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Pyramidal Dilation Attention Convolutional Network
With Active and Self-Paced Learning for
Hyperspectral Image Classification

Wenhui Hou, Na Chen, Jiangtao Peng
and Qian Du

Abstract—In recent years, deep neural networks have been
widely used for hyperspectral image (HSI) classification and have
shown excellent performance using numerous labeled samples.
The acquisition of HSI labels is usually based on the field in-
vestigation, which is expensive and time consuming. Hence, the
available labels are usually limited, which affects the efficiency
of deep HSI classification methods. To improve the classification
performance while reducing the labeling cost, this article proposes
a semisupervised deep learning (DL) method for HSI classification,
named pyramidal dilation attention convolutional network with
active and self-paced learning (PDAC-ASPL), which integrates
active learning (AL), self-paced learning (SPL), and DL into a
unified framework. First, a densely connected pyramidal dilation
attention convolutional network is trained with a limited number
of labeled samples. Then, the most informative samples from the
unlabeled set are selected by AL and queried real labels, and the
highest confidence samples with corresponding pseudo labels are
extracted by SPL. Finally, the samples from AL and SPL are added
to the training set to retrain the network. Compared with some
DL- and AL-based HSI classification methods, our PDAC-ASPL
achieves better performance on four HSI datasets.

Index Terms—Active learning (AL), deep learning (DL),
hyperspectral image (HSI) classification, self-paced learning (SPL).

1. INTRODUCTION

YPERSPECTRAL imaging is an important technique in
H remote sensing that collects the electromagnetic spectrum
from visible to near-infrared wavelength ranges and can provide
hundreds of narrow spectral band images of the same region for
Earth observation. In a hyperspectral image (HSI), each pixel
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can be considered as a high-dimensional vector with entries
corresponding to the spectral reflectance in a particular wave-
length [1]. The HSI has the advantage of distinguishing subtle
spectral differences and has been widely used in many fields such
as precision agriculture, land use mapping, urban planning, etc.

HSI classification is important for HSI analysis and has re-
ceived much attention in the past few decades. According to
previously available works, HSI classification methods can use
spectral feature, spatial feature, and spectral—spatial features [2],
[3]. Spectral feature is the fundamental characteristic of HSI,
and spectral-based methods only use spectral information in the
classification process. In the early days of HSI classification re-
search, researchers focused on methods solely based on spectral
features and simply performed classification on pixel vectors,
such as principal component analysis (PCA) [4], linear discrim-
inant analysis [5], etc. However, spectral-based methods ignore
the rich spatial information of HSIs. The spatial information of
a pixel mainly reflects the relationship between the pixel and
its spatial neighbors, which can greatly improve the robustness
of the model [6]. To simultaneously use spectral and spatial
features, spectral-spatial-based approaches are proposed. These
methods include filter-based method [7], [8], morphological
methods [9], composite kernel methods [10], [11], sparse or
low-rank representation methods [12], [13], [14], deep learning
(DL) methods [3], [15], etc.

Recently, DL has been gradually applied to HSI classification.
DL methods, such as convolutional neural network (CNN) [16]
and DenseNet [17], can automatically learn deep spectral—
spatial features from HSIs and have achieved excellent classifi-
cation performance. However, DL methods usually need a large
number of labeled samples to train the network [6]. In practice,
the collection of labeling samples requires human involvement,
and the process is labor intensive and costly [18], [19]. There-
fore, one of the problems facing DL is the inability of obtaining
sufficient labeled samples. To solve this problem, experts and
scholars have proposed a series of deep HSI classification meth-
ods for small-sample problems, such as data augmentation (DA)
strategy [20], [21], [22], lightweight networks [23], [24], etc.

