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Fast and Structured Block-Term Tensor
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Abstract—The block-term tensor decomposition model with
multilinear rank-(Lr, Lr, 1) terms (or the “LL1 tensor decom-
position” in short) offers a valuable alternative formulation for
hyperspectral unmixing (HU), which ensures the identifiability of
the endmembers/abundances in cases where classic matrix factor-
ization (MF) approaches cannot provide such guarantees. However,
the existing LL1-tensor-decomposition-based HU algorithms use a
three-factor parameterization of the tensor (i.e., the hyperspectral
image cube), which causes difficulties in incorporating structural
prior information arising in HU. Consequently, their algorithms
often exhibit high per-iteration complexity and slow convergence.
This article focuses on LL1 tensor decomposition under structural
constraints and regularization terms in HU. Our algorithm uses
a two-factor reparameterization of the tensor model. Like in the
MF-based approaches, the factors correspond to the endmem-
bers and abundances in the context of HU. Thus, the proposed
framework is natural to incorporate physics-motivated priors in
HU. To tackle the formulated optimization problem, a two-block
alternating gradient projection (GP)-based algorithm is proposed.
Carefully designed projection solvers are proposed to implement
the GP algorithm with a relatively low per-iteration complexity. An
extrapolation-based acceleration strategy is proposed to expedite
the GP algorithm. Such an extrapolated multiblock algorithm
only had asymptotic convergence assurances in the literature. Our
analysis shows that the algorithm converges to the vicinity of a sta-
tionary point within finite iterations, under reasonable conditions.
Empirical study shows that the proposed algorithm often attains
orders-of-magnitude speedup and substantial HU performance
gains compared with the existing LL1-decomposition-based HU
algorithms.

Index Terms—Hyperspectral unmixing, structured block-term
tensor decomposition, alternating gradient projection.

I. INTRODUCTION

R EMOTELY deployed hyperspectral sensors capture the
reflected sunlight on the ground. The sensors then mea-

sure the spectra of received sunlight over a large number of
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wavelengths. The obtained pixels carry rich information about
the ground materials. Hence, hyperspectral images (HSIs) are
widely used in applications such as environment surveillance,
agriculture, wildfire analysis, and mineral detection. However,
hyperspectral sensors often have a limited spatial resolution [1].
Therefore, the spectral pixels in HSIs are usually mixtures of
the spectral signatures of several different materials (i.e., end-
members). Hyperspectral unmixing (HU) aims at estimating the
endmembers and their corresponding proportions (abundances)
in the pixels [1].

HU is in essence a blind source separation (BSS) task. The
linear mixture model (LMM) [1], [2] is the most commonly used
BSS model for HU. Under the LMM, a spectral pixel of the HSI
data is expressed as the convex combination of the endmember
signatures, in which the combination coefficients represent the
endmembers’ abundances. The LMM is succinct and has proven
effective for HU. In the past two decades, a large number of
HU algorithms were developed under the LMM; see, e.g., [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], and [14]. In fact,
numerical evidence shows that the LMM can oftentimes explain
the vast majority of pixels with high accuracy; see, e.g., [15].
It is worth noting that many nonlinear mixture models are also
proposed for HU; see [16] and recent developments using neural
networks, e.g., [17]. Nonlinear models are used to capture the
complex dynamics and data generating mechanisms that could
not be interpreted by the LMM, which reduces modeling errors
and enhances the HU performance. However, using nonlinear
models is not without price—the computational problems under
nonlinear models are in general much harder to tackle (especially
when deep neural networks are involved); see, e.g., [17]. In fact,
the LMM often allows us to design algorithms that strike a
good balance between modeling accuracy and computational
convenience. Hence, we focus on the more classic and more
widely used LMM in this article.

One of the most important considerations in HU is the iden-
tifiability of the endmembers and the abundances. Under the
LMM, the endmembers and abundances can be considered as
the two “latent factors” of a matrix factorization (MF) model—
which are nonidentifiable in general. A remedy is to exploit the
structural prior information of the latent factors. For example,
to establish model identifiability, an important line of work in
HU uses the convex geometry (CG) of the abundances, e.g.,
the existence of the so-called pure pixels [3], [4], [12], [13],
[18] or the “sufficiently scattered condition” [7], [19], [20].
CG-based identifiability analysis has also been used in many
machine learning tasks; see [21].
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The CG- and MF-based HU algorithms have enjoyed many
successes. However, some challenges remain. In particular, the
CG-based identifiability conditions require the existence of
some special pixels, which may not always hold. Recently, a line
of work in [22], [23], [24], [25], [26], [27], and [28] proposed
an alternative HU approach under the LMM. The work in [22]
linked the so-called block-term tensor decomposition model with
multilinear rank (Lr, Lr, 1)-block terms (or, in short, the 𝖫𝖫1
tensor decomposition model) [29], [30], [31] with LMM-based
HU. Instead of treating the HU problem as an MF problem, the
𝖫𝖫1-based approach takes a tensor decomposition perspective
via exploiting the spatial dependence of the abundances. The
𝖫𝖫1 model-based HU framework is refreshing. The approach
offers complementary identifiability guarantees for HU in cases
where CG-based methods cannot provide such assurances.

A. Challenges of Structured LL1 Model-Based HU

In the context of HU, the 𝖫𝖫1 tensor decomposition formula-
tions often have structural constraints and regularization on the
latent factors, which usually come from physical meaning and
prior information of HSIs. However, designing structured 𝖫𝖫1
tensor decomposition algorithms that are tailored for the HU
problem is a nontrivial task.

The first challenge lies in efficiency. The speed of the existing
algorithms is often unsatisfactory. One reason is that all the ex-
isting 𝖫𝖫1-based HU algorithms (see [22], [23], [24], [25], [26],
[27], and [28]) adopted a three-factor parameterization of the
𝖫𝖫1 tensor. Consequently, the classic alternating least squares
(ALS) framework (see [30]) is employed as the backbone of their
tensor decomposition algorithms. The nonnegativity constraints
on the endmembers and abundances are often handled by the
classic multiplicative update (MU) algorithm [32]. This ALS-
MU combination often leads to a considerably high per-iteration
complexity under typical HU settings. The MU algorithm is
also prone to numerical issues in some cases, e.g., when there
are iterates that contain zero elements [33]. In addition, MU
typically needs a relatively large number of iterations to converge
to a reasonable solution [34].

The second notable challenge is that the existing 𝖫𝖫1-based
HU algorithms have difficulties in enforcing many physically
meaningful constraints on the abundances of the endmembers.
The reason is that the abundance map of any endmember is
represented by the product of two latent matrices under the
three-block parameterization in the existing 𝖫𝖫1-based HU al-
gorithms. This makes imposing prior information of the abun-
dance maps (e.g., sparsity and spatial smoothness) fairly in-
convenient and oftentimes leads to cumbersome reformulations,
multiple slack variables, and overloaded tuning parameters (see,
e.g., [23], [24], and [26])—which may further complicate and
slow down the algorithms.

B. Contributions

In [22], [23], [24], [25], [26], [27], and [28], the lack of
efficient 𝖫𝖫1 decomposition algorithms under structural con-
straints/regularization stands as the computational bottleneck. In
this article, we propose a structured 𝖫𝖫1 tensor decomposition

algorithm that is tailored for LMM-based HU. Our detailed
contributions are as follows.

1) Two-Block Optimization Framework for Structured LL1-
Tensor-Decomposition-Based HU: We propose to employ the
idea in [35] to recast the three-factor tensor decomposition
problem into a rank-constrained two-factor MF formulation.
Under the context of HU, the two factors explicitly represent
the endmembers and their abundances—as in the classic MF
approaches [2]. Hence, it is flexible and convenient to impose
constraints and regularization based on their structural prior
information (e.g., spatial smoothness of the abundances). Based
on the reformulation, we develop an inexact and accelerated
alternating gradient projection (GP) algorithm that admits sub-
stantially lower per-iteration complexity compared to the ALS-
MU-based structured 𝖫𝖫1 approaches as in [22], [23], [24], [25],
[26], [27], and [28].

2) Fast Solvers for Structural Constraints: A notable chal-
lenge of our two-block reparameterization is that a number of
complex constraints are imposed on the latent factors. This
makes the subproblems in our two-block GP framework non-
trivial to solve. In particular, the nonnegativity, sum-to-one
(STO), and low-rank (LR) constraints are all imposed on the
abundance factor to reflect its physical properties. In addition,
the low matrix rank constraint is added to the abundance maps
under the tensor model. Simultaneously enforcing these con-
straints under our GP framework requires efficient and effective
nonconvex set projection solvers. In this article, we propose
two alternating projection (AP)-based algorithms to handle the
projection problem of interest in a fast and accurate manner.
This serves as a critical integrating component to flesh out the
efficiency and effectiveness of the overall alternating GP-based
𝖫𝖫1 decomposition algorithm.

3) Characterization and Validation: Unlike the existing
𝖫𝖫1-based HU algorithms (e.g., those in [22], [23], [24], [25],
[26], [27], and [28]) that often lack convergence understand-
ing, we characterize the convergence behavior of the proposed
two-block GP algorithmic framework. Note that the asymptotic
convergence of alternating two-block GP with acceleration was
studied in [36]. Our analysis takes a step further and offers a
finite-iteration characterization. We test the proposed algorithm
using a number of synthetic, semireal, and real datasets under a
variety of performance metrics. We compare our algorithms with
a suite of existing ALS-MU over various datasets for numeri-
cal validation and observe substantial efficiency and accuracy
improvements attained by the proposed approach.

