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Abstract—Deep-learning-based models usually require a large
amount of data for training, which guarantees the effectiveness
of the trained model. Generative models are no exception, and
sufficient training data are necessary for the diversity of generated
images. However, for synthetic aperture radar (SAR) images, data
acquisition is expensive. Therefore, SAR image generation under a
few training samples is still a challenging problem to be solved. In
this article, we propose an attribute-guided generative adversarial
network (AGGAN) with an improved episode training strategy for
few-shot SAR image generation. First, we design the AGGAN struc-
ture, and spectral normalization is used to stabilize the training in
the few-shot situation. The attribute labels of AGGAN are designed
to be the category and aspect angle labels, which are essential
information for SAR images. Second, an improved episode training
strategy is proposed according to the characteristics of the few-shot
generative task, and it can improve the quality of generated images
in the few-shot situation. In addition, we explore the effectiveness
of the proposed method when using different auxiliary data for
training and use the Moving and Stationary Target Acquisition and
Recognition benchmark dataset and a simulated SAR dataset for
verification. The experimental results show that AGGAN and the
proposed improved episode training strategy can generate images
of better quality when compared with some existing methods, which
have been verified through visual observation, image similarity
measures, and recognition experiments. When applying the gen-
erated images to the 5-shot SAR image recognition problem, the
average recognition accuracy can be improved by at least 4%.

Index Terms—Few-shot image generation, generative
adversarial network (GAN), meta-learning, synthetic aperture
radar (SAR), transfer learning.

I. INTRODUCTION

S INCE generative adversarial networks (GANs) [1] are pro-
posed, various variants of GAN-based models [2], [3], [4],
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[5] have been proposed for image generation. An important
application of the generated images is enriching the initial train-
ing set for recognition. Synthetic aperture radar (SAR) target
recognition usually requires adequate training data. In practice,
SAR images are hard to acquire, and SAR image generation can
serve as one solution to deal with the problem of insufficient
training data. However, the lack of training data deteriorates
the performance of not only the recognition model but also
the generative model itself, which results in poor quality of the
generated images. Consequently, we mainly focus on few-shot
SAR image generation in this article.

For a well-trained GAN-based model, the data distribution
of the generated data is trained to be similar to that of the real
data. When only a small number of training samples can be
obtained for training a GAN-based model, for example, only
five samples per category, the generated data may not learn the
data distribution well in this situation. The aspect-angle-related
image information is severely missing, which results in the poor
generalization capability of the trained generative model for
generating images under new aspect angles, and the generated
images lack diversity. The Moving and Stationary Target Ac-
quisition and Recognition (MSTAR) public dataset [6] and the
auxiliary classifier GAN (AC-GAN) [4] are used to illustrate the
problem as shown in Fig. 1. The generated images are supposed
to be at different aspect angles, and nevertheless, the generated
images look similar to the few training data. We can see that the
generated images lack the diversity of aspect angles. Therefore,
one of the bottlenecks for training a deep generative model is the
difficulty of acquiring enough diversified training data. Few-shot
image generation is one of the few-shot learning problems [7].

Considering the few-shot image generation problem for op-
tical datasets, there are already some relevant works, which can
be divided into three categories [8], i.e., the optimization-based
methods [9], [10], the fusion-based methods [11], [12], [13],
[14], and the transformation-based methods [15], [16]. The
optimization-based methods apply the optimization strategy for
the few-shot classification to the few-shot image generation,
such as the reptile [17] training strategy and the model-agnostic
meta-learning [18] strategy, to improve the performance of the
generative model. As for the fusion-based methods, different
conditional features, such as the different colors and shapes,
can be fused to generate new images, which do not exist in the
training set. The transformation-based methods refer to the idea
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Fig. 1. Generation results of a trained AC-GAN [4] model. The training set
contains 5 samples for each of the 3 categories, and thus, a total of 15 samples
are used for training. The model is trained via the minibatch gradient descent
method. (a) Visualization of the only five training samples of the BMP2 category.
(b) Generated images of BMP2 category; trained by 2000 epochs. (c) Generated
images of BMP2 category; trained by 20 000 epochs.

that a class label should be invariant to a particular transforma-
tion, and then, the transformation can be used to generate new
images with the same label. The optimization-based methods
have the potential to be directly applied to the few-shot SAR
image generation problem. However, unlike optical images,
which usually have some obvious visible features, for SAR
images, there are no apparent visible features, and even the
category information is not distinguishable. The fusion-based
methods and the transformation-based methods for the few-shot
image generation problem are mainly manually designed for
optical images according to the visible features, and they may
not be suitable for SAR data. The main difficulty of applying
fusion-based and transformation-based methods to SAR data
is the manual design of the fusion or transformation ways
according to the special characteristics of the SAR target images.

Currently, the research works on few-shot image generation
for SAR datasets are rare. There are some research works [19],
[20], [21], [22], [23], [24], [25] on the SAR image generation
problem but not in the few-shot situation, and the smallest
sample size used for training is 90 samples from the 7 classes
of the MSTAR dataset in [24], while more samples are used for
training in other generative models. In practical applications,
the available SAR images for training a deep generative model
may be far less than 90. A detailed introduction of these related
research works is presented in Section II-C.

To deal with the SAR image generation problem under ex-
tremely few samples, like only five samples for each category, we
propose an attribute-guided GAN (AGGAN) with an improved
episode training strategy. The whole framework is illustrated in
Fig. 2, and the main improvements of our methods are marked by
the red boxes and introduced from the following three aspects.

1) For the few-shot SAR image generation problem, we
design the AGGAN model and the attribute labels of
AGGAN to be the category and aspect angle labels to
control the generated images. These two kinds of label
information are essential for generating images, which
can be better mined and used in the few-shot situation,

and spectral normalization [26] is also applied to stabilize
network training when the training data are insufficient.
An earlier version of this model has been reported in [27].

2) The idea of transfer learning [28], [29] is applied in
our framework, which aims to improve the diversity of
the generated images when lacking training samples. In
this article, two different cases of transfer learning are
explored. Case A: The source data are the real SAR data
with different categories from the target data. Case B:
The source data are the electromagnetically simulated data
with the same categories as the target data. Considering the
need to obtain a large amount of source data for training,
the simulated SAR data are relatively easier to obtain than
the real SAR data. Thus, we also explore the application
of the simulated data for the few-shot image generation
problem.

