example vessel images in MPSC and
VAIS shown in Fig. 5, and the detailed statistics of the two
biomodal datasets are given in Table I.

Fig. 5. Examples of the two datasets.

TABLE I
GENERAL STATISTICS OF THE TWO DATASETS

TABLE II
CONFIGURATIONS OF DIFFERENT MODULES

B. Experiment Settings

1) Implementation Details: Before evaluation, the DACH
still needs some preparation to complement the whole frame-
work. Since we use Resnet50 as the backbone for feature ex-
traction, we firstly resize all images into 224×224 and initialize
Resnet50 with weights pre-trained by ImageNet. As for the two
discriminators Df and Dh and the classifier, hash layer, we use FC
layers with active functions to build them, the details are given
in Table II. Regarding the hyper-parameters in DACH, we use
ten-fold cross validation in training and set α = 1.0, β = 1.0,
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γ = 0.1, G = 16, p = 0.3, q = 0.3, ω = 1.04, μ = 0.95 by
default, and the influence of them is analyzed in Section IV-E.

The entire network is trained on a Windows 10 Workstation
with Intel i9-11900K CPU, Nvidia GTX 3090 GPU, and 64GB
RAM in PyTorch, and the Adam(Adaptive momentum) is em-
ployed to optimize the network with a learning rate τ = 0.0001
and a maximal training epoch E = 200, the batch size b is set to
96. The default hash code length K is set to 256 unless otherwise
stated.

To demonstrate our DACH’s effectiveness on cross-modal
vessel image retrieval tasks, we select several hashing and
nonhashing, adversarial and nonadversarial methods for a com-
prehensive comparison. Since there is no relevant research on
this topic and no published retrieval results on the two datasets,
we mainly choose those cross-modal methods that work well or
have open source code in the field of multimedia and RS, which
include DADH [52], AGAH [44], DCMHN [18], MIAN [70],
DSCMR [69], GASAnet [57], DCMR [71], Distillation [17],
MAN [55], SDML [31], and replace all the feature extractors
with Resnet50 pretrained by ImageNet for a fair comparison.

2) Evaluation Metrics: We conduct the following four kinds
of cross-modal vessel image retrieval tasks on the two public
datasets in the experiments.

1) Retrieving PAN samples using MS as queries (M2P).
2) Retrieving MS samples using PAN as queries (P2M).
3) Retrieving IR samples using VIS as queries (V2I).
4) Retrieving VIS samples using IR as queries (I2V).
To verify the retrieval effect of different methods in full views,

we adopt three commonly used evaluation metrics namely, the
MAP, the precision-recall (PR) curves, and the precision at k
(P@k). Given a query instance, p@k indicates the precision of
the top k returned images, before introducing MAP, we first give
the definition of average precision (AP) based on p@k

AP =
1

Q

R∑
k=1

δ (k) p@k (17)

where Q is the number of entities and Q′ is the number of
semantic relevant instances of the query in the database, If kth
instance belongs to the same semantic category with the query,
δ(k) = 1, otherwise δ(k) = 0. Given a query set with W queries,
MAP is defined as follows:

MAP =
1

W

W∑
i

APi. (18)

P@k and R@k can be obtained through the following expres-
sions: ⎧⎪⎪⎨

⎪⎪⎩
P@k = 1

W

W∑
i

(p@k)i

R@k = 1
W

W∑
i

(r@k)i

(19)

where r@k indicates the recall of the top k returned images. The
PR curve can be obtained by varying k.

The three evaluation metrics measure the effectiveness of the
methods in different views, and the higher they are, the more
effective the method is.

TABLE III
COMPARED RESULTS OF DIFFERENT ABCN SETTINGS

C. Effective of Attention-Based Cascaded Network

Before the overall evaluation of DACH, we first quantitatively
evaluates the effectiveness of the ABCN in the following four
forms particularly.

1) ABCN-1: ABCN without feature in depth(directly con-
catenating features without “+”, i.e., f̂ ∗cur = f ∗cur).

2) ABCN-2: ABCN without feature in width(directly using
f ∗dep without concatenating).

3) ABCN-3: ABCN without self-attention module (replacing
with linear layer).