Part of the work appeared as a conference paper in [37]. In this
journal version, we additionally include: 1) a faster AP algorithm
based on a convex approximation for the LR constraint; 2) the
consideration of incorporating the total variation (TV) regular-
ization on the abundance maps (to showcase the flexibility of
the proposed framework); 3) convergence characterizations of
the algorithm; and 4) extensive experiments on semireal and real
datasets.

4) Notation: The symbols x (or X), x, X , and X de-
note the scalar, the vector, the matrix, and the tensor, respec-
tively. The ith, (i, j)th, and (i, j, k)th elements of x ∈ RI ,
X ∈ RI×J , and X ∈ RI×J×K are represented by [x]i, [X]i,j ,
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and [X]i,j,k, respectively. The symbols X(i, :) and X(:, j)
(or xj) denote the ith row and jth column of a matrix X ∈
RI×J , respectively. X(i, j, :) denotes the (i, j)th tube of X ,

and X(:, :, k) denotes its kth slab. ‖X‖F =
√∑

i,j [X]2i,j and

‖X‖F =
√∑

i,j,k[X]2i,j,k represent the Frobenius norms of X

and X , respectively. Given a matrix X ∈ RI×J and a vector
y ∈ RK , the outer product X ◦ y yields an I × J ×K tensor
such that [X ◦ y]i,j,k = X(i, j)y(k). The nuclear norm (NN)
of X is denoted as the sum of singular values σi(X), i.e.,
‖X‖∗ =

∑
i σi(X).σmax(X) denotes the largest singular value

of X .

II. PRELIMINARY

We briefly introduce the pertinent background of the LMM
and the 𝖫𝖫1 tensor decomposition model.

A. LMM-Based HU

Denote an HSI asY ∈ RI×J×K , where I andJ are the dimen-
sions of the vertical and horizontal spatial modes, respectively,
and K is the number of wavelengths. Here, Y (:, :, k) ∈ RI×J

represents the I × J spatial image captured at the kth wave-
length. A pixely� := Y (i, j, :) ∈ RK is aK-dimensional vector
with � = i+ (j − 1)I . Consider a noise-free case; under the
LMM, a spectral pixel y� is modeled as a convex combination
of several endmembers contained in the pixel [2]. To be specific,
we have

y� = Cs� (1)

wherecr ∈ RK for r = 1, . . . , R inC = [c1, . . . , cR] ∈ RK×R

denote the R materials’ spectral signatures (i.e., endmembers),
and s� ∈ RR is the corresponding abundance vector satisfying
the following simplex constraint [1], [2]:

1�s� = 1, s� ≥ 0, � = 1, . . . , IJ. (2)

The constraints stem from the physical interpretation of the
LMM, where sr,� is the proportion of endmember r in the pixel
�.

Putting the pixels together to form a matrix, we have

Y = CS (3)

where Y = [y1, . . . ,yIJ ] obtained by setting y� = Y (i, j, :),
and S = [s1, . . . , sIJ ]. The LMM in (3) can also be expressed
using the following tensor notations:

Y =

R∑
r=1

Sr ◦C(:, r) (4a)

R∑
r=1

Sr = 11�, Sr ≥ 0 (4b)

where C(:, r) = cr ∈ RK , 1 is an all-1 vector with a proper
length, and◦denotes the outer product. The matrixSr ∈ RI×J is
obtained by reshaping the row vectorS(r, :) ∈ RIJ ; specifically,
we have

S(r, :) = vec(Sr)
�.

Fig. 1. Illustration of the LMM with R = 5 endmembers.

The matrix Sr can be interpreted as the abundance map of the
rth endmember in the context of HU; see Fig. 1. LMM-based
HU aims at finding Sr for r = 1, . . . , R (or, equivalently, the
matrix S) and C simultaneously.

B. CG-Based MF, Identifiability

Under the MF model in (3), a large number of MF-based
methods have been proposed for HU; see the overviews in [1]
and [2]. As a BSS problem, the effectiveness of these MF-based
HU methods heavily depends on the identifiability of C and
S from Y . Generally speaking, without any constraints on the
factors C and S, the MF model in (3) is not identifiable, even
without noise, as one can easily find an invertible Q such that

Ĉ = CQ ≥ 0, Ŝ = Q−1S ≥ 0

but Y = ĈŜ still holds; see more discussions on the identifia-
bility issues in [2], [21], and [20].

The identifiability problem has been studied extensively,
primarily from a CG-based simplex-structured MF (SSMF)
viewpoint [21]. In a nutshell, it has been established that if
the abundance matrix S satisfies certain geometric conditions,
namely, the pure pixel condition [3], [4], [12], [13] and the
sufficiently scattered condition [7], [20], [21], then C and S
can be identified up to column and row permutations, respec-
tively. These important results reflect the long postulations in
the HU community, i.e., the Winter’s and Craig’s beliefs [9],
[11]. Nonetheless, despite the elegance of SSMF’s identifiability
research, these geometric conditions can still be stringent in
some cases, as they both assume the existence of some special
pixels. Hence, these conditions may not always hold in real data;
see, e.g., the “highly mixed cases” in [38].

C. LL1-Tensor-Decomposition-Based HU

The work in [22] proposed a tensor decomposition method
for HU under the LMM. The employed 𝖫𝖫1 model is similar
to the tensor expression of LMM in (4a)—but has an extra LR
assumption on the abundance maps. To be specific, assume that
each abundance map Sr is an LR matrix such that rank(Sr) =
Lr ≤ min{I, J}; then, the expression in (4a) can be rewritten
as follows:

Y =

R∑
r=1

(
ArB

�
r

) ◦C(:, r) (5)

where Ar ∈ RI×Lr , Br ∈ RJ×Lr , and Sr = ArB
�
r . The

model in (5) is the 𝖫𝖫1 tensor model [29], which is illustrated
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Fig. 2. Illustration of the 𝖫𝖫1 model.

in Fig. 2. It admits an important identifiability property [29] as
follows.

Theorem 1 (Identifiability of LL1): Assume that the latent
factors (Ar,Br,C) in (5) are drawn from any joint absolutely
continuous distributions. Assume Lr = L, IJ ≥ L2R, and

min

(⌊
I

L

⌋
, R

)
+min

(⌊
J

L

⌋
, R

)
+min(K,R) ≥ 2R+ 2.

Then, the 𝖫𝖫1 decomposition of Y is essentially unique almost
surely.

The “essential uniqueness” means that if there ex-
ists (Ār, B̄r, C̄) satisfying Y =

∑R
r=1(Ār(B̄r)

�) ◦ C̄(:, r),
we must have S̄ = SΠΛ, C̄ = CΠΛ−1, where Π is
a permutation matrix, Λ is a nonsingular diagonal ma-
trix, S̄ = [vec(S̄1), . . . , vec(S̄R)]

�, S̄r = Ār(B̄r)
�, S =

[vec(S1), . . . , vec(SR)]
�, Sr = ArB

�
r , and the vec(·) denotes

the “vectorization” operator. Note that if S has known column
norms as in hyperspectral imaging [cf. (2)], then the scaling
ambiguity Λ is automatically removed.

Theorem 1 asserts that the abundance maps (Sr’s) and the
endmembers (C) are identifiable up to a permutation ambiguity
if the abundance maps have a relatively LR. In the context of
HU, because of the smoothness and continuity of the materials’
spread over the spatial domain, the abundance maps are often
approximately LR matrices; see an example in Section V-B.
The identifiability conditions in Theorem 1 are different from
those geometric conditions (e.g., the pure pixel condition and the
sufficiently scattered condition) used in CG-based SSMF [21],
and thus, the 𝖫𝖫1-based approach is a valuable complement to
existing SSMF-based HU methods. In addition, the identifiabil-
ity under the 𝖫𝖫1 decomposition model can even hold when C
does not have linearly independent columns, but rank(C) = R
is often needed in SSMF [2], [21].

D. Challenges of Existing LL1-Based HU Algorithms

Directly applying the vanilla𝖫𝖫1 tensor model to LMM-based
HU without considering important physical constraints in HU
(e.g., nonnegativity of the endmembers) may be undesirable—as
using such priors are often vital when fending against noise. The
work in [22] proposed the following criterion:

min
{Ar,Br},C

1

2

∥∥∥∥∥Y −
R∑

r=1

(
ArB

�
r

) ◦C(:, r)

∥∥∥∥∥
2

F

+
δ

2

∥∥∥∥∥
R∑

r=1

ArB
�
r − 11�

∥∥∥∥∥
2

F

s.t. Ar ≥ 0, Br ≥ 0, C ≥ 0. (6)

The nonnegativity constraints on the latent factors are added
per the physical meaning of endmembers and abundances. The
second penalty term in the objective function is for approximat-
ing the abundance STO constraint, i.e.,

∑R
r=1 Sr = 11� in (4).

Similar formulations are also used in a number of follow-up
works; see, e.g., [23], [24], [25], [26], [27], and [28]. This line
of work encounters the following challenges.

1) High Per-Iteration Complexity: The work in [22] and its
variants in [23], [24], [25], [26], [27], and [28] adopt the ALS-
MU algorithms, i.e., alternately update A = [A1, . . . ,AR],
B = [B1, . . . ,BR] and C using matrix unfoldings of Y , and
use MU to enforce the nonnegative constraints. The first chal-
lenge of ALS-MU lies in computational complexity. Because
of using A ∈ RI×LR, B ∈ RJ×LR, and C ∈ RK×R as factors
of the parameterization and the ALS framework, the ALS-MU
algorithm costs O(IJKLR+ IKL2R2 + JKL2R2) flops at
each iteration—which is fairly expensive since LR can easily
reach the level of 102–103 in many cases of HU. This scheme
essentially treats the 𝖫𝖫1 decomposition problem as a canonical
polyadic decomposition problem [39], [40] with a tensor rank
of LR, which is very hard when LR is large.