3) An improved episode training method is proposed to
increase the sampling probability of the target domain
classes, which can be applied to both transfer learning
cases. We set all the auxiliary data to another same cat-
egory label to distinguish them from the target data to
improve the simplicity and suitability to fit the learning
tasks.

The remainder of this article is organized as follows. Section II
briefly introduces the transfer learning and meta-learning ideas,
the simulated data, and the existing SAR generative models.
Section III briefly reviews the related GAN-based works. Section
IV describes the network structure and loss function of our
proposed AGGAN in detail. The traditional training strategies
and the proposed improved episode training strategy are intro-
duced in Section V. Extensive experimental results based on the
MSTAR dataset and a simulated dataset are provided in Section
VI. Finally, Section VII provides the conclusion and outlines
future works.

II. RELATED WORK

A. Brief Introduction of Transfer Learning and Meta-Learning

Transfer learning relaxes the hypothesis that the training data
must be independent and identically distributed (i.i.d.) with the
test data [29]. Therefore, transfer learning is often used to solve
the problem of insufficient training data. We follow the definition
given in [28] and give the definition of transfer learning as
follows:

Given a target task Tt in the target domain Dt and the source
task Ts in the source domain Ds, transfer learning aims to
improve the performance of Tt by the learning of Ts, where
Ds �= Dt and/or Ts �= Tt and the data size in the source domain
Ds is often much larger than that in the target domain Dt. If
the knowledge transfer is realized by deep neural networks, the
transfer learning becomes deep transfer learning [29].

There are already some works [30], [31], [32], [33] applying
the transfer learning methods for few-shot image generation
using optical datasets. However, there are few research works
applying the transfer learning method for few-shot SAR image
generation. In this article, we apply the transfer learning method
in our framework, which aims to improve the diversity and
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Fig. 2. Illustration of our framework.

quality of the generated images with the help of sufficient source
data. Different from transferring the parameters of a pretrained
model, we use the meta-learning method to gain experience from
the source data.

In essence, for the few-shot learning problem, meta-learning
[34] and transfer learning [28], [29] both attempt to improve the
performance of the learning tasks in the target domain based on
the source data. Meta-learning, also known as learning-to-learn,
aims to improve the learning ability of the learning algorithm
itself [34]. The meta-learning methods can be used to further
improve the performance of the transfer learning methods as
well as other problems [34].

For optical datasets, meta-learning methods have been widely
used for few-shot classification tasks [17], [18], [35], [36], [37],
and there are also some few-shot image generation works [8],
[9] based on meta-learning methods in recent years. To the
best of our knowledge, a few research works explore the few-
shot SAR image generation problem based on meta-learning
methods. The episode training strategy utilized in [35] for few-
shot classification is a well-known meta-learning method. We
modify the episode training strategy and propose an improved
episode training strategy for the few-shot SAR image generation
problem.

B. Simulated SAR Data

Compared with the real SAR data, the acquisition cost of
the simulated SAR data is lower. The simulated data cannot
be used directly for generation or recognition tasks since there
is a domain difference between the simulated and real data.
To illustrate the differences between the electromagnetically
simulated data used in this article and the MSTAR data, pairs
of images under the same categories and the same aspect angles
are shown in Fig. 3.

Comparing the paired data in Fig. 3, we can see more noises in
the background area for the MSTAR data, and the target areas of
the simulated data are clearer. In addition, the strong scattering
centers of real images and the corresponding simulated images
are obviously different. Therefore, there is indeed a distribution
gap between the simulated and real images.

There are some research works [38], [39], [40], [41], [42],
[43], [44], [45] utilizing the simulated data for the recognition

Fig. 3. Comparison of the simulated data and the corresponding real data.
(a) Simulated images of the BMP2 category. (b) Corresponding real images of
the BMP2 category in the MSTAR dataset.

tasks. In [39], the simulated SAR data are used to pretrain a
network, and then, the pretrained network is fine-tuned for the
recognition tasks on the real SAR data. In [38], [40], and [41], the
simulated SAR data are refined and then used for corresponding
downstream tasks. In [42], [43], [44], and [45], the extreme
situation is considered, which is training fully on the simulated
data and testing on the real SAR data, and the distribution gap
between the simulated data and the real data is bridged using
different methods.

Considering the real-world situation, it is usually challenging
to obtain a large amount of source data that follow the similar
distribution as the few target data for training. Comparatively,
the simulated data is more accessible as the auxiliary source
data. To our knowledge, simulated data are rarely used for
the generation task. Thus, we explore the usage of simulated
SAR data as the source data for few-shot image generation,
and the corresponding downstream recognition tasks using the
generated data are also explored, which has great significance
for practical applications.

C. Existing SAR Generative Models

In this section, the existing SAR generative models are further
analyzed, and we make a comparison between the proposed
AGGAN and the existing SAR generative models.

The SAR image generative model proposed in [19] is based
on the idea of CGAN, with a relatively simple network structure.
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A clutter normalization method is proposed to stabilize the train-
ing. The conditional information used in [19] is not explicitly
stated. The problem of image generation under limited training
samples is mentioned, and the quality of the generated images
degrades in this situation. In total, 25% of the complete training
data are selected according to the specified aspect angles and
used to train the model, and there are observable losses in detail
of the generated images. According to the sample number of the
10-type MSTAR dataset under the depression angle of 17◦, 25%
of the whole dataset means about 93 samples for each category.

A SAR adversarial autoencoder network is proposed in [20]
and [24]. The architecture of the generator and discriminator
follows that of progressive growing of GANs [3]. The category
label, the aspect angle label, and a segmentation map are used
as conditional information. In [24], the SAR image generation
problem in the case of a small number of training samples is
considered, and seven classes of target data from the MSTAR
dataset are used to evaluate the performance. In total, 90 chips
are selected from the seven-class targets to train the model,
which implies that there are about 13 samples for each cate-
gory, and the aspect angles of the training data are chosen at
regular intervals, covering the range of 0◦ to 360◦. The results
demonstrate its ability to generate SAR images with aspect
angle diversity, and finally, the test accuracy of A-ConvNets
[46] for target recognition can be boosted by 5.77%. However,
an extra method called rotated cropping is introduced to ad-
dress the challenge of representing the target orientation when
there are only a few data for training. Moreover, the semantic
segmentation maps are needed as the prior knowledge for image
generation in the test phase, which is practically impossible to be
obtained.

