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Abstract—Unmanned aerial vehicles (UAVs) are promising re-
mote sensors capable of reforming remote sensing applications.
However, for artificial-intelligence-guided tasks, such as land cover
mapping and ground-object mapping, most deep-learning-based
architectures fail to extract scale-invariant features, resulting in
poor performance accuracy. In this context, the article proposes a
superpixel-aided multiscale convolutional neural network (CNN)
architecture to avoid misclassification in complex urban aerial
images. The proposed framework is a two-tier deep-learning-based
segmentation architecture. In the first stage, a superpixel-based
simple linear iterative cluster algorithm produces superpixel im-
ages with crucial contextual information. The second stage com-
prises a multiscale CNN architecture that uses these information-
rich superpixel images to extract scale-invariant features for pre-
dicting the object class of each pixel. Two UAV-image-based aerial
image datasets: 1) NITRDrone dataset and 2) urban drone dataset
(UDD), are considered to perform the experiment. The proposed
model outperforms the considered state-of-the-art methods with an
intersection of union of 76.39% and 86.85% on UDD and NITR-
Drone datasets, respectively. Experimentally obtained results prove
that the proposed architecture performs superior by achieving
better performance accuracy in complex and challenging scenarios.

Index Terms—Aerial image, convolutional neural network
(CNN), deep learning, mutliscale CNN, semantic segmentation,
simple linear iterative clustering (SLIC), superpixel, unmanned
aerial vehicle (UAV), very high resolution (VHR).

I. INTRODUCTION

OUR world has come a long way since the launch of
the first satellite into space, and we are in an era fifty

centuries ahead of it, significantly changing our daily lives. The
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technological advancement in space technology and remote
sensing (RS) sector can be analyzed from the ever-growing
number of operated satellites around the earth since 1957 till
date. As per one statistic, a remarkable jump of 1070 satellites is
noticed from 2019 to 2020 making the total number of satellites
to 3368, which orbit around our planet earth [1].

A massive number of very high-resolution (VHR) images
are generated on a daily basis by the earth observation satel-
lites, such as the WorldView series, Landsat series, and RE-
SOURCESAT [2], [3]. These captured images have been used
to address many societal issues at a higher level through differ-
ent RS applications. However, certain gaps in satellite-based
RS applications make it difficult to go through the tropical
regions, which are mostly covered by clouds [4]. This opens
up a space for the new edge remote sensors in the form of
unmanned aerial vehicles (UAVs) that can genuinely improve
the spatial, temporal, and spectral resolution of satellite-captured
data at different scales. UAVs can help satellites overcome their
limitations and accomplish particular tasks through real-time
assessment and monitoring actions in different scenarios. These
small devices have taken their usage to a whole different level,
managing various issues of our day-to-day lives through several
RS applications, such as traffic management, urban management
in smart cities, land cover classification, fishery management,
forest area management, etc., at a lower scale as compared to
the satellites.

Mostly, the images captured by the UAVs are of high res-
olution and provide a detailed view of a particular area in a
scene. Among several image data acquisition tasks for UAV RS
images, semantic segmentation is an emerging and challenging
areas for computer vision researchers. Here, the task is to predict
the pixel-level object class according to the semantic information
represented by that pixel in the captured aerial image. Recent
years have witnessed tremendous progress in deep-learning-
based approaches like CNNs, which have proved their signif-
icance in attending semantic segmentation tasks [5], [6], [7].

UAV-based aerial image analysis systems differ from satel-
lite image analysis systems concerning their use cases and
approaches to solving tasks in various application domains.
Some of these applications include detecting objects such as
roads, buildings, vegetation, and vehicles that play a vital role
in critical applications like military target identification and
damage estimation and rescue operations in natural disasters
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[8], [9]. Therefore, developing a robust aerial image segmen-
tation algorithm is needed for such critical tasks. However,
several inherent challenges, such as image resolution, large
field of view (FOV), and diversified and complex backgrounds
make the task more challenging (in UAV-inspired segmenta-
tion tasks). Many popular semantic segmentation frameworks
designed for satellite-captured images are unsuitable for UAV-
borne RS image-based tasks. It is generally due to the specificity
of UAV-captured RS images. Another area for improvement of
these popular approaches is that the purpose of UAV-inspired
RS differs from satellite RS. Satellite-borne RS images focus
on object extraction and land cover analysis in a larger area. In
contrast, UAV-borne RS images are meant to extract information
at a smaller scale in a smaller area. Hence, these large numbers
of high-resolution UAV RS images aim to analyze the objects
more accurately. It is because the UAV-borne RS images possess
richer contextual information to work on addressing the UAV
RS-inspired tasks.