2) Slow Convergence and Numerical Issues of MU: All the
algorithms in [22], [23], [24], [25], [26], [27], and [28] employed
the MU algorithm for handling nonnegativity constraints on
A,B, and C. Essentially, MU updates one factor using the
majorization–minimization method but with a very conservative
step size such that the nonnegativity is satisfied; see [32]. Thus,
MU often takes a large number of iterations to attain a sensible
result and perhaps worsens the efficiency [34]. In addition, as
shown in [33], the MU algorithm is prone to numerical issue if
there is a zero element in any iterates of A,B, or C. This is
problematic in the context of HU, as Sr = ArB

�
r may contain

many zeros due to the spatial sparsity of the abundance maps.
3) Difficulty in Incorporating More Priors: The existing

𝖫𝖫1-based HU methods adopted the three-factor parameteri-
zation using A = [A1, . . . ,AR], B = [B1, . . . ,BR] and C
as in (5). However, the parameters Ar and Br do not have
physical meaning, and the abundance map of material r is
represented as ArB

�
r, i.e., the product of two matrices. This

introduces extra difficulties in incorporating prior information
of the abundance maps—but using prior information is often
critical for performance enhancement. The works in [22], [23],
[24], [25], [26], [27], and [28] used the following optimization
criterion (and some variants):

min
{Ar,Br},C

1

2

∥∥∥∥∥Y −
R∑

r=1

(
ArB

�
r

) ◦C(:, r)

∥∥∥∥∥
2

F

+
δ

2

∥∥∥∥∥
R∑

r=1

ArB
�
r − 11�

∥∥∥∥∥
2

F

+ λ

R∑
r=1

reg
(
ArB

�
r

)
s.t. Ar ≥ 0, Br ≥ 0, C ≥ 0 (7)

where reg(ArBr) represents different regularization terms,
e.g., sparsity ‖ArB

�
r‖1 and LR ‖ArB

�
r‖∗ in [27], TV

(ArB
�
r)TV in [23], and the weighted sparsity regularization
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terms in [24] and [25]. From an optimization perspective, han-
dling the term reg(ArB

�
r ) is nontrivial. Hence, the work in [23]

further recasts the problem in (7) as follows:

min
A,B,C
{Er},U ,V

1

2

∥∥∥∥∥Y −
R∑

r=1

(
ArB

�
r

) ◦C(:, r)

∥∥∥∥∥
2

F

+
δ

2

∥∥∥∥∥
R∑

r=1

ArB
�
r − 11�

∥∥∥∥∥
2

F

+ λ

R∑
r=1

reg
(
E�r

)
+

ω

2

(∥∥Er −U rV
�
r

∥∥2

F
+ ‖U −A‖2F + ‖V −B‖2F

)
s.t. Ar ≥ 0, Br ≥ 0, C ≥ 0 (8)

where Er is introduced to replace the product ArB
�
r, i.e.,

Er ≈ ArB
�
r is desired, so that the regularization on the abun-

dances could be handled. In addition, the U and V variables
are introduced to avoid constraints when optimizing Er. A
number of works, e.g., [26], [27], and [28], used similar ideas
to reformulate their respective problems. Such reformulations
make sense, but the many added extra regularization terms, new
auxiliary variables, and hyperparameters make the optimiza-
tion procedure and parameter tuning even more complicated.
Furthermore, the backbone of the algorithm is still ALS-MU,
which means that these algorithms share the high per-iteration
complexity and slow convergence challenges as the plain-vanilla
ALS-MU algorithm in [22].

III. STRUCTURED 𝖫𝖫1 DECOMPOSITION FOR HU

To tackle the aforementioned challenges in Section II-D,
this article aims at providing an alternative 𝖫𝖫1-based HU
algorithmic framework. To be specific, we propose to employ
a constrained two-block parameterization of the 𝖫𝖫1 tensor
model. Under this parameterization, a two-block alternating
optimization strategy is proposed. The new algorithm empiri-
cally exhibits a much faster convergence speed, perhaps because
two-block alternating optimization often converges under milder
conditions relative to the multiblock counterparts [41]. More
importantly, the two-block structure circumvents the large-scale
subproblems under the three-block-based ALS frameworks in
prior works. The new formulation also admits the flexibility to
add regularization and structural constraints on the abundance
maps. Moreover, the new formulation allows us to propose
efficient alternating GP algorithms to deal with the block opti-
mization subproblems—which further improves effieciency and
accuracy.

A. LL1 via Constrained MF

Our idea starts from a two-block parameterization of the 𝖫𝖫1
model in (5). To be specific, the following equivalence is readily
seen:

{Sr ∈ RI×J |Sr = ArB
�
r, Ar ∈ RI×L,Br ∈ RJ×L}

= {Sr ∈ RI×J |rank(Sr) ≤ L}. (9)

The above equivalence allows us to reexpress the 𝖫𝖫1 model in
(5) as follows [35]:

Y =
R∑

r=1

Sr ◦ cr, rank(Sr) ≤ L. (10)

By (9), the two-block tensor representation in (10) is equivalent
to the three-block representation in (5). Using (10), we propose
the following criterion for 𝖫𝖫1-based HU:

min
S,C

1

2
‖Y −CS‖2F +

R∑
r=1

θrϕ(Sr) (11a)

s.t. Sr ∈ ALR, r = 1, . . . , R (11b)

S ≥ 0, 1�S = 1�, C ≥ 0 (11c)

where Sr = mat(S(r, :)) is the abundance map of endmember
r, mat(·) denotes the “matricization” operator that reshapes the
row vector S(r, :) to an I × J matrix, θr ≥ 0 is a regularization
parameter, ϕ(·) is a regularization term added on the abundance
map (e.g., sparsity, weighted sparsity, and TV as used in [22],
[23], [24], [25], [26], [27], and [28]), and the set ALR is for
adding an LR (or approximate LR) constraint onto Sr, which
will be specified later.

The motivation for using this reformulation is as follows.
First, using the two-factor representation of the 𝖫𝖫1 model can
effectively avoid large-size subproblems as in the ALS frame-
work (in particular, the subproblems for updatingA andB) and,
thus, could substantially reduce the complexity of each iteration.
Second, we have replacedArB

�
r bySr under the LR constraint,

which makes it convenient to add the prior information on Sr

(the abundance map). Third, the works in [22], [23], [24], [25],
[26], [27], and [28] used a quadratic approximation to enforce
STO constraint, i.e., δ/2‖∑R

r=1 ArB
�
r − 11�‖2F , which does

not necessarily output abundance maps that satisfy the STO
constraint. We keep the STO requirement as a hard constraint,
which spares the tuning of δ and can always have the STO prop-
erty satisfied. In addition, compared with reformulations like
(8), our formulation has avoided using auxiliary variables and
additional tuning parameters, which may be easier to implement
by practitioners.

Remark 1: The formulation in (11) can be understood as a
constrained MF-based reexpression of the 𝖫𝖫1 tensor decom-
position problem. We stress that the reformulation is the means
for realizing the 𝖫𝖫1 tensor decomposition objective [i.e., to find
the factorization model in (5)], but the theoretical foundation for
using this formulation still lies in the identifiability of 𝖫𝖫1 tensor
decomposition model (cf. Theorem 1). The key ingredient for
linking (11) with (5) is the LR constraint on Sr.

B. Proposed Approach: Alternating GP

In this section, we propose a first-order optimization al-
gorithm to handle (11). To demonstrate its convenience of
incorporating structural constraints, we consider a 2-D spa-
tial TV regularizer (see the definition in (16) and details in
Section III-B1) to exploit the spatial similarity between the
neighboring abundance pixels.
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Our idea is to deal with C and S in an alternating manner. In
iteration t, we use the following GP step to update C:

C(t+1) ← max
{
C(t) − α(t)G

(t)
C , 0

}
(12)

where max{·, 0} is the orthogonal projector onto the nonneg-
ativity orthant, α(t) and G

(t)
C are the predesigned step size and

gradient w.r.t. C, respectively, where we have

G
(t)
C = C(t)S(t)(S(t))� − Y (S(t))�. (13)

For the S-subproblem, assume that ϕ(·) is differentiable.
Then, the GP step w.r.t., S can be expressed as follows:

S(t+1) ← ProjS
(
S(t) − β(t)G

(t)
S

)
(14)

where the notation ProjS(Q) means finding the projection of
Q on the set S , β(t) and G

(t)
S (shown in Appendix A) are the

step size and the gradient w.r.t. S, respectively, and the set S ⊆
RR×IJ is defined as

S = {S|S ≥ 0,1�S = 1�,Sr ∈ ALR, r = 1, . . . , R}. (15)

The GP step in (14) is conceptually simple. However, to im-
plement (14), there are two challenges that need to be carefully
addressed. First, the TV regularization ϕ(·) should be designed
to have a gradient. Second, the projection onto ALR should be
easy to compute. Our designs are detailed in the following.