DA is a popular technique to improve the generalization
ability of deep neural networks by generating more training
samples. Traditional DA strategies, such as translation, clipping,
flip, rotation, and adding noise, are utilized to increase both the
amount and diversity of samples. In recent years, some new
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DA strategies have been proposed. Li et al. [20] proposed a
pixel-block-pair (PBP) DA method, which greatly increases the
number of training samples while using a deep CNN to extract
PBP features and decision fusion for final label assignment.
Haut et al. [21] used a random occlusion data augmentation
(RODA) method during CNN training to randomly occlude
pixels in different rectangular spatial regions in the HSI to
generate training images with various levels of occlusion and
reduce the risk of overfitting.

Lightweight networks have the advantages of fewer parame-
ters, less computation, and shorter inference time compared with
typical deep neural networks, which reduce the dependence of
labeled samples by pruning, distillation, and group convolution
without degrading performance. In HSI classification, Zhang
etal. [23] proposed an end-to-end 3-D lightweight convolutional
neural network (3-D-LWnet) and alleviated the small-sample
problem by using cross-sensor and cross-modal strategies. The
LiteDepthwiseNet proposed by Cui et al. [24] decomposes
standard convolution into depthwise convolution and pointwise
convolution based on 3-D depthwise convolution and removes
the ReLu layer and the batch normalization layer in the orig-
inal 3-D depthwise convolution, which not only alleviates the
overfitting phenomenon of the model on small-sized datasets,
but also achieves high classification performance using minimal
parameters.

The aforementioned methods have achieved good perfor-
mance in small-sample classification problems, but still cannot
solve the problem of labeled sample scarcity. Recently, active
learning (AL) has become a hot research topic. AL selects useful
samples for labeling and theoretically guarantees a significant
reduction in label usage. It assumes that each sample is of
different importance. In other words, only fewer samples are
important to the classifier, while others are redundant. In general,
AL is used as an auxiliary strategy to select more valuable
samples. Moreover, AL is more versatile and can be com-
bined with various classifiers, such as support vector machine
(SVM) [25],[26], CNN [27], ResNet [28], generative adversarial
networks [29], etc.

Although all these AL methods reduce the use of labeled
samples to some extent, the lack of labels still largely limits the
classification performance. In order to obtain more labeled sam-
ples without consuming more resources, this article expands the
training set by self-paced learning (SPL). SPL is a new learning
mechanism proposed in recent years that gradually incorporates
easy to complex samples into the training by simulating the
human learning process [30], [31]. Contrary to AL, SPL prefers
to select samples with high confidence, so their combination can
obtain better information about the dataset and, thus, improve
the classification accuracy.

In order to alleviate the problem of insufficient labeled sam-
ples in the training of DL-based HSI classification methods, in
this article, using the thoughts of semisupervised learning [32],
we integrate the DL, AL, and SPL into a unified framework
and propose a pyramidal dilation attention convolutional net-
work with active and self-paced learning (PDAC-ASPL) model.
In the DL part, we propose a pyramidal dilation attention
convolutional (PDAC) network, which improves the original
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pyramidal dilation convolutional (PDC) network [33] by in-
corporating the squeeze-and-excitation (SE) attention mod-
ules [34], [35] into different PDC blocks. It can effectively
suppress the features of unimportant channels and, meanwhile,
allows the adaptive selection of spatial information by focusing
on the features of the central pixel and its neighboring pixels.
Except for the SE-based attention, other attention mechanisms,
such as self-attention mechanism in the transformer model,
can also be considered [36], [37]. By embedding the AL and
SPL strategies into the PDAC main network, we can select the
most informative samples with the highest uncertainty to assign
true labels and query the samples with the highest confidence
to assign pseudo labels. The labeled informative samples and
pseudo-labeled high-confidence samples are added to the train-
ing set to refine the model training. The contributions of the
proposed PDAC-ASPL are mainly threefold.

1) We integrate the DL, AL, and SPL into a unified frame-
work and propose a PDAC-ASPL model for small-sample
HST classification. The PDAC network can effectively
extract spatial-spectral features for classification. AL and
SPL strategies can select the most informative samples
and high-confidence samples to enlarge the training set
for refining model training.

2) A PDAC network is designed for spatial-spectral feature
extraction and classification. To make full use of valid
information for all PDC blocks and to better use the output
information from the last PDC block, an SE attention
mechanism is incorporated before the first PDC block and
after the last PDC block, respectively.