Label-directed GANs proposed in [21] are based on the ideas
of WGAN and CGAN. Only the category labels are used as
conditional information for generating images. The recognition
results in [21] are achieved by a support vector machine [47]
classifier, which is not the state-of-the-art recognition model.
The problem of insufficient training data is also mentioned, and
400 training samples from the complete training set, equivalent
to about 40 samples for each category, are selected for training.
Nevertheless, the generation results in this situation are not
presented.

To sum up, we think that the problems discussed in the
aforementioned papers are somewhat different from the few-
shot image generation problem we considered. The problems
mentioned in papers [19] are [21] are more like the “limited
data” situations but not the “few-shot” cases, in which there
are extremely few training samples, like five samples for each
category. The problems mentioned in papers [20] and [24] use
much fewer samples but are still not an extremely small case. For
SAR datasets, there are already some advanced research works
[48], [49], [50], [51], [52] for few-shot SAR target recognition
but research on few-shot SAR image generation is rare.

III. PRELIMINARY KNOWLEDGE

GANs are famous generative models. The generator and
discriminator are essential for a GAN model. The generator

Fig. 4. Illustration of CGAN and AC-GAN, drawn by referring to [2], [4], and
[53].

takes the random noises as inputs to generate a fake image. The
discriminator judges whether an input image is a real image
or a fake image. With the adversarial training between the
generator and the discriminator, finally, the generated images
become indistinguishable from real images for the discriminator,
which means that the distribution of generated data has nearly
matched the distribution of the training data. Simple illustrations
of CGAN and AC-GAN are shown in Fig. 4, left and right,
respectively. We briefly introduce them in the following sections.

A. CGAN

CGAN is one of the earliest variants of GANs, which controls
the content of the generated images by introducing an additional
condition, and the conditional information includes but is not
restricted to category labels.

As we can see in Fig. 4 left, for the generator G, the noise
vector z and the category label y are concatenated as the input,
and the output is the corresponding generated image. For the
discriminator D, the category labels and images are both used
as the input while the output is a single scalar representing the
probability that the image is a real image. In terms of network
structure, the multilayer perceptrons (MLPs) structure is used in
the original CGAN model. While other network structures, like
convolutional layers, can also be used to implement CGAN. The
objective function of CGAN is expressed as follows:

min
G

max
D

V (D,G) = Exreal [logD(x, y)]

+ Exfake [log(1−D(G(z, y), y))] (1)

where V (D,G) represents the loss function of the entire CGAN
network. The real image is denoted as xreal while the generated
image is denoted as xfake = G(z, y). D(x, y) is the probability
that the sample x comes from the real data distribution rather
than the generated data distribution.
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B. AC-GAN

AC-GAN also controls the generated images by introducing
the condition information. Meanwhile, it also completes an
auxiliary classification task, which is shown in Fig. 4 right. For
the generator G, the noise vector z and the category label cx
are concatenated as the input of the generator, and the output of
the generator is the corresponding generated image, i.e., there is
G(z, cx) = xfake. For the discriminatorD, the real image xreal or
generated image xfake are used as the input. The output gives the
prediction probability t̂x that the image is real and the predicted
category label ĉx, i.e., D(x) = [t̂x, ĉx]. The objective function
has two parts: 1) the loss Lt(x) for determining whether the
input sample x is generated or real and 2) the loss Lc(x) for
determining the category label

Lc(x) = Ex [logP (ĉx = cx))] (2)

Lt(x) = Exreal [log(t̂x)] + Exfake [log(1− t̂x)] (3)

D is trained to maximize Lc(x) + Lt(x) while G is trained to
maximize Lc(x)− Lt(x).

Compared with CGAN, there are three aspects of modification
in AC-GAN. First, there is an auxiliary classification task to
determine the image category. Second, the category label is not
used as the input for the discriminator. And third, in terms of
network structure, the deep convolutional network is applied in
the AC-GAN model.

C. Spectrally Normalized GAN

One of the challenges in the study of GANs is the insta-
bility of its training. The training of the discriminators affects
the performance of GANs crucially, and the derivative of the
optimal discriminator can be unbounded or even incomputable
theoretically [59], which is not good for convergence. Thus,
some regularity condition to the derivative of the optimal dis-
criminator is introduced. The spectral normalization proposed
in [26] controls the Lipschitz constant of the discriminator by
normalizing the weight matrices using the technique devised by
[60], which aims to stabilize the training of the discriminator
and promotes the performance of GANs.

The spectral normalization controls the Lipschitz constant of
the discriminator by literally constraining the spectral norm of
each layer g, and there is g(h) = Wh, where h is the input
and W is the corresponding weight of this layer. The spectral
normalization normalizes the weight matrix W of each layer as
follows:

WSN := W/σ(W ) (4)

where WSN is the normalized weight matrix, and σ(W ) is the
spectral norm of the matrix W and is equivalent to the largest
singular value of W .

Computing σ(W ) by singular value decomposition is com-
putationally expensive, and in [26], the power iteration method
proposed in [60] and [61] is used for estimating σ(W ). ũ is
initialized as a random vector, which is sampled from isotropic
distribution. The power iteration method for an unnormalized

Fig. 5. Illustration of the proposed AGGAN.

weight W is expressed as follows:

ṽ ←WTũ/
∥
∥WTũ

∥
∥
2

ũ←W ṽ/ ‖W ṽ‖2 (5)

and the spectral norm σ(W ) is calculated as follows:

σ(W ) = ũTW ṽ. (6)

IV. NETWORK STRUCTURE AND LOSS FUNCTION OF AGGAN

A. Network Structure of AGGAN

The illustration of the proposed AGGAN is shown in Fig. 5.
First, two kinds of conditional information, which are category
label and aspect angle label, are used to control the generated
image, which aims to make better use of the potential infor-
mation contained in the SAR images. Second, the conditional
information is added to each layer of both the generator and the
discriminator, as shown in Fig. 5. For the generator, it is used to
improve the quality of the generated images; for discriminator, it
is used to make a better prediction of the conditional information
when lacking the training data, and as a result, the trained
discriminator cannot be used directly for classification. Third,
spectral normalization is used to stabilize the training of the
discriminator, which is beneficial for improving the image gen-
eration quality. The specific network structure and parameters of
the generator and discriminator for AGGAN are shown in Table
I.