A. Motivation

1) Motivation of Using Superpixel Algorithm: A group of
pixels can be termed a superpixel, where the members of the
superpixels share some common attributes compared to the
nonmembers. As suggested by definition, superpixel techniques
are more beneficial for image segmentation tasks [10], [11].
Superpixel images have several advantages, such as reducing the
computational cost by representing pixels inside a superpixel.
Thus, they can be used to reduce the overhead incurred by the
deep learning frameworks in terms of time and memory. Simi-
larly, superpixels can extract essential regional features, which
are more distinctive than the standard pixelwise features used
in several computer vision tasks. They are adaptive due to their
shape and size, containing more local and spatial features [12].
Thus, having these features, superpixels can be generated at
different scales, which can be used in multiscale-inspired ap-
plications with specific parameter settings [13].

2) Motivation of Using a Multiscale Architecture: The tra-
ditional segmentation techniques usually suffer from their low
generalization ability to produce high-quality segmentation
maps. Thus, developing a deep-learning-based robust frame-
work is essential to strengthening the aerial image segmentation
process. However, certain underlying complications in these
deep learning frameworks could lead to false classification.
The issues lie within the process through which the image
patches are fed to the architecture during the training phase.
The CNN architecture misses many high-level feature sets with
strict image sizes, thereby losing crucial contextual information.
These missing features are essential in multiobject semantic
segmentation, especially in aerial images. The different flight
heights of a UAV can create ambiguity for a model leading to
poor generalization for several small-scale objects. This is where
a multiscale sampling process can become a savior in extract-
ing and gathering the spatial-level object features. Multiscale
features are desirable to realize the abstraction of the image
at different scales. Introducing a multiscaling process to the
CNN framework can help it learn multiple heterogeneous scale-
invariant features, which can lower the misclassification rate.

B. Contribution

In this work, we have proposed a multiscale CNN framework
for UAV-captured images. Additionally, the proposed approach
benefits from the simple linear iterative clustering (SLIC)-
inspired superpixel techniques to generate the superpixel im-
ages, which act as the input for the multiscale CNN architecture.
Some of the major contributions of this work are summarized
as follows.

1) The proposed deep-learning framework is a two-staged
architecture for aerial scene segmentation. The first stage
uses the UAV-captured images to perform coarse-level
segmentation using the SLIC superpixel technique to gen-
erate superpixel images. Superpixels carry more spatial
information than normal pixels and provide a more com-
pact and convenient representation. Hence, they are useful
for computationally demanding applications.

2) In the second stage, a multiscale CNN architecture is
proposed to analyze the given superpixels for pixel-level
classification. Here, the superpixel images are sampled
at different scales to the multiscale module to extract the
scale-invariant features to perform multiclass segmenta-
tion.

3) The proposed model is evaluated over the two UAV-borne
aerial image datasets to ensure the robustness of the pro-
posed architecture in real-world settings.

4) Moreover, the model is also evaluated by changing some
important parameters to show its improved behavior with
the superpixel and multiscale convolution to detect small-
scale ground objects.

The rest of the article is organized as follows: The exist-
ing semantic object segmentation approaches are discussed in
Section II. Similarly, Section III presents the different method-
ologies used in the proposed approach, which is followed by
Section IV. Sections IV and V discuss the detailed structure
of implementation and overview of the obtained results, respec-
tively. Similarly, a discussion section is also added as Section VI.
Finally, Section VII briefly describes the conclusion drawn from
the article.

II. RELATED WORK AND BACKGROUND STUDY

This section briefly discusses the different approaches pro-
posed by the researchers in aerial scene understanding. The
evolution of deep learning and multiscale learning algorithms
toward aerial scene understanding problems are discussed in
this section.

A. Traditional Approaches in Aerial Image Segmentation

Aerial images are the images of the earth captured from above
it, where the spaceborne remote sensors or satellites were the
only option until the UAV-based technology pitched in this work
to leverage the load incurred on a satellite at a lower scale.
These devices have been widely used in various RS applications
such as ground objects detection: cars, roads, buildings, trees,
and pedestrians, which is an essential aspect of many projects
viz. agriculture mapping, urban mapping, forest mapping, etc.
The UAV images are a bit complicated compared to the satellite



BEHERA et al.: SUPERPIXEL-BASED MULTISCALE CNN APPROACH TOWARD MULTICLASS OBJECT SEGMENTATION 1773

images due to the detailed and vast population of diversified
objects, making the task more complex and challenging. Previ-
ously attempted research works by computer vision researchers
are based on the rule-descriptor-influenced methods for object-
level feature extraction, specifically in building extraction [14],
road detection [15], [16]. However, due to poor generalization
concerning aerial data, the hierarchical rule-based approaches
miss out on several significant features. Conventional classifiers
employed machine learning techniques that extract the local fea-
tures from the input pixel intensities through simple arithmetic
combinations [17], [18]. Researchers also proposed discrimi-
nating classifiers like boosting and random forest to evaluate the
redundant local feature maps for training purposes [19], [20],
[21]. In an aerial image segmentation problem, the global fea-
tures are equally essential as local features [22]. In [23], Ortner
et al. have used marked point processes to build architectural
models and road network topologies through probabilistic priors
defined for global knowledge gain. Conditional random fields,
also known as CRFs, are also used for object-level segmentation
and detection from aerial images [24]. Similarly, Wang et al. [25]
have proposed a fusion approach using a superpixel-based la-
beling technique and Markov random field toward aerial video
segmentation.