3) A new SPL strategy is constructed for the selection of
high-confidence samples. It can effectively solve the un-
balanced class problem by designing a class budget and
alleviate the effect of noisy pseudo labels by using a
weighted symmetric cross-entropy (SCE) loss.

The rest of this article is assigned as follows. In Section II,
the related works of AL and SPL are described. In Section III,
the proposed model is presented in detail. In Section IV, a series
of experiments are conducted on four HSI benchmark datasets.
Section V provides the ablation experiments and parameter
analysis. Finally, Section VI concludes this article.

II. RELATED WORK
A. AL Methods

In recent years, AL has been extensively studied in HSI clas-
sification. For example, Rajan et al. [38] applied the AL method
to single-image classification and knowledge transfer, validating
the reasonableness of a maximum-likelihood classifier and a bi-
nary hierarchical classifier. Wang et al. [26] used the supervised
clustering technique and the labeling process of classification
results to discover the representativeness and differentiation of
samples and assigned pseudo labels to unlabeled data based
on the clustering and classification results. The samples that
were not assigned pseudo labels in each iteration are also
considered as candidates for AL, and finally, a semisupervised
AL method was designed based on the SVM. Xu et al. [25] con-
structed leave-one-class-out multiviews and designed a sample
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Fig. 1.

Framework of PDAC-ASPL. It mainly contains three parts, i.e, PDAC network for deep spatial-spectral feature extraction, SPL for assigning pseudo

labels to high-confidence samples (the selected pseudo-labeled samples are added to the training set), and AL for picking up the most informative samples from
the unlabeled set (the selected informative samples are added to the training set and meanwhile removed from the unlabeled set).

query strategy from the perspective of classification confidence
and training contribution. The most inconsistent high-quality
samples are filtered out by making full use of the iterative
prediction information and spatial-spectral features of the HSI.
Then, the target samples are obtained by AL in each iteration
through two-layer screening, and SVM is used to obtain the
final classification results. Cao et al. [27] integrated AL and
DL into a unified framework, in which a CNN is trained using
a limited number of labeled pixels, and the most informative
pixels from the candidate pool are selected by AL and then
added to the original training set to fine-tune the CNN. Ding
et al. [39] proposed a clustering-inspired AL method, which
selects highly informative and diverse samples from unlabeled
samples in the candidate set by fast search and finding of peaks
clustering methods for manual labeling and pretrains the CNN
by the k-means clustering-based pseudo-labeling scheme.

Although the aforementioned works have achieved better
classification results, they have not fundamentally solved the
lack of labeled samples. Therefore, we combine AL with SPL
to solve this problem at the root.

B. Self-Paced Learning

SPL has been previously used in the field of HSI classification.
Peng et al. [31] combined SPL with sparse representation to
construct a self-paced joint sparse representation model for HSI
classification. It learns the weights of neighboring pixels using
SPL and selects neighboring pixels with nonzero weights (i.e.,
easy pixels) to be added to the JSR learning process in each
iteration. Yang et al. [40] proposed an SPL-based probability
subspace projection (SL-PSP) method for HSI classification.
After assigning a probability label to each pixel and a risk to each
labeled pixel, the two regularizers are developed in SL-PSP for
classification from an SPL maximum marginal and probability
label graph, respectively.

Recently, there have been some studies combining SPL with
AL in other fields, such as in computer vision, Lin et al. [41]

first proposed to combine AL with SPL for face recognition.
Subsequently, Ren et al. [42] applied AL and SPL with DL to
synthetic aperture radar automatic target recognition. In each of
these fields, the combination of SPL and AL has yielded more
desirable results.