1) �q-Function-Based TV Regularization: To address the
first challenge, we employ the �q-function-based smoothed TV
regularization in [42], which is defined as follows:

ϕ(Sr) = ϕq,ε(Hxqr) + ϕq,ε(Hyqr) (16)

where qr = S(r, :)� and ϕq,ε(x) =
∑

([x]2i + ε)
q
2 with 0 <

q ≤ 1 and ε > 0. The matrices Hx = H ⊗ I and Hy = I ⊗
H are the horizontal and vertical gradient matrices, respectively,
where I ∈ RJ×J is an identity matrix and

H =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 1 −1
−1 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ∈ RI×I .

In the design of ϕ(Sr) function, the �q function is an effective
tool to promote the sparsity when q < 2 [7], [8]. Meanwhile,
we set the parameter ε > 0 to make the function smooth and the
objective function in (11) continuously differentiable.

2) LR Constraints: Some options of (11b) include

ALR = {Sr ∈ RI×J |rank(Sr) ≤ L} (17)

and the NN-based approximation

ALR = {Sr ∈ RI×J |‖Sr‖∗ ≤ L̃} (18)

where L̃ ∈ R++ is a tunable parameter related to the rank ofSr,
as the value of the NN is not exactly the rank. The expression in
(17) is an exact LR constraint as in the 𝖫𝖫1model, but it presents
a nonconvex combinatorial constraint in the criterion in (11). The
latter is often used in data analytics (e.g., recommender systems)
to promote LR. It serves as a convex approximation for the LR

constraint and often helps design convergence guaranteed algo-
rithms. In this article, we will design an algorithmic framework
that can effectively work with both (17) and (18).

3) Projection Algorithm for (14): To solve (14), one needs a
solver to project a matrix onto the set

S = Asplx ∩ ALR

where Asplx := {S ∈ RR×IJ | 1�S = 1�, S ≥ 0}. To this
end, we propose an AP-based method. More specifically, the
projection uses the following iterations:

F (k+1) ← ProjALR

(
W (k)

)
(19a)

W (k+1) ← ProjAsplx

(
F (k+1)

)
(19b)

where W (0) = S(t) − β(t)G
(t)
S and k is used as the iteration

index of the AP updates. The second subproblem, i.e., (19b),
admits an efficient solver. That is, projecting a column ofF (k+1)

onto the probability simplex can be solved inO(R logR)flops in
the worst case by a water-filling-type algorithm; see [7] and the
references therein. The subproblem in (19a) also admits simple
solutions. To be specific:

1) if (17) is used, then projecting W (k) onto the exact LR
constraint is computed via

F (k+1)=U
(k)
W (:, 1 : L)Σ

(k)
W (1 : L, 1 : L)V

(k)
W (:, 1 : L)�

(20)
where (U (k)

W ,Σ
(k)
W ,V

(k)
W )← svd(W (k)), which is based

on the Eckart–Young–Mirsky theorem [43];
2) if (18) is used, then the projection is computed by

F (k+1) = U
(k)
W Σ̃

(k)

W

(
V

(k)
W

)�
(21)

where (U
(k)
W ,Σ

(k)
W ,V

(k)
W )← svd(W (k)) and

Σ̃
(k)

W ← argmin
˜Σ≥0,1�diag(˜Σ)=˜L

‖Σ̃−Σ
(k)
W ‖2F (22)

which is again a projection onto simplex problem that costs
at most O(min{I, J} logmin{I, J}) flops (if I ≤ J)—
see more discussions in [44].

Note that only relatively simple matrix operations are involved
in the above procedure. Hence, when using both (17) and (18),
the AP algorithm in (19) can be carried out efficiently.

C. Extrapolation-Based Acceleration

As a first-order optimization algorithm, the proposed alternat-
ing GP algorithm in (12)–(14) may take many iterations to get a
reasonably “good” result in practice. Hence, in our implemen-
tation, the extrapolation technique is employed to accelerate the
proposed algorithm without increasing the complexity of each
iteration. To be specific, in each iteration, we compute the partial

gradients w.r.t. some extrapolated points Č
(t+1)

and Š
(t+1)

,
instead of the gradients of C(t+1) and S(t+1). For example, the
extrapolated point of C(t) is defined as follows:

Č
(t+1)

= C(t+1) + μ
(t)
1 (C(t+1) −C(t)) (23)
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Fig. 3. Acceleration attained by the extrapolation of GradPAPA. (a) LR
constraint (17). (b) LR constraint (18).

where μ
(t)
1 is a parameter that combines the current iterate

and the previous iterate to form an “extrapolation.” Using the
extrapolated point, the update rule in (12) is replaced by

C(t+1) ← max
{
Č

(t) − α(t)G
(t)

Č
, 0

}
. (24)

Similarly, the S-update is replaced by

S(t+1) ← ProjS
(
Š

(t) − β(t)G
(t)

Š

)
(25)

where Š
(t)

is defined in the same way as in (23) with its own
sequence μ

(t)
2 . The extrapolation technique has been proven

powerful in first-order convex optimization. Algorithms like GP
and proximal gradient typically need t iterations to reach an
O(1/t)-optimal solution (i.e., a solution that is O(1/t) away
from the optimal solution by some distance metric) in the ab-
sence of strong convexity. The extrapolation can provably reach
O(1/t2)-optimal solutions with the same number of iterations—
yet the additional flops are nearly negligible; see [45]. For
nonconvex and multiblock problems, extrapolation was also
shown useful [46].

Fig. 3 compares the objective value curves of the original
alternating GP algorithm and the accelerated one. The results
are obtained by averaging from ten random trials, and the
experiment aims at unmixing an HSI (size 500× 307× 166)
with 40-dB additive Gaussian noise; find more details in Sec-
tion IV. The noise at each trial is generated randomly, and the
corresponding initialization is obtained by applying a successive
projection algorithm (SPA) [47] on the observed HSI. One can
see that the accelerated algorithm takes about 100 iterations to
get a fairly low objective value (i.e., where the objective value
= 120), while the unaccelerated version uses more than 800
iterations to reach the same level. Therefore, throughout the
experiment section, we adopt the accelerated version.

The proposed algorithm for (11) is summarized in Algorithm
1, which is referred to as the gradient projection alternating pro-
jection algorithm (GradPAPA). The two versions of algorithm
for handling LR and NN constraints in (17) and (18) are termed
as GradPAPA-LR and GradPAPA-NN, respectively.

D. Convergence Properties

Unlike the ALS-MU algorithms in [22], [23], [24], [25],
[26], [27], and [28] that may have convergence issues, the
proposed GradPAPA algorithm’s convergence properties are

Algorithm 1: GradPAPA for Solving (11).

Input: HSI Y ; starting points C(0) and S(0); predefined
sequences of μ(t)

1 , μ(t)
2 , α(t), and β(t).

Parameters: γ(0)
1 = γ

(0)
2 = 1, θr, q, ε, Lr, and L̃.

1: Č
(0)

= C(0), Š
(0)

= S(0), t = 0.
2: repeat
3: %% update C %%

4: C(t+1) ← max{Č(t) − α(t)G
(t)

Č
, 0};

5: Č
(t+1)

= C(t+1) + μ
(t)
1 (C(t+1) −C(t));

6: %% update S %%

7: W̌
(0)

= Š
(t) − β(t)G

(t)

Š
;

8: repeat
9: if choosing cons. (17) do

10: update F̌
(t+1)

by (20);
11: if choosing cons. (18) do

12: update F̌
(t+1)

by (21);

13: W̌
(k+1) ← ProjAsplx

(F̌
(k+1)

);
14: until satisfying the stopping rule;

15: S(t+1) = W̌
(k+1)

;
16: Š

(t+1)
= S(t+1) + μ

(t)
2 (S(t+1) − S(t));

17: t = t+ 1;
18: until satisfying the stopping criterion.
Output: Ĉ = C(t) and Ŝ = S(t).

better understood. Indeed, the GradPAPA algorithm falls un-
der the umbrella of inexact and extrapolated block coordinate
descent [46], [48]. The works in [46] and [48] showed that such
algorithms asymptotically converge to a stationary point, under
some conditions—but the finite-iteration complexity was not
shown. In this article, we show that, with properly predefined
parameters α(t) and β(t), GradPAPA is guaranteed to find a
stationary point in a sublinear rate, if the projections in (17)
and (18) are solved.

To see our result, we defineZ = (C,S). LetJ (Z) and C(Z)
be the objective function of (11) and the indicator function of its
constraints, respectively. This way, the optimization problem is
written as

min
Z
J (Z) + C(Z). (26)

According to [49, Lemma 2.1], the gradient of the objective
function in (26) is

∂(J (Z) + C(Z))

=
[
(∂CJ (C,S) + ∂CC(C))�, (∂SJ (C,S) + ∂CS(S))�

]�
where CC(C) and CS(S) are indicator functions of the con-
straints on C and S, respectively.

We adopt the definition of ε-stationary point in [50].
Definition 1: A point Z is an ε-stationary point of the opti-

mization problem in (26) if

dist (0, ∂ZJ (Z) + ∂ZC(Z)) ≤ ε

where ∂Z denotes the subgradient with respect to Z.
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It is readily seen that when ε is small, the definition covers a
vicinity of any stationary point of Problem (11). We also define

L
(t)
C = σ2

max

(
S(t)

)
L
(t)
S = σ2

max

(
C(t+1)

)
+ qmax

r
θrσmax

(
H�

xU
(t)
r Hx

)
+ qmax

r
θrσmax

(
H�

yV
(t)
r Hy

)
where U

(t)
r and V

(t)
r are diagonal matrices with [U

(t)
r ]i,i =

([Hxq
(t)
r ]2i + ε)

q−2
2 , and [V

(t)
r ]i,i = ([Hyq

(t)
r ]2i + ε)

q−2
2 , r =

1, . . . , R. Using these notations, we present the following con-
vergence guarantee.