In Table I, the input dimension of the generator is 106, which
is the concatenation of a 100-dimensional random noise vector,
a category label vector, and an angle label vector. The angle label
vector is composed of the sine and cosine values of the angle
label. The output of every layer for both the generator and the
discriminator is concatenated with the conditional information.
The detailed introduction of the labels and the loss functions is
given in the following section.
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TABLE I
SPECIFIC NETWORK STRUCTURE OF THE GENERATOR AND DISCRIMINATOR FOR AGGAN

B. Loss Function of AGGAN

A SAR image x is described by three labels in this article,
which are category label cx, aspect angle label ax and the label
tx to denote whether it is a generated image. cx is of the one-
hot form, and the dimension is determined by the number of
categories. The input aspect angle label ax is a value in the range
of [0◦, 360◦). The sine and cosine values of ax are used in the
training process. A SAR image is labeled as lx = [cx, ax, tx] in
this article. The real image is denoted asxreal while the generated
image is denoted as xfake.

The input of the generatorG includes a random noise vector z,
the category label cx and the angle label ax, and the correspond-
ing generated dataxfake can be expressed asxfake = G(z, cx, ax).
The loss function to be maximized for the generator is expressed
as follows:

LG = Lc(xfake)− La(xfake) + Exfake [log(t̂x)] (7)

where Lc is the log-likelihood corresponding to the correct
category label cx, which assures the classification accuracy of
each category, and La gives the prediction error for the aspect
angle. t̂x is the predicted probability that the sample x comes
from the real data distribution rather than the generated data
distribution:

Lc(x) = Ex [cx · log(ĉx))] (8)

La(x) = Ex

[‖âx − ax‖22
]

(9)

Among them, ĉx is the predicted category label of x, and âx is
the predicted value of aspect angle.

The input and the output of discriminator D can be shown
as D(x, ax, cx) = [ĉx, âx, t̂x], in which the prediction of three
labels is given. The loss LD to be maximized for discriminator
D is expressed as follows:

LD = Lc(x)− La(x) + Lt(x) (10)

Fig. 6. Illustration of the aspect angle.

where Lt is the cross-entropy loss for determining whether the
input sample is generated or real and expressed as follows:

Lt(x) = Exreal [log(t̂x)] + Exfake [log(1− t̂x)] (11)

All in all, like all GANs models, D and G look like playing
the two-player minimax game to make the generated images
realistic in terms of categories and aspect angles.

V. TRADITIONAL TRAINING STRATEGIES AND IMPROVED

EPISODE TRAINING STRATEGY

In [62], the shared image transformation pattern related to
different aspect angles in the source domain helps to improve
the recognition performance in the target domain. In this article,
to improve the generation performance under the few-shot situ-
ation, an auxiliary dataset in the source domain with enough
training samples is also introduced into the training process
to help improve the few-shot image generation in the target
domain. The definition of aspect angle is the angle between
the azimuth or range direction and the major axis of the target,
as shown in Fig. 6, and for SAR images of different categories,
the aspect angle is defined in the same way. Thus, when the
training samples in the target domain are inadequate and the
aspect-angle-related image information is missing, the source
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Fig. 7. Differences of datasets in traditional classification and few-shot clas-
sification. The samples of the same category are given the same color. (a)
Traditional classification. (b) Few-shot classification.

data with complete aspect-angle-related image information may
be helpful for image generation in the target domain.

Different from traditional transfer learning, which commonly
implements vanilla learning on the source task and then pa-
rameter transfer plus finetuning [63], we use the meta-learning
method [34] to gain experience from the source data. The episode
training strategy utilized in [35] for few-shot classification is a
well-known meta-learning method, we modify it and propose an
improved episode training strategy for the better quality of the
generated images, and the modification is made according to the
special characteristics of the few-shot image generation task.

A. Traditional Episode Training Strategy

Since the episode training strategy was originally utilized
for the few-shot classification problem in [35], the few-shot
classification problem is explained at first. Referring to the
work in [51], the differences between the datasets in traditional
classification and few-shot classification are shown in Fig. 7.

The traditional classification problem is illustrated in Fig.
7(a). When few labeled samples are available for training the
classifier, the trained classifier is easy to overfit. The few-shot
classification problem is shown in Fig. 7(b), and an auxiliary
dataset of a relevant source domain is introduced to assist the
classification in the few-shot situation. However, the class labels
of the source domain and the target domain are disjoint, and
the classifier trained by minibatch gradient descent (MGD) on
the training set in the source domain cannot generalize well to
the unseen test samples. The episode training strategy can be
utilized in this situation, and it is a meta-learning method.

The details of the episode training strategy are introduced as
follows. In each iteration, a task (episode) is constructed from
the source data to mimic the final recognition task in the target
domain, and the episode is of N -way K-shot form. To form an
episode for training, sampling is performed twice for the source
data. The first time is to pick N categories from the source data,
where N is the number of categories in the target domain, and
the second time is to sample inside the selected category. In the
selected categories, K samples of each category are randomly
selected. K is usually set to be the number of samples in each
category of the target data.

Fig. 8. From top to bottom, MGD with source data, traditional episode training
strategy, target-data-added episode training strategy, and improved episode
training strategy are illustrated, respectively. Suppose there are three training
samples for each category in the target domain, and each color represents a
category. The source data are added as auxiliary data. For the MGD, the batchsize
is set to 3, which means that 3 samples are selected randomly as a batch for
training. For episode-based training strategies, 3-way 1-shot episodes are used
for training, which means that 1 sample is selected from each of the 3 randomly
selected categories to form the episode for training.

The advantages of the episode training strategy can be sum-
marized as improving the generalization capability of the trained
model, and it can be explained as follows: During the training
process, the training episodes are designed to mimic the few-shot
target tasks, which makes the training scenario more faithful
to the test environment, and each task may contain different
combinations of categories. By training the model iteratively on
each task, the model learns the common knowledge of different
tasks; then, in the testing stage, when facing the new category
combination in the target domain, the well-trained model can fit
tasks that are new and unfamiliar, and the knowledge transfer
can improve the classification result. In fact, the application of
the episode training strategy in [36] makes it popularized for
few-shot learning problems.

B. Improved Episode Training Strategy

In this section, we discuss different training strategies, which
are MGD [64], traditional episode training strategy [36], target-
data-added episode training strategy [37], and improved episode
training strategy, as shown in Fig. 8.

MGD is used for training in most of the existing GAN-based
models. However, due to the introduction of the source data, the
MGD training method does not work well in this situation, and
it will be verified in Section VI-C.

When the traditional episode training strategy is applied for
training a generative model, as shown in Fig. 8, only the source
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data are used for training. Then, in the testing stage, the learned
model will not generate fake images related to the target category
in the target domain since the generative model is trained to learn
the distribution of the source data but not the target data. The
images of the unseen classes (i.e., classes in the target domain)
cannot be well generated in this situation.