III. PROPOSED METHOD

The overall framework of the proposed PDAC-ASPL is shown
in Fig. 1, which combines AL and SPL with DL to achieve better
results with limited labeled samples. The input hyperspectral
dataset D is first preprocessed by the PCA to reduce its dimen-
sionality from B to b. Then, a densely connected PDAC network
is trained with a limited number of labeled samples and outputs
features for a labeled training set and an unlabeled set. Based
on the features, the AL strategy picks up the most informative
samples from the unlabeled set and assigns them real labels, and
SPL selects high-confidence samples and assigns them pseudo
labels. The samples selected by AL and SPL are added to the
training set to retrain the network.

A. PDAC Network

For feature extraction, a densely connected PDAC network is
designed, as shown in Fig. 2(a). In the PDAC network, all the
layers in the dense convolutional network are directly connected
to ensure the maximum transmission of information [33], and the
dilation convolution is used to integrate the multiscale context
information of the HSI.

The main structure of the PDAC network is the PDC block, as
shown in Fig. 2(b). It consists of several PDC layers, and dense
connections are adopted between different PDC layers. The PDC
layers are composed of dilated convolution layers with different
dilated factors as [33]

Nk:ni/\ng/\né/\--ﬁ\nz (1

where N}, represents the kth PDC layer, ng indicates the kth
subdilated convolutional layer with dilated factor d = 2*~! in
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Fig.2. PDAC network. (a) Framework of the PDAC network. (b) PDC block.

the kth PDC layer, and A represents the stacking of subdilated
convolutional layers. Different skip connections correspond to
different dilation factors. In general, a shallow skip connection
corresponds to a small dilated factor. The width of the network
will increase as the number of PDC layers increases. The ad-
vantage of the structure is that more and larger ranges of spatial
information can be obtained [33]. In this article, our network
uses three PDC layers in each PDC block for feature extraction.

To make full use of valid information for all the PDC blocks
and to better use the output information from the last PDC block,
an SE attention mechanism is incorporated before the first PDC
block and after the last PDC block [34], [35], respectively.

1) Spectral Attention Module: Considering that the impor-
tance of different channels is different, an SE attention is first
imposed on spectral feature channels, as shown in Fig. 3.
In detail, for a feature map of h x w x b from the first 2-D
convolution layer of the network, a global average pooling
(pooling size is h x w) is used to generate a feature map of
1 x 1 x b. Then, it passes through two fully connected layers,
where the number of neurons in the first fully connected layer
is b/16 and that in the second fully connected layer is b. Next,
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the feature map of 1 x 1 x b is obtained through the sigmoid
layer. Finally, the original feature i x w x b and the generated
attention map of 1 x 1 x b are fully multiplied to obtain the
feature map with different channel importance.

2) Spatial-Spectral Attention Module: For the feature map
h of size h x w x b output by the third PDC layer, we generate
a 1-D spectral attention map M, (size 1 x 1 x b) and a 2-D
spatial attention map M, (size h X w X 1).

Here, the spectral attention is slightly different from the
spectral attention in the last subsection. It concatenates a global
maximum pooling with the global average pooling and uses
the combination of output results as input to the next layer for
the purpose of better complementing the global information. The
spectral attention can be expressed as

h;c:F;cale(hk»sk):Sk'hka k:17ab (2)

where sy, is the sum of the average pooling sivg and maximum
pooling sp**, and Ficye (R, sy ) refers to spectralwise multipli-
cation between the feature map hy and the scalar sy.

For spatial attention, we first perform global average pooling
and maximum pooling on input features and combine the results
of both pooling and input them into the convolution layer and

then use the sigmoid activation function to obtain the output sa:
sa = sigm ([sa™®, sa™] « W) 3)

where x is the convolution operation and W is a learnable built-
in parameter.

The final output is h” =h'*sa, where h' =
(R}, hY, ..., hj], and x represents the spatialwise multiplication
operation between the feature map h;, ;j (size 1 x 1 x b) and the
scalar sa; ;.
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B. SPL for Selecting High-Confidence Samples

SPL is a learning mechanism that borrows the idea from
human learning from simple to complex [30]. The traditional
SPL is limited to select “simple” samples with high confidence
derived from the network. It may cause the problem that “sim-
ple” samples are from the same class and eventually result in an
overfitting phenomenon. Here, we set a class budget for sample
selection and design a new loss to alleviate the effect of noisy
pseudo labels in SPL.