Proposition 1: Assume thatJ � = min (26) is finite, that 0 <
inft α

(t) ≤ supt α
(t) <∞ and 0 < inft β

(t) ≤ supt β
(t) <∞

for all t, that there exist c1, . . . , c4 such that c2L
(t)
C ≤ 1/α(t) ≤

c1L
(t)
C and c4L

(t)
S ≤ 1/β(t) ≤ c3L

(t)
S in all iterations, and that

the projection in (25) is solved exactly. Then, the following
holds:

min
t′=0,1,...,t

dist
(
0, ∂ZJ

(
Z(t′+1)

)
+ ∂CZ

(
Z(t′+1)

))
≤ C√

t

where

C = C1

√
4
(J (

Z(0)
)− J �

)
/C2

C1 = max{μ̄1, μ̄2, 1}

max

{
(c1 + 1) sup

t
α(t), (c3 + 1) sup

t
β(t)

}
C2 = min

{
(1− τ21 )/ sup

t
α(t), (1− τ22 )/ sup

t
β(t)

}
in which the constants satisfy

μ
(t)
1 ≤ τ1

√(
c1L

(t−1)
C

)
/
(
c2L

(t)
C

)
≤ μ̄1 (27a)

μ
(t)
2 ≤ τ2

√(
c3L

(t−1)
S

)
/
(
c4L

(t)
S

)
≤ μ̄2 (27b)

and τ1 < 1, τ2 < 1 for all t.
The proposition asserts that the solution sequence produced

by Algorithm 1 converges to an ε-stationary point in O(1/ε2)
iterations. The proof of Proposition 1 is relegated to Appendix
B. Our convergence analysis is reminiscent of the technique
in [50]. However, the work in [50] is concerned with single-block
optimization with convex constraints. Our proof generalizes
the results to cover multiple-block cases with nonconvex con-
straints.

Remark 2: We hope to remark that the result in Proposition 1
is built upon the premise that (14) can be solved to optimal-
ity. When the NN-based constrained is employed (i.e., in the
GradPAPA-NN version), this assumption is not hard to be met,
since S = Asplx ∩ ALR is a convex set if ALR is from (18). If
ALR is from (17), then S = Asplx ∩ ALR is nonconvex. Projec-
tion onto this set is not guaranteed in theory using the proposed
AP algorithm. Interestingly, our empirical study shows that AP
almost always finds a feasible solution inS = Asplx ∩ ALR. We

TABLE I
COMPLEXITY OF EACH TERM OF GRADPAPA

leave theoretical underpinning of this nonconvex projection step
to a future work.

Remark 3: It is important to note that the sequences {μ(t)
1 }

and {μ(t)
2 } need to be specified for GradPAPA. By Proposition 1,

the sequences should be selected so that (27a) and (27b) are
satisfied. This is nontrivial, since four constants c1, . . . , c4 are
involved. Nonetheless, in practice, we find that using Nesterov’s
extrapolation sequence [45] as a heuristic to select {μ(t)

1 } and

{μ(t)
2 } works fairly well—and spares us the computations to

determine the two sequences. Hence, in this article, we simply
set

μ
(t)
i =

γ
(t)
1 − 1

γ
(t+1)
i

, γ
(t+1)
i =

1 +

√
1 + 4

(
γ
(t)
1

)2

2

with γ
(0)
i = 1 for i = 1, 2. In addition, we choose the step

sizes α(t) and β(t) as α(t) = 1/L
(t)
C , β(t) = 1/L

(t)
S as often

done in the unextrapolated alternating-gradient-descent-based
algorithms, which also works well in practice.

E. Computational Complexity

The detailed complexity analysis of the proposed Algorithm
1 is listed in Table I. The computation of the gradients G

(t)
C

and G
(t)
S takes O(IJKR) and O(IJR(I +K)) flops, respec-

tively. In the computation of the step size β(t), computing
σmax(H

�
xU

(t)
r Hx) and σmax(H

�
yV

(t)
r Hy) may increase the

computational flops at each iteration. In this article, instead of
computing the exact values, we just compute their upper bound.
For example, we have

σmax(H
�
xU

(t)
r Hx) ≤ σmax(H

�
x )σmax(U

(t)
r )σmax(Hx)

where σmax(U
(t)
r ) is simply chosen to be the largest value

of the diagonal matrix U
(t)
r and the other two terms are pre-

computed. Therefore, computing α(t) and β(t) takes O(R3)
flops, but R is normally small. In the AP solver, (19b) costs
O(IJR logR) flops via the water-filling-type algorithm, the
SVD in (20) takes O(IJLR), and the projection in (21) takes
O(IJ min{I, J}R+min{I, J} logmin{I, J}).

The complexity of each iteration of the proposed algorithms
is summarized in Table II. To be specific, the proposed algo-
rithms take at most O(IJR(I +K) +m(IJR(min{I, J}+
logR) + min{I, J} logmin{I, J})) flops at each iteration,
where m is the number of AP iterations—usually only three to
six (see Table IV). In addition, L̃ is a tunable parameter related
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TABLE II
COMPARISON OF THE COMPLEXITY BETWEEN ALS-MU ALGORITHMS AND

GRADPAPA

to the NN of Sr and admits the same magnitude as the size of
HSI data in the numerical experiments.

It is worth noting that the proposed algorithm can be much
more lightweight relative to the ALS-MU algorithms in [22],
[23], [24], [25], [26], [27], and [28]. Even the vanilla ALS-MU
algorithm in [22] takes O(IJKLR+ IKL2R2 + JKL2R2)
flops in each iteration. To see how much our algorithm could
save in terms of per-iteration complexity, consider an example
where L̃R ≈ LR ≈ I ≈ J ≈ K. In this example, one can see
that ALS-MU takesO(I4) flops per iteration, but our algorithms
only cost O(I3R) flops in each iteration—no matter with or
without the TV regularization. Note that I is often not small,
thus saving an order-of-magnitude complexity w.r.t. I can be
quite significant, as one will see in the experiments.

IV. EXPERIMENTS

In this section, we showcase the effectiveness and efficiency
of the proposed GradPAPA methods using experiments on syn-
thetic data, semireal data, and real data.

A. Experiment Settings

1) Baselines: We use a number of relevant baselines.
These include SISAL [5], MVCNMF [6], MVNTF [22],
MVNTFTV [23], SSWNTF [26], and SPLRTF [27]. Note that
the first two methods are classic LR MF-based HU algorithms—
considering the minimum volume constraint on the spectral
signatures; the remaining four methods are ALS-MU-based 𝖫𝖫1
algorithms that MVNTF [22] handled the formulation shown in
(6), MVNTFTV [23], SSWNTF [26], and SPLRTF [27] worked
with different regularization terms, e.g., TV in [23], weighted
sparsity in [26], and sparsity and LR in [27].

2) Algorithm Settings: The proposed GradPAPA involves a
set of parameters, i.e., the endmember numberR, the parameters
L and L̃ related to Sr, and the regularization parameter {θr}.
The number of endmember R can be selected by the existing
estimation algorithms; see, e.g., [12] and [51]. The rank L
is selected as the maximal number that satisfies the condition
shown in Theorem 1. The parameter L̃ is chosen by a heuristic,
namely, L̃ = 1.5×max{I, J,K}. The parameter θ is selected
from one of the values in {z × 10−4}, where z = 1, 3, 5, 7, 9
in the synthetic and semireal experiment. We present the best
result in terms of the estimation accuracy over the zs, but one
will see that there is a wide range of θ that gives similar results
(cf. Fig. 14), that is, the algorithm seems not to be sensitive
to this hyperparameter. In the real experiments, we set θ as
10−4 in the real-data experiment. For the parameters in the TV
regularization (16), we fix q = 0.5 and ε = 10−3. In addition,
when the relative change of the iterates of the latent factors

is smaller than 10−3, we stop the AP solver in the proposed
algorithms.

For the parameter settings of baselines, we mainly follow the
respective papers’ suggestions and make proper adjustments to
enhance their performance under our settings. The baselines and
proposed algorithms are terminated when the relative change of
the objective value is smaller than 10−5. Since when handling
large-scale problems, the ALS-MU-based algorithms typically
run with extra lengthy time but do not reach this stopping
criterion, we also set the maximal number of iterations to be
1200 (respectively, 2500) for the synthetic data experiments
(respectively, semireal and real data experiments).

3) Metrics: In the synthetic and semireal experiments, we
mainly use the spectral angle distance (SAD) [22] of the esti-
mated Ĉ and the mean squared error (MSE) [7] of the estimated
Ĉ and Ŝ as the performance metrics. The SAD of the estimated
Ĉ is defined as follows:

SAD = min
π∈Π

1

R

R∑
r=1

arccos

(
crĉ

�
πr

‖cr‖2‖ĉπr
‖2

)

and the MSE of the estimated Ĉ is defined as follows:

MSE = min
π∈Π

1

R

R∑
r=1

∥∥∥∥ cr
‖cr‖2 −

ĉπr

‖ĉπr
‖2

∥∥∥∥2

2

where Π is the set of all permutation of {1, . . . , R}, cr and
ĉπr

are the ground truth of the rth column of C and the
corresponding estimate, respectively. The MSE of Ŝ is defined
in an identical way using its transpose.