The target-data-added episode training strategy has been uti-
lized in [37] for the few-shot classification, in which the episodes
are constructed using both the source and target data. When
applying the target-data-added episode training strategy to the
few-shot SAR image generation problem, as shown in Fig. 8,
we can see that both the target data and the source data are used
to form the episode for training while the source data keep their
original category label.

In our article, two different kinds of source data are used,
denoted by Case A and Case B, as mentioned in Section I.
Directly using the target-data-added episode training strategy for
these two cases will have different problems. For case A, there
is sufficient source data with different category spaces. Directly
sampling categories from both the source and target data will
cause a low sampling probability of the target domain. Thus, the
target data cannot be learned sufficiently. For case B, the source
data are the simulated data with the same categories as the target
data. In this case, the data in the source and target domains cannot
be distinguished from each other, and the sampling of categories
cannot be realized in the episode construction. To deal with these
problems, we modify the target-data-added episode training
strategy and propose an improved episode training strategy for
the task of few-shot image generation.

The improved episode training strategy uses the episodes
constructed by the source and target data together with the
specified class label definition. For improved episode training
strategy, all the images in the source domain are given the same
category label, and the images in the target domain retain their
respective category labels, which means that all the image data in
the source domain are considered as one category distinguished
from the target domain. As shown in Fig. 6, the aspect angle
label definition of the source and the target data is in the same
way. Therefore, the aspect-angle-related image information is
shared between the source domain and the target domain, and
the complete aspect-angle-related image information contained
in the source domain is expected to compensate for that in
the target domain. For category labels, the category-related
image information contained in the source domain is relatively
unimportant, since we want to generate images of the target
categories but not the auxiliary source categories. An illustration
of different training strategies is shown in Fig. 8.

The advantages of improved episode training strategy can be
summarized as follows: First, the redefinition of category labels
enables the application of different source data for training, no
matter what label space the source data has; second, by defining
category labels in this way, the few training data in the target
domain are more likely to be selected to form the N -way K-
shot training episode. As a result, the target data are used more
frequently in the training process, and the unnecessary category-
related image information in the source domain is reduced for
target tasks. It will be beneficial for the image generation tasks

TABLE II
TARGET DOMAIN: THREE TYPES OF TARGET IN THE MSTAR DATASET

TABLE III
SOURCE DOMAIN A: SEVEN TYPES OF TARGETS IN THE MSTAR DATASET

TABLE IV
SOURCE DOMAIN B: THREE TYPES OF TARGETS IN THE SIMULATED SAR

DATASET

Fig. 9. Optical images of three categories in the target domain. BMP2 means
the infantry fighting vehicle; BTR70 means the armored transport vehicle; T72
means the tank.

in the target domain, which will be verified by the following
experimental results.

VI. EXPERIMENTAL RESULTS

A. Experimental Datasets

The MSTAR public dataset and a simulated SAR dataset
are used to evaluate the performance of the proposed method.
The MSTAR dataset consists of X-band SAR images with
0.3 m×0.3 m resolution of multiple targets. Tables II and III
show the three and seven types of targets. The aspect angles of
each category range from 0◦ to 360◦. The depression angles of
the training data in Tables II and III are 17◦, and the depression
angle of the testing data in Table II is 15◦. The simulated data [65]
are provided by the Science and Technology on Electromagnetic
Scattering Laboratory, Beijing Institute of Environmental Fea-
tures, China. The simulated data is obtained by 3-D modeling
and electromagnetic simulation, and the simulation details can
be found in [65]. There are three categories of targets in the
simulated dataset, as shown in Table IV. The resolution is
0.2 m×0.2 m, and there are 360 images in each category while
the aspect angles range from 0◦ to 360◦ while the depression
angle is 17◦. The optical images of three categories in the target
domain are shown in Fig. 9.

There are three types of data in the target domain as shown in
Table II, and two experimental settings are considered.
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Fig. 10. T-SNE visualization results of the data distribution for case A and
case B. (a) Case A: “Real7” indicates the seven types of SAR data in Table III,
and “Real3” indicates the three types of training data in Table II. (b) Case B:
“Simu” indicates simulated SAR data in Table IV, and “Real” indicates three
types of training data in Table II.

1) Case A: Seven types of MSTAR data in Table III are used
as the source data, and three types of MSTAR data in Table II
are used as the target data. It can be seen that the source and
target data are in different category spaces.

2) Case B: Three types of simulated SAR data in Table IV are
used as source data, and three types of MSTAR data in Table II
are used as target data. In this situation, the source and target
data own the same category space but the data distributions are
different.

The t-distributed Stochastic Neighbor Embedding (t-SNE)
[66] has been widely used to visualize the high-dimensional data
by mapping them into the low-dimensional space and is used to
compare the data distributions of case A and case B, as shown
in Fig. 10. It is noticed from Fig. 10(a) that the data distributions
of the real and simulated data are superimposed, which means
that the data distributions of source and target data in case A
are similar to each other. However, we can see that the real and
simulated data distributions do not completely overlap in Fig.
10(b), which means that there is a domain shift between the real
and simulated data, and it is not suitable to use the simulated
data directly for image generation. Therefore, case A and case
B are two different cases of transfer learning.

B. Experimental Settings

Data preprocessing: In the following experiments, all the
images in the MSTAR dataset and simulated dataset are cropped
to the size of 64×64 to exclude the influence of background and
normalized by min-max scaling to the range [0, 255]. Referring
to the experimental setting in [62], by reducing the number of
training data in the target domain, the scenario of few-shot SAR
image generation is realized.

Model Training: The source data and the selected target
data are used to train generative models with different training
strategies, the episodes utilized in the following experiments are
3-way 5-shot tasks, and the batchsize of the MGD method is 15
accordingly. Unless otherwise stated, the generative models are
trained by 20 000 epochs or 20 000 episodes. When dealing with
the 3-way k-shot recognition tasks, k= 10, 15, 20, we explore the
shot setting in training by experiments and find that the 5-shot
setting and k-shot setting, k = 10, 15, 20, have little influence on

the recognition results. Thus, 3-way 5-shot setting is also used
in the training of 3-way k-shot, k = 10, 15, 20, recognition tasks.