After predicting the unlabeled samples by the PDAC network,
for each sample x;, a predicted one-hot label §; can be obtained.
SPL assigns a weight v; to each sample x; through the following
optimization model:

minE(W,v;A):Zvlﬁ (¥i, f (xi,wW)) — AZvi
i=1 i=1

W,V
st. 0<v;<1,i=1,....n 4)

where A is a parameter, w is the model parameter, and ¢ is the
loss function.
It is easy to obtain the weight v; as

f— 1,
V; = 0’

The samples whose losses are smaller than A can be considered
as “easy” or high-confidence samples. However, the samples
with smaller losses may come from several “easy-to-classify”
categories, which may cause the unbalanced classification prob-
lem. To avoid selecting too many high-confidence samples from
one class, we design a class budget M, i.e., selecting at most
M samples in each class. That is, for each class, the selected
high-confidence samples should have losses smaller than A,
and the number of selected high-confidence samples is smaller
than M.

In the SPL step, we use anew SCE loss function to select high-
confidence samples. The general cross-entropy (CE) function is
lee = — Zszl q(k|x) log p(k|x), where p(k|x) and g(k|x) are
the predictive and true probability distributions for sample X,
respectively. The CE loss can be intuitively understood as an
effort to increase the predicted probability value of the sample
corresponding to the label category. Wang et al. [43] indicated
that the CE loss is difficult to adjust the effect of noisy labels
and proposed an SCE loss as

i £ (31, £, ) < A
otherwise '

(&)

gsce = Ece + grce (6)

where /e = — Zle p(k|x) log q(k|x). In simple terms, £y, is
to swap the label and the predicted value. In the SPL step, it
is clear that the sample’s label ¥, is a one-hot pseudo label, so
there are noisy labels. To alleviate the effect of noisy labels, we
use a new SCE loss function as

lyce = lce + (1 - a) lrce (7

where « is a weight parameter. As /.. plays an auxiliary role in
alleviating the effect of noisy labels, the weight «v is set as 0.7 in
the experiments.
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C. AL for Selecting Most Informative Samples

AL is a common machine learning method to query sample
information through iterations and then to label some infor-
mative samples. It aims to use fewer labels to obtain better
learning performance. AL is generally based on the uncertainty
criterion and the diversity criterion to select informative samples.
Existing AL-based hyperspectral classifiers normally employ
off-the-shelf uncertainty-based algorithms [44], such as least
confidence [45], entropy sampling [45], best versus Second best
(BvSB) [46], Bayesian active learning disagreement [47], etc.

For each sample x;, the PDAC network produces a vector
z; of size K x 1, which can be viewed as the class probability
matrix of sample x;. In order to combine the vector z; generated
by the PDAC network for sample selection by AL, we adopt the
BvSB strategy based on the uncertainty criterion for querying.

The BvSB criterion is specifically designed for multiclassi-
fication problems; thus, it is well suited for HSI classification.
In this criterion, we only need to consider two classes with the
highest classification probability. The criterion is defined as

BVSB (z;) = Pg (z;) — Psp (2;) )

where Pg(z;) and Psp(z;) denote the highest and second
highest class membership probability of unlabeled sample x;,
respectively. For this strategy, a smaller value of BvSB(z;)
indicates that the best and second affiliation probabilities are
closer. That is, the sample has higher uncertainty; therefore, it
will be selected by AL.