For the real data experiment, it is hard to measure the per-
formance quantitatively due to the absence of ground truth.
Therefore, we qualitatively comment on the performance of the
estimated factors using visual inspection. In addition, we use
the pure pixels manually extracted from HSI data to measure
the quality of the estimated endmembers.

B. Synthetic Data Experiments

We first use a set of experiments to test the basic properties of
GradPAPA, e.g., accuracy, sensitivity to initialization, conver-
gence speed, and feasibility enforcing. In these experiments, we
set θ = 0 and compare the GradPAPA algorithm with the plain-
vanilla ALS-MU algorithm, namely, MVNTF in [22], that also
does not have any structural regularization on the abundances
except for the nonnegativity and STO constraints.

1) Synthetic Data Generation: The procedures of generating
C and S are detailed as follows: 1) we generate two matri-
ces E1 ∈ RK×R and E2 ∈ RR×IJ following the independent
identically distributed (i.i.d.) Gaussian distribution with unit
variance and zero mean; 2) we use the AP algorithm in (19)
on the matrix E2 to produce S satisfying the LR structure [i.e.,
S ∈ ALR in (17)]; similarly, we threshold the negative values of
E1 to obtain the nonnegative matrixC; and 3) we synthesize the
𝖫𝖫1 tensor Y ← CS. In addition, the i.i.d. zero-mean Gaussian
noise is added to the synthetic tensors. The size of the synthetic
tensor is set to be I = J = K = 100, L = 30, and R = 5 or 10.
We test two initialization strategies, including i.i.d. Gaussian
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Fig. 4. Average MSE values against time of MVNTF and GradPAPA.
(a) R = 5. (b) R = 10.

TABLE III
FEASIBILITY PERCENTAGE OF ESTIMATED Ŝ

initialization and SPA-based [47] initialization. The details of
SPA-based initialization are as follows: 1) we use the spectral
pixel extraction method SPA to generate C̃ and threshold its neg-
ative values to get the initial endmembers C(0); 2) we generate
the initial abundance maps by S̃ = ((C(0))†C(0))†(C(0))†Y ,
where (C(0))† is the pseudoinverse of C(0); 3) we use the
nonnegative MF method by the hierarchical ALS method [52] to
get the latent factors {Ãr, B̃r}Rr=1; and 4) we obtain the initial
abundance maps S(0)

r = ÃrB̃
�
r .

2) Results: Fig. 4 shows the MSE curves of the estimated
Ĉ against time by the algorithms. The results are averaged
from 20 independent trials under SNR = 25 dB. A number of
observations are in order. First, for both R = 5 and R = 10,
the proposed GradPAPA algorithm performs much better than
the ALS-MU-based MVNTF algorithm in terms of accuracy
and speed. Second, using the same Gaussian initialization,
GradPAPA-NN converges faster than GradPAPA-LR to reach
the same MSE level. In particular, whenR = 10, GradPAPA-NN
converges to an MSE level close to 10−5 using less than 5 s,
but GradPAPA-LR needs 40 s to reach a similar level. Third,
using SPA can help both GradPAPA-NN and GradPAPA-NN to
converge even faster. In particular, the SPA initialization further
speeds up GradPAPA-LR by about 75%. Although MVNTF
works to a certain extent, its MSE is more than three orders of
magnitude higher than those of GradPAPA-NN and GradPAPA-
LR in all cases.

Table III shows how often the solutions obtained by the
algorithms satisfy the structural constraints on latent factors in
the context HU—i.e., the nonnegativity of S and C, the STO
constraint of the abundances, and the LR constraint on Sr.
Note that nonnegativity is relatively easy to enforce. Hence,
we look into the satisfaction of two harder to enforce con-
straints, namely, the STO constraint on the columns of S and
the LR constraint on Sr. To measure the STO feasibility, we

TABLE IV
AVERAGE NUMBER OF AP ITERATIONS (m) UNDER DIFFERENT R’S AND

INITIALIZATION SCHEMES

calculate the percentage of the estimated abundance vectors
(i.e., s�) satisfying |1�s� − 1| ≤ p, where p is specified in Ta-
ble III. The LR constraint satisfaction is measured by averaging
(
∑L

i=1 σ
r
i /

∑min{I,J}
i=1 σr

i )× 100% over r = 1, . . . , R, where
σr
i is the ith singular value of the estimated Sr. One can see that

MVNTF has difficulties in satisfying the STO constraint, maybe
because it uses a “soft” regularization to enforce this requirement
[cf. (6)]. However, GradPAPA-NN and GradPAPA-LR almost
achieve 100% feasibility for STO and LR. More notably, such
feasibility can be performed at a relatively small cost: Table IV
shows that for the S projection problem, GradPAPA-LR only
needs about six AP iterations and GradPAPA-NN needs about
two AP iterations.

C. Semireal Data Experiments

1) Semireal Data: These datasets are “semireal” because the
pixels are synthesized exactly following the LMM model using
abundance maps and endmembers extracted from real datasets.
This type of semireal data helps validate the effectiveness of
our algorithms under controlled (yet realistic) data generating
processes and noise levels.

The first experiment uses the Terrain data. This dataset is ac-
quired by the HYDICE sensor. After removing water absorption-
corrupted bands, we obtain an HSI data that has a size of
500× 307× 166. These data contain five prominent materials,
namely, Soil1,” Soil2,” Tree,” Shadow,” and Grass,” so the
number of endmembers is set to be R = 5.

The second dataset we used is a subscene of the Urban data
with a size of 307× 307× 162. This dataset is obtained by
the HYDICE sensor. The number of endmembers is set as 4,
including Asphalt, Grass, Tree, and Roof. The ground
truth of abundance maps and spectral signatures is available
online (https://rslab.ut.ac.ir/data). The details of generating the
semireal dataset can be found in [53].

2) Baselines: In addition to MVNTF [22] that does not
have structural regularization on latent factors, we compare
GradPAPA with another five baselines, i.e., MVCNMF [6],
SISAL [5], MVNTFTV [23], SSWNTF [26], and SPLRTF [27].

3) Results: Table V shows the SAD and MSE performance
of the algorithms on the Terrain data under SNR = 40 dB. One
can see that the two versions of GradPAPA achieve an order
of magnitude improvement over SPA in terms of SAD and
MSE. The table also includes the runtime performance of all
the 𝖫𝖫1 algorithms. In terms of running time, the two versions
of GradPAPA use about 6 min for this task, while the four ALS-
MU-based 𝖫𝖫1 baselines (i.e., MVNTF, MVNTFTV, SSWNTF,
and SPLRTF) use more than 1 h. We should mention that SISAL
and SPA are in general faster than the other baselines because
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TABLE V
SAD, MSE, AND TIME PERFORMANCE ON THE TERRAIN DATA (SNR = 40 DB)

BY THE ALGORITHMS

Fig. 5. Estimated SAD of C and MSE of C and S for Terrain under different
noises. (a) SAD of C. (b) MSE of C. (c) MSE of S.

TABLE VI
SAD, MSE, AND TIME PERFORMANCE ON THE TERRAIN DATA (SNR = 10 DB)

BY THE ALGORITHMS

they do not work with the𝖫𝖫1model but a computationally more
convenient MF model. But as we mentioned, their identifiability
has a nontrivial unoverlapped “regime” with that of the 𝖫𝖫1
model.

Fig. 5 shows the SADs and MSEs of the algorithms on
the Terrain data under different SNRs. One can see that the
proposed algorithms outperform the baselines in almost all the
cases. The abundance maps and spectral signatures produced
by GradPAPA-LR and GradPAPA-NN are also visually much
closer to the ground truth; see Figs. 6 and 7. One can see that
our algorithms perform well in keeping the edges of abundance
maps, better than baselines.

We also validate the effectiveness and convergence of the
proposed algorithms under a relatively low SNR in the context
of HU, i.e., SNR= 10 dB. Table VI shows the MSE performance
of the algorithms. One can see that GradPAPA-LR achieves the
lowest MSE of estimated C and S. In terms of running time, the
proposed methods are approximately five times faster than the
four ALS-MU-based 𝖫𝖫1 baselines (i.e., MVNTF, MVNTFTV,
SSWNTF, and SPLRTF).

Table VII shows the SADs and MSEs of all methods on the
Urban dataset under SNR = 30 dB. One can see that our Grad-
PAPA methods again achieve the best performance of estimating
C and S. In terms of running time, the proposed methods are
approximately ten times faster than the ALS-MU-based 𝖫𝖫1
baselines. In addition, one can see that GradPAPA-LR achieves

TABLE VII
SAD, MSE, AND TIME PERFORMANCE ON THE URBAN DATA (SNR = 30 DB)

BY THE ALGORITHMS

lower estimated MSE values than GradPAPA-NN at the expense
of more running time.

Figs. 8 and 9 show the estimated abundance maps and end-
members, respectively. Again, the results by our algorithms
are visually closer the ground truth. In particular, all the
algorithms—except for the two GradPAPA algorithms—seem
to have difficulties in correctly recovering the endmember As-
phalt. Both GradPAPA algorithms offer visually accurate
estimations for this signature.

D. Real Data Experiment

1) Data: In this experiment, we test the algorithms on real
data. A subimage of the AVIRIS HSI data with 50× 50 pixels
and 181 bands (after removing the water absorption bands), cov-
ering the Moffett Field, is used. The subimage has been widely
studied in HU research and is known to contain three types
of materials—namely, Soil, Vegetation, and Water; see,
e.g., [7].

2) Baselines: We use the same baselines as those in the
semireal data experiments.