Evaluation of the generation results: In addition to visual ob-
servation and image similarity measures between the generated
images and the corresponding real images, the category-related
information contained in the generated images should also be
verified. Since the category-related information is difficult to be
observed by our naked eyes, we refer to the quantitative com-
parison method used in [19] and design two kinds of recognition
experiments to analyze the generated images, which are authen-
ticity verification and few-shot recognition, as shown in Fig.
11. If the generated images are of better quality, the recognition
rates will be higher. Referring to the work in [46], we design
our recognition model, which is a 5-layer fully convolutional
structure, and the network parameters are designed to match the
input image size.

1) Authenticity verification: Only the generated data are used
to train the recognition model, which follows two steps: The first
step is generative model training and image generation. Five
samples of each category in the target domain are randomly
selected and together with the source data are used to train
the generative models. In total, 1000 image samples for each
category in the target domain are randomly generated with
the trained generative models. Second, as shown in Table II,
a recognition model is trained by the 3000 generated images
and tested on the corresponding test data in the target domain.
When the case A experimental setting is used, the model name
is appended with A, and the same for B.

2) Few-shot recognition: The selected target data and the
generated data are used for training together. The first step is
also the AGGAN model training, and only 360 images for each
category are generated for recognition, which aims to match
the number of the simulated data shown in Table IV; then, the
generated images and the few real training data (15 samples here)
in the target domain are used together to train the recognition
model, and the trained model is used to test the testing data in
the target domain as shown in Table II. The generated images
act as augmented data in this situation.

Illustration of recognition results: To avoid the randomness of
the recognition experiment, each group of experiments is carried
out 10 times to calculate the averages and the standard deviations
as the final results, and the target data of 10 experiments for
different generative models are the same. However, since there
are only a few samples for training, the target samples selected
greatly impact the recognition rate, leading to a large standard
deviation in the multiple recognition experiments shown in the
following sections.

Arrangements of the following sections: In Section VI-C,
5-shot SAR image generation results using different training
strategies are performed to verify the superiority of the improved
episode training strategy. In Section VI-D, with AGGAN and
the improved episode training strategy, the generation results
of training cases A and B are obtained and compared. Then,
in Section VI-E, the generation results of different generative
models are compared to prove the superiority of our AGGAN
model, and the recognition results under different target sample
sizes are also analyzed. Finally, Section VI-F further verifies
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Fig. 11. Illustration of the two kinds of recognition experiments, which are authenticity verification and few-shot recognition.

the benefit of applying generated and augmented data to the
few-shot SAR target recognition problem.

C. Verification of the Improved Episode Training Strategy

Different training strategies are compared in this section to
verify the effectiveness of the improved episode training strat-
egy, and the experiments are carried out under case A in this
section. The generation results of different training strategies
are shown in Fig. 12.

The generation results using MGD with source data are shown
in Fig. 12(b) and (c). The generation results shown in Fig. 12(b)
illustrate that the network has not been well-trained. It can be
seen that the quality of the generated images is still inferior by
increasing the training epochs, as shown in Fig. 12(c), as the
generated images look unclear and the target outlines are not
obvious. Therefore, when introducing source data and applying
MGD for training, the difficulty of target task learning increases,
and the image quality of generated images in the target domain
is not improved.

As for the traditional episode training strategy [see Fig. 12(d)],
the generated images are also unsatisfactory since the target
data are not used in the training process. Consequently, the
generated images of the target categories are not so realistic. For
the target-data-added episode training strategy, the generation
results are generally acceptable. Comparing the 4th, 5th, and
12th images of Fig. 12(e) and (f) marked by the red boxes,
we can see that the target areas of Fig. 12(f) look clearer. This
implies that the improved episode training strategy is beneficial
for image generation. Most importantly, the improved episode
training strategy makes the application of different source data
possible.

Comparing all the generation results in Fig. 12, we can see that
the generation results in Fig. 12(e) and (f) are similar and rela-
tively better than other generation results, and thus, the AGGAN
generation results of target-data-added episode training strategy
and improve episode training strategy are further compared in
Fig. 13.

Fig. 13 shows the BTR70 and T72 generation results of
AGGAN using different training strategies. Comparing the
generation results in Fig. 13(a) with (b) and Fig. 13(c) with

Fig. 12. BMP2 generation results of AGGAN using different training strate-
gies. For the ith image counted from left to right and top to bottom, the aspect
angle is 24× (i− 1). The aspect angles of generated images shown below are
all counted in this way. (a) Five training images of the BMP2 category in the
target domain. (b) MGD with source data. (c) MGD with source data: 50 000
epochs. (d) traditional episode training strategy. (e) target-data-added episode
training strategy. (f) improved episode training strategy.

(d), we can see that the target areas of images in Fig. 13(b)
and (d) are more apparent. For the results of target-data-added
episode training strategy shown in Fig. 13(a) and (c), there are
more noises in the background areas of the generated images.
Overall, the proposed improved episode training strategy per-
forms better for few-shot SAR image generation in the target
domain.
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Fig. 13. BTR70 and T72 generation results of AGGAN using different training
strategies. (a) BTR70: Target-data-added episode training strategy. (b) BTR70:
Improved episode training strategy. (c) T72: Target-data-added episode training
strategy. (d) T72: Improved episode training strategy.

Fig. 14. Comparison between the generated images and the corresponding
real images for the BMP2 category. (a) Five given training images of the BMP2
category in the target domain. (b) generated images. (c) corresponding real
images.

We have also compared the generated images with the cor-
responding real images, shown in Fig. 14. We can see that the
trained model can generate the images at the aspect angles that do
not exist in the training data of the target domain. In Fig. 14(b),
there are 9 valid (“valid” means the aspect angle of the generated
image looks correct and the generated image is relatively clear.)
generated images. Compared with the corresponding real images
shown in Fig. 14(c), there is a relatively obvious error in the

Fig. 15. Case A: 5-shot recognition results of AGGAN trained by different
training strategies.

aspect angle for the 10th generated image marked by the red
box. Furthermore, the strong scattering centers of the gener-
ated images do not look consistent with the corresponding real
images. Admittedly, differences exist for the strong scattering
points between some generated images and the corresponding
real images. More discussions about the effectiveness of the
improved episode training strategy will be given as follows.

We carry out 5-shot recognition experiments, as shown in
the second row of Fig. 11, to verify the effectiveness of the
proposed improved episode training strategy. The experiments
are carried out in the case A setting. The recognition results are
shown in Fig. 15. The baseline is the recognition result when
only a few real target data are used to train the recognition model,
represented as “Baseline” in Fig. 15.