B. Deep Learning Approaches in Aerial Image Segmentation

Unlike conventional machine-learning techniques, deep-
learning algorithms have no requirement for feature definition
steps. They learn the critical distinguishing features from an
input dataset according to the provided task. These methodolo-
gies were proposed back in the 1980s when there was limited
computing power, and available training data [26], [27]. These
algorithms announced their return [28] in 2012 and achieved
impressive outcomes for the ImageNet challenge [29], creating
hope in the research community with tons of opportunities. Sev-
eral layers are stacked on one another in the proposed baseline
models to learn and analyze the essential local-global feature
sets from the input images. One of the crucial aspects of deep
CNN architectures lies in its ability to parallelize both training
and inference through GPUs.

CNN has started its journey with the image classification
problem, and in a short period, they have been successfully able
to address computer vision problems like object detection [30],
tracking [31], and object-level segmentation [32]. The usage of
convolution network frameworks has not been restricted to clas-
sical image classification tasks but can also be noticed in aerial
scene parsing using RS images [33]. Several common RS tasks
in this domain comprise buildings extraction [34], [35], road net-
works extraction [36], [37], [38], and vegetation extraction [39].
Aerial scene understanding based on an encoder–decoder-based
fully convolutional network (FCN) structure is proposed in [5]
and [40] that yields an explicitly labeled image depicting the
contexts associated with each pixel. Then, the extracted feature
maps propagate through an expansion module to upsample the
reduced image back to the original resolution. In [41], Xie et al.
have proposed a multiscale densely-connected CNN architecture
for RS-based hyperspectral aerial image (HSAI) classification.

Similarly, Fan et al. [42] have presented a superpixel-aided
deep-sparse-representation technique to construct hierarchical
architecture to understand HSAI context information. This gath-
ered information (features) obtained from the multilayered net-
work is concatenated and trained by a support vector machine
classifier. Moreover, UAV usage is increasing for small-scale
applications and collected data have been utilized in many
crucial RS applications. Computer vision researchers [43], [44]
have provided several solution approaches to address the existing
issues using deep learning-based architectures. Authors have
recommended a deep-learning-based framework inspired by
Fast R-CNN and Faster R-CNN for vehicle extraction from aerial
images [45]. The two networks are combined to gather important
feature space, which can be used to detect vehicles semantically.
Moreover, datasets are the backbone of the success behind deep
learning frameworks. A thorough and detailed analysis of the
available UAV image datasets for computer vision researchers to
conduct research toward UAV-inspired applications is presented
in [46].

III. PROPOSED METHODOLOGY

The article proposes a superpixel-aided multiscale deep learn-
ing framework that semantically segments the aerial images
captured by UAVs. This section discusses each module used
in the proposed deep architecture.

A. Overview

The proposed Superpixel_MCNN_AerialSegNet framework
consists of two modules: 1) a superpixel module and 2) a
multiscale CNN module to work on extracting the scale-invariant
features. At the backend of the architecture, the superpixel algo-
rithm works to determine the essential scale-invariant features.
As the first phase of the segmentation process, the superpixel
technique narrows down the texture and color-based features.
These extracted features are considered the input to the sec-
ond phase of the proposed framework, where these superpixel
images are used to produce the final segmentation map. The
superpixel images help the deep learning architecture to be
implemented quickly, reducing the overall training and valida-
tion/testing time (in most instances). The architectural overview
is presented in Fig. 1. Each module of the proposed architecture
is explained in the following sections.

B. Superpixel Method

A number of pixels sharing common characteristics can be
referred to as a superpixel. They can carry more information
than simple pixels and provide a more convenient and com-
pact representation that could be useful for computationally
demanding applications. Some of these applications include
medical imaging [47], object detection, scene segmentation,
video surveillance, etc. Among the superpixel algorithms, SLIC
has been widely used in various application platforms [48], [49].

Generally, SLIC-based superpixel algorithms generate rela-
tively uniform and compact superpixels based on the spatial and
color proximity of pixels in an image plane. Five-dimensional
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Fig. 1. Architectural framework of multiscale CNN architecture.

(5-D) [la β xy] space is utilized by this approach, where [laβ]
represents the pixel color vector and [xy] indicates the position
of a pixel. Hence, it should be normalized so that the Euclidean
distance can be employed in 5D space. Hence, the maximum
spatial distance within a cluster should lie within a sampling
interval S and can be represented as follows:

S =

√
N

K
(1)

where

N number of pixels in the input image;
K number of Superpixels required;
N
K approximate area of a superpixel.