3) Results: Fig. 10 shows the estimated abundance maps.
One can see that all methods produce similar maps. However,
the proposed methods obtain slightly clearer boundaries among
different materials (e.g. the map of Vegetation) and keep the
smooth region of the map forSoil better than the ones obtained
using other baselines.

Fig. 11 shows the estimated spectral signatures. For com-
parison, we also present the spectra of some manually selected
pure pixels, which contain only one material. These pure pixels
can approximately serve as the “ground truth.” One can see
that all baselines cannot provide accurate estimates of spectral
signatures. To be specific, the spectral signatures of Water
obtained by SPA, MVCNMF, and SPLRTF are far away from
the spectra of the pure pixel. There are many negative values
of the spectra of Water estimated by SISAL. The spectral
signatures ofVegetation given by MVNTF, MVNTFTV, and
SSWNTF, are highly corrupted around the 30th band. Compared
to the baselines, the proposed algorithms output spectra of the
three materials that are clearly more similar to those of the
manually picked pure pixels. The running time of all methods
is listed in Table VIII. Again, the proposed GradPAPA-LR and
GradPAPA-NN are at least 8 times and 22 times faster than the
ALS-MU-based 𝖫𝖫1 baselines, respectively.

As mentioned, one can estimate the number of endmember
R using existing algorithms model-order selection methods,
e.g., those in [12] and [51]. But sometimes the estimated R
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Fig. 6. Estimated abundance maps of Terrain data (SNR = 40 dB) by different methods. From top to bottom: Soil1, Soil2, Tree, Shadow, and Grass.

Fig. 7. Estimated spectral signatures of Terrain data (SNR = 40 dB) by different methods. From top to bottom: Soil1, Soil2, Tree, Shadow, and Grass.
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Fig. 8. Estimated abundance maps of Urban data (SNR = 30 dB) by different methods. From top to bottom: Asphalt, Grass, Tree, and Roof.

Fig. 9. Estimated spectral signatures of Urban data (SNR = 30 dB) by different methods. From top to bottom: Asphalt, Grass, Tree, and Roof.

Fig. 10. Estimated abundance maps of Moffett data by different methods. From top to bottom: Soil, Vegetation, and Water.
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Fig. 11. Spectral signatures of manually selected pure pixels and estimated spectral signatures of Moffett data by different methods.

TABLE VIII
RUNNING TIME (IN SECONDS) FOR MOFFETT DATA BY ALL THE ALGORITHMS

Fig. 12. Spectral signatures of manually selected pure pixels and estimated
spectral signatures of Moffett data by the proposed methods. (a) GradPAPA-LR.
(b) GradPAPA-NN. (c) Pure pixels.

Fig. 13. Estimated abundance maps of Moffett data by the proposed methods.
First row: GradPAPA-LR; Second row: GradPAPA-NN. (a) Soil. (b) Vegetation.
(c) Water. (d) Sparse component.

is inaccurate. Here, we demonstrate the effectiveness of the pro-
posed algorithms for handling the case where the estimated R is
slightly off. Figs. 12 and 13 show the estimated endmembers and
abundance maps when R = 4 for Moffett Field in real data ex-
periment, respectively. One can see that the proposed algorithms
can well estimate the abundances of the three main materials.
The spectra of the three materials estimated by GradPAPA-NN
are similar to those of the manually picked pure pixels. The
fourth material can be regarded as a spurious endmember, whose
abundances have low intensity over the space.

V. DISCUSSIONS

In this section, we discuss the performance of the proposed al-
gorithms under different parameters, the low-rankness of abun-
dance maps, and the influence of selected pure pixels for the
performance comparison.

Fig. 14. MSE of the estimated C under different algorithms, datasets, θ, and
L̃. When changing one parameter, the other one parameter is fixed to the “optimal
value” as revealed in the figures.

Fig. 15. MSEs of the estimated C and S under different q and ε. (a)
GradPAPA-LR. (b) GradPAPA-LR. (c) GradPAPA-NN. (d) GradPAPA-NN.

Fig. 16. Abundance maps and the corresponding singular value curves of the
Terrain dataset. (a) Soil1. (b) Soil2. (c) Grass. (d) Tree. (e) Shadow.

A. Effect of the Parameters

In Fig. 14, we study the sensitivity analysis of two key
parameters θ and L̃ on Terrain data with SNR = 40 dB and
Urban data with SNR = 30 dB. One can see that the proposed
approach can maintain similar low MSEs in a relatively wide
range of these two parameters.

We also discuss the effect of parameters (q, ε) on Urban data
with SNR = 30 dB. In Fig. 15, we show the impact of the
different q and ε on the performance of the proposed GradPAPA.
One can see that the performance change is relatively insensitive
to these two parameters. The other settings of the experiment
here follow those in Fig. 8.

B. LR of Abundance Maps

In Fig. 16, we present the singular values of the abundance
maps of Terrain data. The ground-truth abundance maps are
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Fig. 17. RGB image of the real Moffett data. The red dots are the visually
picked pure pixels.

Fig. 18. Manually extracted pure pixels at different spatial locations. (a) Soil.
(b) Vegetation. (c) Water.

available online.1 From Fig. 16, one can see that the first 50
principal components of Sr (first 50 left, right singular vectors
and singular values) contain more than 90% of its energy. Note
that the size of the abundance maps is 500× 307, and the fact
that most of the energy is concentrated in the first 50 principle
components means that the maps are approximately LR. The
reason why this model makes sense is that the abundance maps
often exhibit correlations across the neighboring pixels (i.e.,
spatial correlations).

C. Influence of Selected Pure Pixels

In our real-data experiment, the evaluation was based on
manually selected pure pixels. This raises a question regarding
the potential influence of using different pure pixels. Figs. 17 and
18, respectively, show the RGB image of the real Moffett data
and the pure pixels manually extracted from the real HSI data at
different spatial locations. One can see that for one material, the
corresponding manually extracted pure pixels at different spatial
locations are very similar—which indicates that the selection
of pixels may not have much influence on the performance
comparisons.

VI. CONCLUSION

In this article, we proposed an algorithmic framework,
namely, GradPAPA, for 𝖫𝖫1 tensor decomposition with struc-
tural constraints and regularization arising in the context of HU.
Different from the existing𝖫𝖫1-tensor-based HU algorithms that

1[Online]. Available: https://github.com/LinaZhuang/NMF-QMV_demo

use a three-factor parameterization and the ALS-MU-type up-
date strategies, our method utilizes a two-factor parameterization
and a GP scheme. As a consequence, the proposed algorithm
effectively avoids heavy computations in its iterations. To realize
the GP framework, we proposed AP solvers for quickly enforc-
ing a number of important constraints in the context of HU. We
also provided custom analysis to understand the convergence
properties of the proposed algorithm. Extensive experimental
results on various synthetic, semireal, and real datasets showed
significant performance improvements (in terms of both accu-
racy and speed), compared with the existing 𝖫𝖫1-based HU
algorithms. Future directions include extending the 𝖫𝖫1 model
to cover nonlinear/bilinear mixture models that are widely used
in HU and to take outlying pixels into consideration.

We should mention that beyond HU, the 𝖫𝖫1 model was
also employed for many other tasks, e.g., hyperspectral super-
resolution [42], [54], electroencephalogram/magnetic resonance
imaging analysis in medical imaging [55], fluorescence data
analysis in chemometrics [31], and spectrum cartography in
wireless communications [56]—and thus, our algorithm design
may be of broader interest.

APPENDIX A
GRADIENT G

(t)
S IN (14)

For simplicity, we denote the objective function in (11) as

J (C,S) =
1

2
‖Y −CS‖2F +

R∑
r=1

θrϕ(Sr).

Note that under the design of the smoothed 2-D TV regularizer,
the gradient G

(t)
S of J (C(t+1),S) exists. The main idea of

computing G
(t)
S is that we first construct a tight upper bounded

function F(C(t+1),S;S(t)) such that

F(C(t+1),S(t);S(t)) ≥ J (C(t+1),S(t))

∇SF(C(t+1),S(t);S(t)) = ∇SJ (C(t+1),S(t)).

Then, we compute G
(t)
S = ∇SJ (C(t+1),S) through comput-

ing∇SF(C(t+1),S(t);S(t)).
It is shown in [8] that ϕq,ε(x) (0 < q ≤ 1) admits a majorizer

ϕ̃(x,x(t)) as

ϕ̃(x,x(t))=
∑
i

[w(t)]i[x]
2
i +

2− q

2

(
2

q
[w(t)]i

) q
q−2

+ ε[w(t)]i

=
q

2
x�U (t)x+ const (28)

where [w(t)]i =
q
2 (([x

(t)]i)
2 + ε)

q−2
2 , U (t) is a diagonal matrix

with [U (t)]i,i = [w(t)]i, and const is a constant. Therefore, we
obtain the quadratic majorizer function F(C(t+1),S;S(t)) as
follows:

F(C(t+1),S;S(t)) =
1

2

∥∥∥Y −C(t+1)S
∥∥∥2

F

+

R∑
r=1

(
ϕ̃(Hxqr,Hxq

(t)
r ) + ϕ̃

(
Hyqr,Hyq

(t)
r

))
. (29)

https://github.com/LinaZhuang/NMF-QMV_demo
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The gradient G(t)
S can be expressed as follows:

G
(t)
S =

(
C(t+1)

)�
C(t+1)S(t) −

(
C(t+1)

)�
Y

+ q
[
θ1H

�
xU

(t)
1 Hxq

(t)
1 , . . . , θRH

�
xU

(t)
R Hxq

(t)
R

]
+ q

[
θ1H

�
yV

(t)
1 Hyq

(t)
1 , . . . , θRH

�
yV

(t)
R Hyq

(t)
R

]
where [U

(t)
r ]i,i=([Hxq

(t)
r ]2i + ε)

q−2
2 and [V

(t)
r ]i,i=([Hy

q
(t)
r ]2i + ε)

q−2
2 , r = 1, . . . , R.