D. Whole Training Process

Our proposed PDAC-ASPL method combines DL, AL, and
SPL to achieve better results with fewer labeled samples. In
the training process, the PCA is first used to reduce the dimen-
sionality of hyperspectral dataset D (size H x W x B, total
K classes) from B to b. Then, data cubes are constructed and
divided into a training set 7' (m labeled samples per class, total
K'm labeled samples) and an unlabeled set U (n unlabeled
samples). In the next, we use K'm labeled samples in 7" for
the initial training on the PDAC network and predict n unla-
beled samples in U, which eventually outputs a matrix of size
n x K that can be regarded as a probability matrix. For the AL
branch, we use the BvSB strategy to select N samples with
more information, assign them real labels, and add the selected
samples with their labels to 7', while removing them from U.
For the SPL branch, we use the SCE loss function to calculate
the loss value of each sample, select the samples with lower
loss, and assign them pseudo labels. Meanwhile, we consider the
class budget M and finally select Nspp, samples (Nsp, < K M)
and then add these samples with their pseudo labels to 7.
At this point, the training set 7' completes one round of updating
and serves as the new training set for the next round. These
algorithms execute IR rounds and are implemented iteratively
together until the termination condition is met.

The entire procedure of PDAC-ASPL is summarized in
Algorithm 1.
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Fig. 4.

Pseudo-color composite image and ground-truth map of IP.

Algorithm 1: PDAC-ASPL.

Input: Initial labeled training set 7', unlabeled set U, the
number of round R, the number of samples selected by
AL per round Nup, and the class budget M of SPL.

Output: Predicted label Y.

Begin

1. PCA dimension reduction

Initialization: » = 1

While » < R or stopping criterion is not satisfied do:

1) Training PDAC network using samples in 7.

2) Calculating the class probability matrix of the samples
inU.

3) Selecting Ny samples from U using the BvSB and
giving them true labels.

4) Selecting (Ngpy, < K M) samples from U using the
SPL and giving them pseudo labels.

5) Adding the selected Nap + Ngpp samples with Nap,
true labels and Ngpp, pseudo labels to 7T'.

6) Removing the N5r, samples selected by AL from U.

End

IV. EXPERIMENTS
A. Datasets

Four hyperspectral datasets are used in the experiments,
namely, Indian Pines (IP), University of Pavia (UP), Salinas
Valley (SA), and HuangHeKou (HHK).

1) Indian Pines: This dataset was gathered by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
the IP test site in Northwestern Indiana in 1992. It consists of 145
x 145 pixels and 220 spectral bands in the wavelength range of
400-2500 nm. Among the pixels, only 10 249 pixels are feature
pixels, and the remaining 10 776 pixels are background pixels.
The IP scene contains two-third of agricultural land and one-
third of forest or other natural perennial vegetation. The ground
truth available is designated into 16 classes. The pseudo-color
composite image and ground truth map are shown in Fig. 4.

2) University of Pavia: The dataset was acquired by the
Reflective Optics System Imaging Spectrometer sensor during a
flight campaign over Pavia, Northern Italy, on July 8, 2002. The
number of spectral bands is 103 ranging from 430 to 860 nm.
The scene has the size of 610 x 340 with very high spatial
resolution of 1.3 m per pixel. There are nine land cover classes.
The pseudo-color composite image and ground truth map are
shown in Fig. 5.
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3) Salinas (SA): The SA dataset was collected by the AVIRIS
sensor in Salinas Valley, CA, USA. The size of the Salinas image
is 512 x 217, and the spatial resolution is 3.7 m. There are
224 spectral bands ranging from 400 to 2500 nm, in which 20
water absorption bands are removed before classification. The
dataset contains 16 ground objects and 54 129 labeled pixels.
The pseudo-color composite image and ground truth map are
shown in Fig. 6.

4) HuangHeKou: The HHK dataset was captured in 2019
by the GF5_AHSI in the area around the Yellow River Estuary
(“Huanghekou” in Chinese) in China. The overall image con-
tains 330 spectral bands in the wavelength range of 390-1029 nm
(VNIR) and 1005-2513 nm (SWIR). Forty-five bad bands were
eliminated and the remaining 285 bands were used for classifi-
cation. The dataset has the size of 1185 x 1342 pixels. There are
21 types of materials. The pseudo-color composite image and
ground truth map are shown in Fig. 7.

The categories and corresponding number of pixels in four
datasets are shown in Tables I-IV.