The superpixel algorithm considers the desired number of
superpixels of approximately equal sizes (K). The cluster cen-
ters Ck can be represented as Ck = [lk, ak, bk, xk, yk], where
k varies between a range of 1 to K at a regular interval of S
within a grid. The spatial extent of a superpixel is generally S2

(approximate area of a superpixel). Thus, an assumption can be
made corresponding to its cluster center that associated pixels
fall within a region 2S × 2S area around the superpixel head-on
xy plane. Hence, the normalized distance (Ds) can be calculated
as the sum of the lab color space distance (dlaβ) and XY plane
distance (dxy) normalized by the grid interval S and is given as
follows:

Ds = dlaβ +
(m
S

)
∗ dxy (2)

where

dlaβ =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2

m maximum color distance.

Like spatial distance, the color-related distance plays a crucial
role in estimating the normalized distance (Ds) in the SLIC

algorithm. Estimating color distance is a complex task as the
color-based distance may vary rapidly from cluster to image
and image to image. Thus, to avoid such a problem, a constant
m is introduced that controls the compactness of a superpixel.
The higher the value of m, the more compact the cluster is.
Reducing the compactness factor (m) (lied within [5− 40])
gives us images that are more closely related to the original
images keeping the relevant object features.

The superpixel module acts as the first-level optimizer to
transform complex aerial images into more compact-sized su-
perpixel images. Pixels representing a single superpixel share
similar visual attributes in a superpixel image. Thus, the super-
pixel images carry more information values than the usual ones.
The UAV-based VHR aerial imageries are given as inputs to
the superpixel module to produce the superpixel images using
the SLIC-based algorithm. It is a linear-time algorithm and can
generate superpixel images that are lightweight in terms of mem-
ory space, thus consuming less storage space. They can provide
a compact and convenient representation of standard images,
which can be very useful for computationally demanding appli-
cations that process RS images in a low-bandwidth environment.
Further optimization takes place at the CNN module on these
superpixel images.

C. Convolutional Neural Network

Convolutional neural networks (also known as
CNNs/ConvNets) are enhanced neural networks most
commonly applied to analyze visual images. The structure
of CNN is distinctive; one convolutional layer stacks upon
another, followed by a few pooling layers, and finally, a few
fully-connected layers (for image classification) or upsampling
layers (for image segmentation). The convolutional layer is
the core of a CNN, which extracts the high-level features
through the local perception and weight-sharing mechanism
of the kernels/filters. The pooling layer can be considered



BEHERA et al.: SUPERPIXEL-BASED MULTISCALE CNN APPROACH TOWARD MULTICLASS OBJECT SEGMENTATION 1775

Fig. 2. Generation of images at multiple scales from the superpixel images.

the backbone of CNN used as a stuffing layer of a sandwich
between the two slices of convolutional layers. It is used to
enhance efficiency and avoid over-fitting in training procedures.
It downsamples the input feature map using a nonlinear
max function that reduces the number of parameters to be
used for calculations in the following convolutional layers.
The deep architecture used in the proposed multiscale CNN
(MCNN) approach is an encoder–decoder-based convolutional
framework (also known as AerialSegNet [50]) that is composed
of the following four stages.

1) Contraction path: The input RGB images get decomposed
to provide spatial and temporal features through convolu-
tion operations.

2) Dense modules: Each stage of the architecture contains
densely connected modules to pass the learned feature
maps to the follow-up stages to enhance the feature set
without increasing the number of parameters.

3) Bottleneck layer: At this stage, the extracted features from
the contraction path are then fed to the decoder blocks in
the expansion path.

4) Expansion path: Here, the shrunken image (in the encoder
path) is reshaped to its original shape to produce the de-
sired segmented map through some deconvolution opera-
tion (using transpose convolution or bilinear interpolation
techniques).

The architecture overview can be seen from middle blocks in
Fig. 1, where the combined use of dense and skip connections
can be observed.

D. Multiscale Module

The correctness and accuracy of the image segmentation
model need to integrate pixel-level accuracy concerning multi-
scale context reasoning. Deep CNNs combine multiscale context
feature maps based on consecutive pooling, and convolution
layers reduce image resolution [28]. Moreover, the dense/deeper
layers require more context information in addition to full resolu-
tion [51]. The input images can be downscaled and upscaled with

proper interpolation technique to get the multiscaled resolution
images Fig. 2. As mentioned in Fig. 1, these multiscale images
were given as inputs to the corresponding CNN modules to
obtain the scale-invariant feature sets. Each CNN framework
processes an image scene with different scales extracting the
multiscale feature maps, which are further aggregated to form
a multiscale context feature map that can predict pixel-level
object class. The aggregation process is performed under the
resize and concatenation process to make the process simple.
The aggregation process can be understood from the following
equations:

Mimg = Ds + Us + Iimg (3)

where

Ds = dsf1(Iimg) + dsf2(Iimg) + · · ·+ dsfm(Iimg) (4)

Us = us1/f1(Iimg) + us1/f2(Iimg) + · · ·+ us1/fm(Iimg).
(5)

Here, ds and us represent downsampling and upsampling of
an input image, respectively. Similarly, f, Iimg, andMimg denote
the scale factor used for downsampling or upsampling, input
image, and the obtained multiscale feature map, respectively.