We can see that the recognition result of AGGAN trained
by the improved episode training strategy gets the best perfor-
mance, and it confirms that the authenticity of the generated
images of AGGAN trained by the improved episode training
strategy outperforms others. The generated images of the model
trained by traditional MGD training strategy are not so helpful
for the recognition performance improvement when compared
with “Baseline.”

D. 5-Shot Generation Results Using Different Source Data

This section gives the generation results of AGGAN with
improved episode training strategy under case A and case B
settings. The generation results are shown in Fig. 16. To further
analyze the generated images, the t-SNE visualization results of
the target data and the generated data are also shown in Fig. 17. In
Fig. 17, the generated data are represented as “Gene_data,” and
it is appended with the category number; the target data means
all the training data shown in Table II, and is represented as
“Targ_data” appended with the category number; the training
data means the selected 15 training samples (5 samples per
category) in the target domain used for training the AGGAN
and is represented as “Train_data” appended with the category
number.

In Fig. 16, we can see that the generation results of both case
A and case B settings are satisfactory. Thus, the simulated data
can be used as the source data to increase the diversity of the
generated images. Fig. 17(a) and (b) shows the distribution of
the generated images and the corresponding 15 training samples
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Fig. 16. BMP2 generation results of AGGAN with an improved episode
training strategy using different source data. (a) Case A. (b) Case B.

Fig. 17. T-SNE visualization result. (a) Case A: 15 training samples and
the corresponding generated data. (b) Case B: 15 training samples and the
corresponding generated data. (c) Case A: The generated data and the target
data. (d) Case B: The generated data and the target data. Here, the target data
means the three types of training data in Table II.

in the target domain, under case A and B settings, respectively.
From Fig. 17(a) and (b), we can see that the training data of a
certain category basically distribute inside the area of the gener-
ated data of the same category. This implies that the generated
data catches the distribution of the few real training samples (15
samples of the target data). Since only 15 samples of real data
are used for training, the generated data cannot well catch the
distribution of the other real data (i.e., the other training data in
the target domain). Therefore, the distributions of the generated
data do not entirely overlap with all the target data, as shown in
Fig. 17(c) and (d). In addition, by comparing the distributions of
generated data shown in Fig. 17(a) and (b), we can see that the
different source data affect the distribution of generated data.

Fig. 18. BMP2 generation results of different models using the improved
episode training strategy. (b)–(e) Generation results. (a) 5 given training images
of the BMP2 category in the target domain. (b) CGAN-MLP. (c) CGAN-DN.
(d) AC-GAN. (e) AGGAN.

E. 5-Shot Generation Results of Different Models

In this section, we compare the generation results of AG-
GAN, CGAN-MLP, CGAN-DN, and AC-GAN under the case
A experimental setting using the improved episode training
strategy. CGAN-MLP represents CGAN with MLP network
structures. The discriminator and the generator of CGAN-MLP
are implemented by the two-layer MLP networks, as mentioned
in [2]. CGAN-DN represents the CGAN with deep convolu-
tional network structures and is implemented by almost the
same structures, as shown in Table I, without adding condi-
tional information per layer and spectral normalization. For
CGAN-MLP and CGAN-DN, their loss functions follow (1).
For AC-GAN, the overall network is similar to that in Table
I, and spectral normalization is not used. The loss function of
AC-GAN follows (2) and (3). The two conditional labels are both
used in the CGAN-MLP, CGAN-DN, and AC-GAN structures.
The comparison of generation results is shown in Fig. 18.

Note that the results of CGAN-MLP shown in Fig. 18(b) are
similar to those in [21], and it can be concluded that compared
with the MLP network, the convolutional network is beneficial
for learning the detailed images. The network structures of
CGAN-DN, ACGAN, and AGGAN models are similar. When
they are well-trained, there is not much difference of the test
speeds for CGAN-DN, ACGAN, and AGGAN. While the over-
all quality of images generated by CGAN-DN [see Fig. 18(c)]



SUN et al.: AGGAN WITH IMPROVED EPISODE TRAINING STRATEGY FOR FEW-SHOT SAR IMAGE GENERATION 1797

TABLE V
SIMILARITY MEASURES BETWEEN GENERATED IMAGES AND REAL IMAGES

is also poor, and the targets are not clear enough. Comparing
the generation results of AC-GAN in Fig. 18(d) with other
generative models, the aspect angles of the images generated by
AC-GAN are more difficult to control. Specifically, the aspect
angles from the 13th to the 15th images are 288◦, 312◦, and 336◦,
respectively. We can see that the aspect angles of the 13th to the
15th images in Fig. 18(d) are obviously wrong, and the aspect
angles of generated images in Fig. 18(c) and Fig. 18(e) look more
reasonable. To sum up, the visual quality of images generated by
AGGAN is better than that of CGAN-DN, and the aspect angles
of images generated by AGGAN are more reasonable than that
of AC-GAN. Therefore, the generation results of AGGAN are
relatively better.

We analyze the generation results of AGGAN further. It
is noticed from Fig. 18(e) that there are still some unclear
generated images, and only the outlines of the targets can be
seen, and some generated images are even with wrong aspect
angles. These results imply that image generation with extremely
few training samples is, indeed, a very difficult task. In [24],
an additional method called rotated cropping is introduced
as a mechanism to address the challenge of representing the
target orientation, which also illustrates that it is difficult to
learn an effective angle representation when using only a few
data for training. With only 5 samples per category for train-
ing, even assisted by the auxiliary source data, the proposed
model still cannot learn the aspect angles and strong scattering
centers well enough. Although the generation results of the
proposed AGGAN still have some defects, the quality of the
generated images is already better than the compared existing
methods.

To illustrate the superiority of the images generated by the
AGGAN, we make an additional quantitative comparison be-
tween the generated images and the real images for different
methods. To measure the similarity between the generated data
and the corresponding real data, we use Cosine Similarity
(COSS) [45], Structural Similarity (SSIM) [45], and Normalized
Cross Correlation (NCC) [24] to measure the similarity between
the generated images and the real images. The detailed computa-
tion of the similarity measures can be found in [24] and [45]. The
similarity experiments are carried out as follows: 100 generated
images of each category are compared with the corresponding
real images with the same class and the same aspect angle to
calculate the similarity value, and the mean similarity values of
different generative models for different categories are given in
Table V.

By comparing various similarity measures, we can see that
the similarity values of our proposed model are higher than

Fig. 19. Recognition results of different models with improved episode train-
ing strategy using different source data.