APPENDIX B
PROOF OF PROPOSITION 1

Before the proof, we give the following important lemma.
Lemma 1 (see [48, Lemma 1]): Let

x(t+1) = ΠX
(
x̌− α(t)∇H(x̌)

)
where x̌ = x(t) + μ(t)(x(t) − x(t−1)), x(t), x(t−1) ∈ X , H is
proper and lower bounded on the set X and has Lipschitz
continuous gradient L(t) at the current iterate x(t), and α(t) and
μ(t) are chosen to satisfy

0 < α(t) <∞, μ(t) ≤ τ
√(

c1 L(t−1)) / (c2 L(t)
)

for some τ < 1, c1 > 0, and c2 > 0. Then, the following holds:

H
(
x(t)

)
−H

(
x(t+1)

)
≥ c1 L(t)‖x(t+1) − x(t)‖2 − c2τ

2 L(t−1)‖x(t) − x(t−1)‖2.
With Lemma 1, we now proceed to prove the theorem. The

gradient of the objective function in (26) is

∂(J (Z) + C(Z))

= [(∂CJ (C,S) + ∂CC(C))�, (∂SJ (C,S) + ∂CS(S))�]�

where CC(C) and CS(S) are indicator functions of the con-
straints on C and S, respectively.

The projections of (24) and (25) can be written as

C(t+1)=argmin
C

1

2α(t)

∥∥∥C − (
Č

(t) − α(t)G
(t)

Č

)∥∥∥2

F
+ CC(C)

S(t+1)=argmin
S

1

2β(t)

∥∥∥S − (
Š

(t) − β(t)G
(t)

Š

)∥∥∥2

F
+ CS(S).

According to the first-order optimality ofC(t+1)-subproblem
and S(t+1)-subproblem, we have

0 ∈ 1

α(t)

(
C(t+1) − Č

(t)
)
+G

(t)

Č
+ ∂CC(C)

0 ∈ 1

β(t)

(
S(t+1) − Š

(t)
)
+G

(t)

Š
+ ∂CS(S).

Let V (t+1)
C ∈ ∂CC(C) and V

(t+1)
S ∈ ∂CS(S); then, we have

0 =
1

α(t)

(
C(t+1) − Č

(t)
)
+G

(t)

Č
+ V

(t+1)
C

0 =
1

β(t)

(
S(t+1) − Š

(t)
)
+G

(t)

Š
+ V

(t+1)
S

or equivalently,

∂C(J (C(t+1),S(t))) + V
(t+1)
C

= ∂C(J (C(t+1),S(t)))− 1

α(t)

(
C(t+1) − Č

(t)
)
−G

(t)

Č

∂S(J (C(t+1),S(t+1))) + V
(t+1)
S

= ∂S(J (C(t+1),S(t+1)))− 1

β(t)

(
S(t+1) − Š

(t)
)
+G

(t)

Š
.

(30)

Note that Z = (C,S); then

dist
(
0, ∂

(
J

(
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)
+ C

(
Z(t+1)

)))
≤ dist
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(
J
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(
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)))
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=
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Č
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F

+
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S(t+1) − Š
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)
+G

(t)

Š
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≤ 1
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(t)

∥∥∥
F

+ ‖G(t)

Č
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+
1
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+

∥∥∥G(t)

Š
− ∂S(J (C(t+1),S(t+1)))
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F

(31)

where we have applied (30) to get (a). Now, we analyze the last
four terms in (31). First,∥∥∥C(t+1) − Č

(t)
∥∥∥
F

=
∥∥∥C(t) −C(t+1) + μ

(t)
1 (C(t) −C(t−1))

∥∥∥
F

≤ μ
(t)
1

∥∥∥C(t) −C(t−1)
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F
+
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F
. (32)

Second,∥∥∥G(t)

Č
− ∂C(J (C(t+1),S(t)))

∥∥∥
F

=
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)
S(t)

(
S(t)
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F
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≤ L
(t)
C μ
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F
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where the first inequality is due to L
(t)
C = σ2

max(S
(t)); the sec-

ond inequality uses Č
(t)

= C(t) + μ
(t)
1 (C(t) −C(t−1)). Simi-

larly, one can get∥∥∥S(t+1) − Š
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Combining the results in (31)–(34), we have
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β(t)

)∥∥∥S(t) − S(t−1)
∥∥∥
F

+

(
L
(t)
S +

1

β(t)

)∥∥∥S(t) − S(t+1)
∥∥∥
F

≤ C1

(∥∥∥Z(t) −Z(t−1)
∥∥∥
F
+

∥∥∥Z(t) −Z(t+1)
∥∥∥
F

)
(36)

where

C1 = max{μ̄1, μ̄2, 1}

max

{
(c1 + 1) sup

t
α(t), (c3 + 1) sup

t
β(t)

}
.

Note that the last inequality is due to μ
(t)
1 ≤ μ̄1, μ(t)

2 ≤ μ̄2,

1/α(t) ≤ c1L
(t)
C , and 1/β(t) ≤ c3L

(t)
S .

According to the update rules of C and S, we have

J
(
C(t),S(t)

)
− J

(
C(t+1),S(t)

)
≥ c1L

(t)
C

∥∥∥C(t+1) −C(t)
∥∥∥2

F
− c2τ

2
1L

(t−1)
C

×
∥∥∥C(t) −C(t−1)

∥∥∥2

F

J
(
C(t+1),S(t)

)
− J

(
C(t+1),S(t+1)

)
≥ c3L

(t)
S

∥∥∥S(t+1) − S(t)
∥∥∥2

F
− c4τ

2
2L

(t−1)
S

×
∥∥∥S(t) − S(t−1)

∥∥∥2

F

where the equations are due to Lemma 1 with H = J (·,S(t))
(first inequality) and H = F(C(t+1), ·;S(t)) (second inequal-
ity).

Now, combining Lemma 1 and (36), we can use the proof
technique in [50] to establish the final convergence rate

J
(
Z(0)

)
− J

(
Z(t+1)

)
=

t∑
t′=0

J
(
Z(t′)

)
− J

(
Z(t′+1)

)

≥
t∑

t′=0

c1L
(t′)
C

∥∥∥C(t′+1) −C(t′)
∥∥∥2

F

− c2τ
2
1L

(t′−1)
C

∥∥∥C(t′) −C(t′−1)
∥∥∥2

F

+

t∑
t′=0

c3L
(t′)
S

∥∥∥S(t′+1) − S(t′)
∥∥∥2

F

− c4τ
2
2L

(t′−1)
S

∥∥∥S(t′) − S(t′−1)
∥∥∥2

F

=

t−1∑
t′=0

(
c1 − c2τ

2
1

)
L
(t′)
C

∥∥∥C(t′+1) −C(t′)
∥∥∥2

F

+

t−1∑
t′=0

(
c3 − c4τ

2
2

)
L
(t′)
C

∥∥∥S(t′+1) − S(t′)
∥∥∥2

F

+ c1L
(t)
C

∥∥∥C(t+1) −C(t)
∥∥∥2
F
+ c3L

(t)
S

∥∥∥S(t+1) − S(t)
∥∥∥2

F

≥
t∑

t′=0

(
c1 − c2τ

2
1

)
L
(t′)
C

∥∥∥C(t′+1) −C(t′)
∥∥∥2

F

+

t∑
t′=0

(
c3 − c4τ

2
2

)
L
(t′)
S

∥∥∥S(t′+1) − S(t′)
∥∥∥2

F

≥
t∑

t′=0

1− τ21
supt α

(t)

∥∥∥C(t′+1) −C(t′)
∥∥∥2

F

+

t∑
t′=0

1− τ22
supt β

(t)

∥∥∥S(t′+1) − S(t′)
∥∥∥2

F

≥
t∑

t′=0

C2

∥∥∥Z(t′+1) −Z(t′)
∥∥∥2

F

where C2 = min{(1− τ21 )/ supt α
(t), (1− τ22 )/ supt β

(t)},
and the penultimate inequality is due to c2L

(t)
C ≤ 1/α(t) ≤

c1L
(t)
C , and c4L

(t)
S ≤ 1/β(t) ≤ c3L

(t)
S .

From the above equation, we get

J
(
Z(0)

)
− J �

≥ J
(
Z(0)

)
− J

(
Z(t+1)

)
≥ C2

t

2
min

t′=0,1,...,t

∥∥∥Z(t′+1) −Z(t′)
∥∥∥2

F
+

∥∥∥Z(t′) −Z(t′+1)
∥∥∥2

F
.
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By using a+ b ≤√
2(a2 + b2), we have

min
t′=0,1,...,t

∥∥∥Z(t′+1) −Z(t′)
∥∥∥
F
+

∥∥∥Z(t′) −Z(t′+1)
∥∥∥
F

≤
√

4

C2t

(J (
Z(0)

)− J �
)
. (37)

Substituting (37) into (36) yields

min
t′=0,1,...,t

dist
(
0, ∂

(
J

(
Z(t′+1)

)
+ C

(
Z(t′+1)

)))
≤ C1

√
4

C2t

(J (
Z(0)

)− J �
)
.

This completes the proof.
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