In our experiment, we have used 512× 512 image tiles as
input, which are then upscaled and downscaled by a factor of
2 to get 256× 256, 1024× 1024 resolution images. All these
three different resolution images are trained individually through
the encoder–decoder CNN architecture to fetch the multiscale
feature maps that decide the pixel class.

IV. EXPERIMENTATION

In order to access the performance of the proposed ensemble
superpixel-MCNN architecture, extensive experimentation has
been conducted on the NITRDrone scene understanding dataset
and is described in the Section IV-A. Moreover, the proposed
approach is compared to some of the chosen state-of-the-art
methodologies of semantic segmentation tasks, viz. [5], [6], [7],
[40], [52].
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Fig. 3. NITRDrone dataset containing UAV-captured aerial outdoor images.

A. Data Description

To perform the experimentation, we have considered the
following two datasets.

1) NITRDrone Dataset: The NITRDrone dataset1 [53] is
proposed and built on satisfying the rising demand for UAV-
based applications for scene understanding that uses semantic-
segmentation-based techniques. The dataset contains around
101 number of variable resolution of VHR images captured
with the help of DJI Phantom 4 and DJI Mavic Mini drone
having ground sampling distance (GSD) of 0.025 sq.cm/pixel.
The resolution of an image in the dataset can be any of the
following 1280× 720, 4000× 3000, 4096× 2160. A pixel can
belong to any of the four different considered classes named
“road,” “vegetation,” “occluded_road,” and “_background_.”
Some of the sample images and their corresponding ground
truths of the dataset are presented in Fig. 3.

2) Urban Drone Dataset (UDD): The UDD is a UAV-based
image dataset that was proposed by Chen et al. [54] toward
semantic segmentation problems in computer vision. The dataset
is collected by a UAV DJI Phantom 4 operated at an altitude of
60 m to 100 m. The considered resolution for each image in
the dataset is either 3000× 4000 or 4096× 2160. This dataset
has been divided into three types, UDD-3, UDD-5, and UDD-6,
that have three, five, and six classes, respectively, of which we
have considered UDD-5, on which the proposed model is im-
plemented and validated. As mentioned, UDD-5 has five-pixel
classes named vegetation, buildings, roads, vehicles, and others
(denoted for the rest of the object in a scene other than the
mentioned classes). The dataset comprises two sets: a training
set and a validation set consisting of 160 and 45 image frames,
respectively. Sample images and the masks are shown in Fig. 4.

B. System Setup

The first stage of the proposed architecture is meant for the
SLIC superpixel algorithm to produce superpixel images. These

1[Online]. Available: https://github.com/drone-vision/NITRDrone-Dataset

Fig. 4. UDD containing UAV-captured aerial outdoor images (including five
classes).

superpixel images are considered the inputs for the second stage
and are sampled at different scales to multiple deep CNN frame-
works, which are then trained to extract the required features for
further classification of the pixels into one of the four classes in
the NITRDrone dataset and one of the five classes in UDD. The
flow of operations to perform the experimentation is presented
in Fig. 5. The implementation and validation of the proposed
architecture are carried out on the datasets mentioned above and
compared with the benchmark and peer-reviewed state-of-the-
art methods. All the considered models are implemented with the
help of the deep learning library PyTorch2 [55] and are trained
with NVIDIA TITAN V graphics card having 12 GB of GPU
memory.

C. Dataset Preprocessing

The proposed architecture is evaluated on the semantic drone
datasets NITRDrone dataset [53] and UDD [54]. The resolution
of the images of the considered datasets is of different sizes, such
as 1280× 720, 4000× 3000, 4096× 2160. Hence, we apply a
sliding window technique with a constant stride that works
over these images to extract the image tiles of 576× 576 from
both datasets. Through this operation, we are able to generate
around 3470 number of images from the NITRDrone dataset and
3500 number of images from the UDD dataset. Out of the total
number of extracted images from the NITRDrone dataset, we
have considered 2590 and 880 images as training and testing sets,
respectively. Similarly, for the UDD, 3100 images are considered
for training the model, and the rest 400 images are equally
divided among the validation and testing set.

D. Preprocessing With SLIC

It is the first phase of segmentation in our proposed architec-
ture. The image tiles produced by the sliding window are fed to

2[Online]. Available: https://pytorch.org/docs/stable/index.html

https://github.com/drone-vision/NITRDrone-Dataset
https://pytorch.org/docs/stable/index.html
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Fig. 5. Flow diagram of the experimentation.

this module. One of the popular superpixel algorithms, SLIC,
is applied to produce semisegmented superpixel images. There
are two important parameters of SLIC algorithms: N and m
representing the number of superpixels in a superpixel image
and the compactness control parameter, respectively. They play
a vital role in preserving the natural properties of the ground
objects. We have considered different combinations of N and
m to find out the best combination with which we can apply the
SLIC algorithm on the raw input images that preserve the integral
properties of the objects to be segmented. The value of N and
m are initialized to certain constant values as N = [500, 1000]
and m = [5, 15, 25, 35]. Thus, eight types of superpixel images
can be generated from this module, which will be the inputs for
the next stage of CNN implementation.