TABLE VI
CLASSIFICATION ACCURACY AND STANDARD DEVIATION UNDER DIFFERENT

NUMBER OF TARGET DATA (%)

those of other generative models, which verifies that the images
generated by AGGAN are of higher quality.

The authenticity verification of 5-shot generation results,
which are shown in the first row of Fig. 11, are also conducted
as quantitative measures to further compare the quality of the
generated data. Fig. 19 gives the results.

We can see that the recognition results of AGGAN outperform
others, and the experimental result of AGGAN for case A is
slightly better than that for case B. Overall, in both case A and
case B experimental settings, the recognition results of AGGAN
outperform others.

According to the above analysis, the results verify that the gen-
erated images of AGGAN outperform others by visual observa-
tion and quantitative comparisons. We consider the authenticity
verification under different sample sizes for further evaluation.
The image quality of generated images under different “Num”
settings is further evaluated, and “Num” means the number of
labeled training samples of each category in the target domain.
The generated images of CGAN-DN, AC-GAN, and AGGAN
are compared. The results are given in Table VI.
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Fig. 20. 5-shot recognition results with different augmentation methods.

From Table VI, we can see that when the training samples in
the target domain increase, for AGGAN, the recognition rates
increase obviously; for CGAN-DN, on the contrary, the recogni-
tion rates decrease. Thus, the data generated by CGAN-DN may
not be beneficial for the recognition task. And for AC-GAN, the
recognition rates are fluctuant. It illustrates that the additional
classification task for the category may be beneficial for condi-
tional image generation, since the AC-GAN and AGGAN both
complete an additional classification task for the category label
in the training process. Observing the recognition results, we
can infer that the category-related information contained in the
images generated by AGGAN is more accurate and beneficial
for the recognition tasks. Overall, in both case A and case B
settings, the recognition results of AGGAN outperform other
generative models.

F. Effectiveness of Different Augmentation Methods

In this section, the effectiveness of different augmentation
methods is evaluated. “Baseline” is the recognition result when
only a few real target data are used to train the recognition model.
The generated images under different source data are used as
the augmented data. And for case A and case B, the recognition
results are represented as “Augmented-A” and “Augmented-B,”
respectively. “Augmented-S” represents the recognition result
when the few target and simulated data are used to train the
recognition model together. Since SAR data augmentation is
commonly achieved by image translation in recent works [46],
[67], we also consider the translation augmentation method. The
implementation of translation augmentation refers to the work
in [67]. At the same time, 360 translational augmented images
(360 matches the number of samples in the simulated data set)
for each category are used for recognition, and the recognition
results are represented as “Augmented-T.” The final results are
the average results shown in Fig. 20.

For “Baseline,” the recognition model fails to converge occa-
sionally, and the recognition result of “Baseline” shown in Fig.
20 excludes the cases of nonconvergence. It is worth mentioning
that the recognition model converges whenever adding the gen-
erated images as the augmented data, and the average recognition
result is improved. Directly adding the simulated data declines
the recognition rates, illustrating the domain shift of using simu-
lated data directly for recognition. It is also beneficial to augment

Fig. 21. T-SNE visualization results of translational augmented data, gener-
ated data, and target data.

Fig. 22. Recognition results when the generated data and the translational
augmented data are both used as the augmented data.

the training data by translation. Nevertheless, the diversity of the
translational augmented data may not be improved effectively.
The t-SNE visualization is utilized to explore the diversity of the
generated data and the translational augmented data as shown
in Fig. 21, in which the target data means all the training data in
the target domain shown in Table II.

We can see that the distribution of translational augmented
data is similar to that of the target data while the generated
data show greater diversity. Thus, we consider using both the
translational augmented and generated data for further improve-
ments. In total, 180 generated images and 180 translational aug-
mented images for each category are used to augment the target
data together, matching the number of augmented data in Fig.
20, “Augmented-A+T” represents augmentation by the images
generated in case A scenario and the translational augmented
images, and “Augmented-B+T” represents augmentation by the
images generated in case B scenario and the translational aug-
mented images. Fig. 22 shows the experimental results.

The recognition rates increase effectively when the gener-
ated and the translational augmented data are both used as the
augmented data for training a recognition model. As shown
in Fig. 21, the data distribution of the translational augmented
data is similar to that of the target data but the generated data
show greater diversity. The recognition results in Fig. 22 verify
that the translational augmented data and the generated data
increase the diversity of the images from different aspects. They
have complementary effects in boosting the few-shot recognition
performance. When only the generated and target data are used
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Fig. 23. Recognition rates with different number of augmented data.

for recognition, the learned classifier may have classification
bias since there are only a few target samples, which makes
the classifier prone to classify the generated data. When the
generated and the translational augmented data are both used as
the augmented data, the classification bias may be offset to some
extent, resulting in higher classification accuracy.

Furthermore, an exploration of the amount of augmented
data is also presented, and the results are shown in Fig. 23.
It can be concluded that blindly increasing the number of
generated data for recognition is not so helpful, which is also
mentioned in [21]. Since there are only a few target samples,
the learned classifier may have a classification bias. When there
are increased generated data for recognition, it may lead to a
more severe classification bias and deteriorate the recognition
performance. Comparing cases A and B in Figs. 22 and 23, the
consistent category information contained in the simulated data
may have a good effect on the recognition in the target domain.
Overall, the recognition results obtained in the case B scenario
are better. This section mainly verifies that the generated data
helps improve the recognition rate and image diversity. The
results also imply that it may be a feasible way to make use
of the simulated data.

VII. CONCLUSION

In this article, for the few-shot SAR image generation prob-
lem, an attribute-guided GAN is designed, and an improved
episode training strategy is proposed. We test on both the real
data and the simulated to verify the effectiveness of our proposed
method. The experimental results demonstrate the effectiveness
of our method, and the improved episode training strategy en-
ables the application of different source data for training. When
there are only five samples per category, the better quality of
the generated data is verified through visual observation, image
similarity measures, and two kinds of recognition experiments.
For the 5-shot SAR target recognition problem, the recognition
rate can be boosted by at least 4% when using the generated
images of the proposed AGGAN model. The experimental re-
sults also show that, for the few-shot SAR image generation
problem, there is still room to improve the image quality of the

generated images. For example, more attribute information can
be used as conditional labels to generate corresponding images.
At present, we mainly focus on the ground vehicle target in our
article, and the application of our method in satellite SAR data
for ship target generation can be explored in our future work.
The application of the generated data and simulated data also
deserves more exploration.
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