4) ABCN-4: ABCN without deep cascaded network (replac-
ing with ResNet50).

We select MAP as the evaluation protocol and report the
results on two datasets in Table III, where the terms in bold
indicate the best performance.

According to Table III, we can easily conclude that each
component we design in ABCN can contribute to the final
retrieval performance, and the combination of them leads to
optimal results in the above four retrieval tasks. In contrast
with Resnet50, the deep cascaded network brings an 8.0%,
6.0%, and 4.2%, 4.0% improvement in MAP in four retrieval
tasks, respectively. The other components also have consis-
tent advantages over ResNet50, which proves the superiority
of ABCN. That is mainly attributed to the ABCN integrating
the features of different levels in a cascaded structure and the
self-attention module further facilitates the feature fusion. In this
way, abundant discriminative information can be integrated into
the cascaded feature, which helps a precise retrieval.

D. Overall Performance

In this section, we compare our proposed method DACH
with several state-of-the-art methods under the three evaluation
metrics mentioned above. The P@k values are computed and
drawn in Fig. 6, and the MAP results of the two datasets are
summarized in Tables IV and V. As for the PR curve, we
collect experiment data under different retrieval tasks and give
an exhibition in Figs. 7–10.

As given in Tables IV and V, DACH achieves the best results
in all the four retrieval tasks across different hash code lengths
compared with hashing methods, and is superior to the non-
hashing methods as well. The peak value on MPSC can reach
to 68.1% and 64.5% when the length of the hash code is set
to 256, 5.4%, and 3.7% higher than the second-best DSCMR,
and much higher than the hashing methods. Since VAIS has
lower resolutions and fewer training images, it is difficult to
achieve a retrieval as precise as MPSC. However, DACH still
has significant advantages over the compared methods, and the
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Fig. 6. P@k values of different methods.

TABLE IV
MAP OF HASHING METHODS

TABLE V
MAP OF NON-HASHING METHODS

MAP values are 4.1% and 3.0% higher than the second-best. We
can also find that the MAP of M2P is relatively superior to P2M,
and higher values are achieved in V2I than in I2V.

Besides, longer hash codes provide higher retrieval accuracy
generally. In general, due to the information loss in the binariza-
tion process, nonhashing methods usually achieve better perfor-
mance than hashing methods, that is why DSCMR outperforms
the compared hashing methods. Different from conventional
hashing methods mentioned above, DACH tries to improve the
retrieval performance throughout the whole network, including

the component evaluated in Section IV-C and the two-stage
adversarial learning, and all these improvements help DACH
to be competent for vessel image retrieval task.

Moreover, extensive evaluations are conducted and we can
capture the superiority of DACH in Fig. 6 intuitively. Fig. 6
shows the P@k values of all the hashing and nonhashing meth-
ods. Similarly, we can find that the DACH outperforms the
compared methods in all retrieval tasks and the retrieval accuracy
decreases slowly with the increasing of K, while most of the
compared methods decrease sharply or maintain a low precision.
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Fig. 7. PR curves of different methods in 32 b.

Fig. 8. PR curves of different methods in 64 b.

Fig. 9. PR curves of different methods in 128 b.

It is clear that more retrieval quantity means higher retrieval
difficulty, the results show that DACH can adapt to the need
for accurate retrieval of different numbers of images. Although
it decreases when the K rises, it still maintains an obvious
advantage compared with other methods.

To further observe the retrieval behavior of different methods
when K varies, we calculate the PR values and give the PR curves
in Figs. 7–10. The PR curves show that DACH has a higher
retrieval precision than that of the compared methods under the
same recall values in all hash code lengths, and the advantage
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Fig. 10. PR curves of different methods in 256 b.

Fig. 11. MAP on parameters α, β, γ, and G.

is much more obvious when K rises. Take the PR curve on I2 V
as an example, when K is set to 32, the AP of DACH is lower
than that of DSCMR at the beginning, while DACH surpasses
the DSCMR gradually with K rising. The encouraging results of
DACH show its stable performance across different hash code
lengths and consistent superiority across different quantities
of retrieval samples, which demonstrate DACH’s advantage in
effective feature and hash learning.