E. Training

1) Input Preprocessing: The images from the superpixel
module can be denoted as Image X . These Image Xs are
collected at the CNN module, where they have to pass through a
simple preprocessing step before considering for training. Image
Xs are then downsampled from 576× 576 to 512× 512 (can
be denoted as Image Y ) through random cropping or center
cropping techniques. These cropped images (Image Y ) are used
by the deep CNN framework to train individual models. The
resolution of the input and target images for the proposed archi-
tectures and state-of-the-art methods remains the same. The only
difference lies in the type of images considered in both cases:
The proposed approach uses superpixel aerial images, whereas
the state-of-the-art models use stock aerial imageries.

2) Target Preprocessing: The corresponding target or the
masks need to be down-scaled to 512× 512 as per the input
images described in the previous section. However, the training
is performed with the one-hot coded masks. The one-hot coded
target images are then color-coded with different colors for each
object class for better visualization. These RGB color-coded
masks are presented in Figs. 3 and 4.

3) Implementation Details: Adaptive moment estimation
(Adam) [56] is considered the optimizer, and cross-entropy (CE)
is used as a loss function. The learning rate is initialized to
5e− 3, whereas momentum and batch size are initialized to 0.9,
and 3, respectively. A weight decay of 0.002 is introduced to

handle the problem of overfitting in the long run during train-
ing. ReLU activation function [57] is employed to improve the
convergence and accuracy of the network. Moreover, two types
of augmentation techniques are applied to the superpixel images
making the number of images stand double, thus extending the
training process. The learning rate is set to be decreased after ev-
ery 30 epochs by a factor of 0.002 to maintain the regularization.
The training operation continues until the learning rate reaches
10−20. After 450 epochs, the proposed architecture converges,
which is observed through minor changes in loss and accuracy.

F. Loss Function

The choice of the loss function is vital in carrying out neural
network-based optimization. The loss-weighting scheme of the
network architecture targets the interior pixels and the border of
the segmented objects. The CE loss, also known as logarithmic or
logistic loss, is chosen to train the baseline models. The predicted
class probability is compared with the truly desired class output
0 or 1. The corresponding loss/score of the corresponding pixel
class is obtained to check for the deviation from the actual (true)
value. And as a penalization, the weights will travel backward to
recorrect the same for a better understanding of the object feature
map. SoftMax differential function (Si) is also used with CE,
which aims at minimizing the loss during training, i.e., smaller
the loss value better the model. CE can be defined as follows:

LCE = −
n∑

i=1

Ti log(Si) (6)

where Ti and Si are the truth value ∈ [0, 1] and the SoftMax
Probability for ith class, respectively.

G. Tasks and Metrics

The primary objective of the proposed Superpixel_
MCNN_AerialSegNet framework is scene parsing and seg-
ments the aerial images as per the given number of objects (four
for the NITRDrone dataset and five for the UDD). In order to
analyze the architecture’s performance, both quantitative and
qualitative results play vital roles. Widely acceptable perfor-
mance metrics, such as precision, recall, F-score, the intersection
of union (IoU), and overall accuracy, are used to examine the
performance of the proposed framework. These metrics can be
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formulated as per the following equations:

P =
TP

(TP + FP)
(7)

R =
TP

(TP + FN)
(8)

IoU =
Overlapping Area

Area of Union

=
TP

(TP + FP + FN)
(9)

F =
Overlapping Area

Pixel count in both GT and PR

=
2PR

(R+ P )

=
2TP

(2TP + FP + FN)
(10)

A =
TP + TN

(TP + TN + FP + FN)
. (11)

Here, P , R, IoU, F , and A represent precision, recall, dice
score, intersection over union, and overall accuracy, respectively.
Similarly, TP and TN stand for true positive and true negative,
respectively, which can be explained by the number of predicted
pixels belonging to the same class as the ground truth. Addi-
tionally, FP and FN denote false positive and false negative,
respectively.

V. EXPERIMENTAL RESULTS AND OBSERVATION

This section presents the obtained results from the proposed
model through the experimentation. It also discusses an exten-
sive comparison of these results with state-of-the-art method-
ologies. It highlights the improvements achieved through the
proposed architecture in semantically segmenting the object
classes from the UAV images.

A. Observation

As discussed earlier, the SLIC-based superpixel algorithm
works based on two core parameters: N and m to decide the
number of superpixels in a superpixel image and a scale variation
parameter, thus playing an important role in estimating the size
of a superpixel, respectively. The value of m falls within a range
of [5, 35]. The greater the value of m, the more compact the
cluster.

In the experiment, we have considered m as [5, 15, 25, 35].
That means when m = 5, each image patch (superpixel) in the
superpixel image is of size 5× 5. Small-scale patches (m = 5)
expose the features inside a superpixel efficiently. In contrast, the
enormous value (m = 25/35) works better at the border regions
of an object to distinguish it from the others. It helps the training
block be exposed to meaningful, distinguished features to learn
about the object it needs to segment. However, to prove the
efficiency, every possible combination ofm andN is considered.
The produced superpixel images are then given as input to the
CNN block, and the outcomes are listed in Tables I and II.

TABLE I
COMPARISON OF PERFORMANCE EVALUATION OF VARIOUS STATE-OF-THE-ART

MECHANISMS ON SUPERPIXEL IMAGES OF NITRDRONE DATASET

TABLE II
COMPARISON OF PERFORMANCE EVALUATION OF VARIOUS STATE-OF-THE-ART

MECHANISMS ON SUPERPIXEL IMAGES OF UDD

The resulting superpixel images from the SLIC module are
accepted as inputs at the CNN module for the training oper-
ation. The trained model is used on the validation/test set to
obtain the results. At the CNN module, the superpixel images
are gone through M number of CNN architectures (M = No.
of multiscale images) constitute the multiscale CNN/ConvNet
architecture. The main idea of using a multiscale ConvNet
(MCNN) architecture (see Fig. 1) is to have a vast feature space
of the ground objects at different scales sampled through the
multisampling process. The ConvNet module in the MCNN
architecture is an encoder–decoder architecture inspired by the
skip connection mechanisms (dense module within a stage) that
passes the previously learned parameters in the encoder stage to
the following equivalent decoder stage. This architecture can
determine the edge-level object features and the imbalanced
occlusion class objects. These features are crucial from the
perspective of a segmentation task, as even a few pixel mis-
classifications may affect the accuracy of the architecture.

B. State-of-the-Art Comparison

The proposed model is also compared with the state-of-the-art
methodologies based on the evaluation matrices described in the
previous section. The baseline models are validated with the raw
input images considered for multiscale CNN and Aerial SegNet
architectures. The training process for these models is performed
for around 450 epochs till the convergence occurs. The obtained
results from the experiments are listed in Tables III and IV.
Moreover, the qualitative results are also presented in Figs. 6
and 7.

As shown in Figs. 6 and 7, it can be clear that among the
state-of-the-art models, U-Net [40], FCN-32s [5], and DeepLab-
plus-exception [7] manage to perform well to segment the
vegetation and road class pixels thus achieving a reasonable
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TABLE III
OVERALL PERFORMANCE EVALUATION OF VARIOUS STATE-OF-THE-ART MECHANISMS ON NITRDRONE DATASET

TABLE IV
OVERALL PERFORMANCE EVALUATION OF VARIOUS STATE-OF-THE-ART MECHANISMS ON UDD

75%−80% IoU score. However, they have failed to capture the
outlines of different class objects resulting in a slight drop in
accuracy. This is where the multiscale feature fusion technique
looks useful in aggregating the scale-invariant features that help
fetch the missing feature sets, thus improving the accuracy.
Hence, it can be concluded from Tables III and IV that the
proposed model can perform better than the existing methods,
such as [5] and [40] in terms of segmenting the pixel class
and achieving a smoother boundary of the objects. Moreover,
along with the performance measures like F_Score and IoU, we
have also considered precision and recall. It can be observed
from Table III that (from the mean precision (mPrecision) point
of view) the DeepLab_V3+Xception [7] performs better (on
the NITRDrone dataset) in terms of precision score than the
proposed architecture. However, there is a miss, and it can be ex-
plained by seeing the table that there is a massive gap between the
recall and precision score, which is entirely unacceptable from
the perspective of a semantic segmentation task. At this point,
the proposed framework acts superior maintaining a descent of
true positives and true negatives as can be judged based on the
obtained scores mentioned in Table III. Similarly, a comparison
of improvement achieved through the proposed architecture is
also presented in Table V.

VI. DISCUSSION

To provide a better comprehensive comparison of the pro-
posed approach, various experimental observations correspond-
ing to external factors, such as space complexity, are also noted,
which are discussed in this section.

A. Parameter Comparison

The number of learnable parameters plays a crucial role
in accessing the performance of the model in terms of speed

TABLE V
COMPARATIVE RESULTS OF TOP THREE BEST PERFORMERS WITH THE

NITRDRONE DATASET AND UDD

TABLE VI
COMPARISON OF NUMBER OF TRAINABLE PARAMETERS

and memory. Hence, a comparative study is presented in
Table VI. It can be observed that state-of-the-art models, except
a few, such as FC_DensenNet-103 [52], AerialSegNet [50], and
UNet [40] having ResNet-18 as the backbone comprises of less
number of trainable parameters as compared to the proposed
architecture. However, the proposed architecture overcomes the
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Fig. 6. Prediction of the state-of-the-art mechanisms. Left to right: (a) UAV-based aerial images, (b) labeled mask of the corresponding images, (c) AerialSegNet,
(d) Superpixel_MCNN_AerialSegNet (proposed), (e) UNet [40], and (f) FCN-16s [5]. Color coding of the semantic classes matches Fig. 3.

underlined issues of these baselines, achieving better perfor-
mance accuracy while having less trainable parameters than
most of the considered baselines. Therefore, it can be deployed
on various edge-end devices (like UAVs), where memory and
computing power are constraints. In the following section, we
discuss the optimization that has been achieved through the use
of superpixel.