In order to better visualize the training process, we also give
the loss change of the two biomodal vessel image dataset in
Fig. 13.

E. Parameters Analysis

In this section, we conduct experiments on four retrieval tasks
to comprehensively illustrate the effect of the hyperparameters
we set on the performance. For clarity, we examine the effect of
each hyperparameter on the results separately and divide them
into two parts, the final MAP values under different settings
are exhibited in Figs. 11 and 12 and the line in gray is the
average MAP of the four tasks. As for the hyperparameters
α, β, and γ in (16), we set them to 0, 0.01, 0.1, 0.5, 1, 2, 3,
4, 5 uniformly in the experiment and illustrate their effect on
retrieval.

First of all, we can see that different hyperparameter settings
have the same influence on the four retrieval tasks basically, and
the optimal performance is acquired according to the average
MAP when α, β, and γ are set to 1.0, 1.0, and 0.1, respectively.
Whenα is less than 0.5, we can see that the retrieval performance
is terrible in all the four tasks. Whenα is larger than 1, it achieves
a high and stable retrieval accuracy. As defined in (15),α controls
the contribution of the weighted quintuplets loss to the Lcom,
and a proper value can significantly strengthen the ability of
the intramodality similarity and intermodality discrimination
modeling. In contrast with α, different settings of β and γ
have relatively small fluctuations, but the difference between
different results can still reach as much as 3.85% and 2.96%
in average MAP, which cannot be ignored. To achieve the best
performance, we use the hyperparameter setting based on the
best average MAP to conduct the other experiments. G is the
number of heads in multihead self-attention modules, and it has
been verified in previous experiments that the higher value brings
better performance. Based on the average MAP as well, we set
the final value of G as 16.

Fig. 12 intuitively shows the MAP changes under different
settings of ω, μ, p, and q, which are all hyperparameters in
the weighted quintuplets loss we designed, and we can get the
best parameter settings by analyzing the results. As is shown in
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Fig. 12. MAP on parameters ω, μ, p, and q.

Fig. 13. Loss change of different dataset.

Fig. 12, the best average MAP value is achieved when ω and μ
are set to 1.06 and 0.96, respectively, better than the performance
when ω and μ are both set to 1.00. When ω further rises or μ
continues to decrease, the performance gets worse. The results
confirm that the design ofω and μ is helpful to a precise retrieval
performance. The margin parameters play a similar role as they
can control the distances between positive pairs and negative
pairs across different modalities. According to the average MAP
values, the setting of 0.3 and 0.4 on p and q can yield the best
performance, which is slightly better than the other settings.

F. Time Cost Discussion

As a hashing method, it is necessary to discuss the time cost of
training and retrieving of DACH to examine its computational
complexity. In this section, we record the training time of our
DACH and the compared methods in Table VI, and make a
comparison of retrieving speed between hash codes and con-
tinuous features, the detailed results are given in Table VII. For
a fair comparison, we conduct experiments of DACH and all the
compared methods on the same computing platform and only
count the training time of the networks ignoring the time of data
preprocessing.

TABLE VI
TRAINING TIME OF DIFFERENT METHODS

TABLE VII
RETRIEVAL SPEED OF OUR PROPOSED DACH (UNIT: SECOND)

From Table VI we can see that hashing methods generally
have a lower time cost in training than nonhashing methods,
which means the binary form of features can contribute to faster
construction of the retrieval models. Besides, among the several
well-performed methods, the longer training time brings the
better performance combined with the results in Tables IV and
V. Since DACH consists of three enhanced modules needed
to be optimized, the time cost in training is relatively higher
than the other hashing methods, but the encouraging retrieval
performance makes it acceptable in retrieval tasks.

The advantage of hashing method is mainly reflected in the
retrieval process since the calculation of Hamming distance is
much faster than Euclidean distance. To give a clear comparison,
we count the time consumption of binary hash codes and real-
valued hash codes, what is more, we also conduct time cost
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TABLE VIII
RETRIEVAL PERFORMANCE OF DIFFERENT DACH SETTINGS

experiments on ResNet50 features to further demonstrate the
superiority of DACH. Since the valid set is small, here we use
the whole valid dataset as the query set and count the overall
retrieval time.