B. Space Efficiency

The superpixel technique provides a partially segmented
image that helps the CNN module extract the object-level
features while reducing the space complexity. As per our study,

images with smaller m performs slightly better than others due
to their feature preservation properties and are pretty close to a
natural image (with meaningful information). From the space
consumption point of view, it is pretty clear that the superpixel
images with the highest space complexity are also 60% lesser in
size than the original images while performing better or equal
than with the original standard images. A bar graph representing
the space consumption of all the considered images is presented
in Figs. 8 and 9. Similarly, among the superpixel images
considered for the experiment, space consumption (spc) can
be arranged in a decreasing order like spc(5) > spc(15) >
spc(25) > spc(35). Considering an example, if N = 1000,
then spc(1000_5) > spc(1000_15) > spc(1000_25) > spc



BEHERA et al.: SUPERPIXEL-BASED MULTISCALE CNN APPROACH TOWARD MULTICLASS OBJECT SEGMENTATION 1781

Fig. 7. Prediction of the state-of-the-art mechanisms on UDD. Left to right: (a) UAV-based aerial images, (b) labeled mask of the corresponding images, (c)
AerialSegNet, (d) Superpixel_MCNN_AerialSegNet (proposed), (e) UNet [40], and (f) FCN-16s [5]. Color coding of the semantic classes matches Fig. 4.

(1000_35). This space complexity matters for the proposed
approach to get implemented over IoT and network, as
transferring the superpixel images (over the network) would
require a low-bandwidth connection making bandwidth
available for the other network-related operations. Thus,
IoT-based RS applications can be benefited from the proposed
architecture.

C. Observed Limitations

The current study has a few limitations, which are presented
ahead. Under low-light conditions, the model performs poorly
(at the beginning of the training) in segmenting similar-looking

objects. For example, the road surface may look similar to
the rooftop (the tar-covered sheet), creating confusion for the
model and leading to low accuracy in terms of IoU. Similarly,
for the minor class objects, such as the occlusion class in the
NITRDrone dataset and vehicle class in the UDD, the model
invests a lot of time in obtaining the required feature maps before
correctly classifying the minor object class pixels. Moreover,
one more limitation can also be seen corresponding to the
increased number of trainable parameters due to the multiple
CNN modules. This may bring CNN architectural issues. In
future work, a few cues, as presented in [58], can be considered
to develop a multiscale CNN architecture, and its effectiveness
can be verified.
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Fig. 8. Variation of storage space consumed by the generated superpixel
images of NITRDrone dataset.

Fig. 9. Variation of storage space consumed by the generated superpixel
images of UDD.

VII. CONCLUSION

This article presents a superpixel-based multiscale CNN
framework to address UAV aerial image-based semantic seg-
mentation problems. The first-level segmentation is achieved
using the SLIC superpixel algorithm that produces superpixel
images from the input UAV images, which become the input for
the CNN architecture for final segmentation. The proposed CNN
architecture collectively uses the strength of skip connections
and the multiscale context aggregation strategy to extract the
crucial scale-invariant features that can uniquely classify a pixel
of the corresponding object class. The multiscale CNN module
is good at extracting scale-invariant features that are essential
from a UAV imagery point of view, as the same ground objects
may look small or large as per the operating height of the
UAV. Furthermore, the proposed architecture is evaluated (on the
NITRDrone and UDD) and compared with the state-of-the-art
methods. The experimentally obtained results prove the supe-
riority of the ensemble framework (of the superpixel technique
and the deep multiscale architecture) in segmenting the UAV
aerial images. Moreover, the proposed architecture provides a
robust solution toward semantic segmentation for object classes
like road, vehicle, and vegetation, which the other considered
state-of-the-art methodologies failed to do. The proposed ap-
proach can be integrated with the robotics-based artificial in-
telligence solution to provide intelligent road extraction and
vegetation detection through panoptic aerial imageries of UAVs.

Similarly, the proposed approach can be combined with IoT and
cloud concepts to actively analyze critical operations, such as
disaster management and carrying out surveys.

As an extension to this work, different superpixel techniques,
such as SLICO and SEEDS, may be tested to have a better-
performing superpixel technique for road and vegetation extrac-
tion from aerial images. Similarly, the proposed architecture can
also be implemented in a simulated IoT environment to demon-
strate the efficiency of this approach in managing operations
under low-bandwidth environment.
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