As is clearly given in Table VII, the binary hash codes have
the lowest time consumption among the three forms, which
embodies its significant advantage in retrieval, and the longer
hash codes have higher time consumption, while much less than
the increase of the length of the hash codes. In contrast, the
ResNet50 features with a dimension of 2048 have a much higher
time cost, this is because the longer features need more time
for similarity measuring, and the calculation of the Euclidean
distance further increases the time consumption. So that we can
shorten the features into a proper length and convert them into
binary form to achieve a fast retrieval.

G. Ablation Study

In this section, extensive ablation experiments are conducted
to demonstrate the effect of the modules and strategies we
designed in DACH and figure out their contributions. We have
already illustrated the impact of different components in ABCN
on image retrieval in Section IV-C, we mainly focus on the other
two modules. In particular, we redesign the DACH in five novel
forms according to the components in DHN and DAN, which
can be summarized as follows.

1) DACH1: Replacing weighted quintuplet loss with triplet
loss.

2) DACH2: Only imposing deep feature adversarial learning
on training.

3) DACH3: Only imposing deep hash adversarial learning on
training.

4) DACH4: Removing both deep hash adversarial learning
and deep feature adversarial learning in training.

5) DACH5: Removing the category attention constraint.
For a comprehensive comparison, we select MAP and P@k

as evaluation indicators to numerically assess these networks’
retrieval effects on different tasks. The retrieval results are given
in Table VIII.

By analyzing the results we can find that the original DACH
remains obvious advantages over the redesigned DACHs and
achieves the best result in almost all the retrieval tasks under
different evaluation indicators. For further contrast, we can
conclude the several following points. First, the adversarial
learning does bring an encouraging improvement on retrieval,
and the combination of deep adversarial hash learning and deep
adversarial feature learning makes a better performance than
the single one when retrieving and the removal of DAN both
reduce the value of MAP and P@k, which demonstrate that
our improvement on deep adversarial learning is acceptable
and effective. Take the MAP value on MPSC for example,
the implemention of DAN can bring a 3.9% improvement on
M2P and a 3.2% improvement on P2M. Second, the design
of weighted quintuplet loss has superiority compared with the
idiomatic triplet loss, and a 2.5% improvement is achieved both
on M2P and P2M. Since the samples of the same modality and
cross-modality are comprehensively considered when training,
the samples belonging to the same semantic category can get
closer both in feature space and hash space, thus bringing a
better performance in retrieving. What is more, the category
attention constraint also plays an active role in retrieval, as given
in Table VIII, the DACH-5’s performance is slightly inferior to
DACH. This is because the category attention constraint can
embed the semantic information into learned features, which
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is more discriminative in metric space in contrast with features
without embedding, and this can help us retrieve the exact image
we want to a certain extent. Considering all these analyses and
positive results, we can conclude that all the three modules in
DACH can contribute to a better retrieval performance, and the
combination of them makes DACH more competitive in various
retrieval tasks.

V. CONCLUSION

This article presents a DHN DACH based on adversarial
learning to tackle the vessel image retrieval tasks. To overcome
the shortcoming of the conventional DNN in multilevel fea-
ture extraction, ABCN is developed to capture the multiscale
and complex features comprehensively, which can integrate
the abundant discriminate information in a course-to-fine way
and weight the information with a self-attention mechanism to
achieve a robust feature presentation. The DHN is presented
to improve the retrieval efficiency and the novel weighted
quintuplet loss can strengthen the semantic discrimination and
cross-modal consistency to a great extent. What is more, the
adversarial learning imposed on both ABCN and DHN ensures
the smooth transition of the above information. Extensive ex-
periments on the only two public bimodal vessel image datasets
demonstrate that our proposed DACH has superiority over many
state-of-the-art cross-modal retrieval methods in both hashing
and nonhashing, and can achieve competitive performance under
various evaluation metrics.

However, the DACH still has some shortcomings that cannot
be ignored, such as the high time-consuming and the heavy
dependency on large training samples, and these are the urgent
future works for us to solve.
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