B. Method Comparison and Parameter Settings

We compare the proposed PDAC-ASPL method with other
ten methods for HSI classification on four datasets. For each
comparison method, we mostly used the original parameters
of the referenced article. The ten compared methods and their
parameter settings are listed as follows.
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Pseudo-color composite image and ground-truth map of HHK.

TABLE 1
NUMBER OF PIXELS IN THE IP DATASET

No. Class Pixels
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Total 10249

SVM [48] is one of the representatives of traditional HSI
classification algorithms.

RODA [21] is a DA method. In this method, the spatial
size of data cube is 23 x 23 and the learning rate is 0.001.
3-D lightweight Siamese network (3DLSN) [49] is a
lightweight DL method. In this method, the spatial size
of data cube is 7 x 7 and the learning rate is 0.001.
HybridSN [50] is a classical convolutional network com-
bining 3-D CNN and 2-D CNN. In this method, the
spatial size of data cube is 25 x 25 and the learning rate
is 0.001.

Double-branch multiattention mechanism network
(DBMA) [51] is a two-branch spatial-spectral DL
classification method based on the attention mechanism.
In this method, the spatial size of data cube is 7 x 7 and
the learning rate is 0.0005.

Spectral—spatial residual network (SSRN) [52] is a super-
vised deep residual network. In this method, the spatial
size of data cube is 7 x 7 and the learning rate is 0.0003.

7

8)

9)

10)
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TABLE II
NUMBER OF PIXELS IN THE UP DATASET

No. Class Pixels
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Bricks 3682
9 Shadows 947

Total 42776
TABLE III

NUMBER OF PIXELS IN THE SA DATASET

No. Class Pixels
1 Brocoli green weeds 1 2009
2 Brocoli green weeds 2 3726
3 Fallow 1976
4 Fallow rough plow 1394
5 Fallow smooth 483
6 Stubble 3959
7 Celery 3579
8 Grapes untrained 11271
9 Soil vinyard develop 6203
10 Corn senesced green weeds 3278
11 Lettuce romaine 4wk 1068
12 Lettuce romaine Swk 1927
13 Lettuce romaine 6wk 916
14 Lettuce romaine 7wk 1071
15 Vinyard untrained 7268
16 Vinyard vertical trellis 1807

Total 54129

Multiview spatial-spectral active learning (MVSS-
AL) [25] is amultiview AL-based method that uses SVM
as a basic classifier.

Feature-oriented adversarial active learning with PCA
(FAAL) [29] is an AL method based on adversarial
learning. In this method, the spatial size of data cube
is 25 x 25 and the learning rate is 0.001.
SpectralFormer (SF) [36] is a transformer-based method.
SF is able to learn spectral local sequence information
from neighboring bands of the HSI to produce grouped
spectral embeddings. In this method, the spatial size of
data cube is 9 x 9 and the learning rate is 0.0005.
Spectral-spatial feature tokenization transformer (SS-
FTT) [37] is a transformer-based method that can capture
spectral-spatial features and high-level semantic fea-
tures. In this method, the spatial size of data cube is 9 x 9
and the learning rate is 0.001.
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TABLE IV
NUMBER OF PIXELS IN THE HHK DATASET

No. Class Pixels
1 Salt marsh 393
2 Acquaculture 796
3 Mud flat 110
4 Rice 190
5 Aquatic vegetation 83
6 Seep sea 96
7 Freshwater herbaceous marsh 95
8 Shallow sea 211
9 Reed 200
10 Pond 936
11 Build up 553
12 Suaeda salsa 469
13 Flood plain 361
14 River 240
15 Soybean 595
16 Broomcorn 454
17 Maize 133
18 Locust 377
19 Spartina 68
20 Tamarix 72
21 Intertidal saltwater 39

Total 6471

C. Experimental Settings

In the PDAC-ASPL, the reduced spectral dimension is set
to b = 30 using the PCA, and the spatial size of data cube is
11 x 11. The learning rate is 0.001. All the experiments are
trained on a computer with a 2.70 GHz and 128-GB RAM CPU
and two NVIDIA GeForce RTX 2080Ti GPUs based on Python
3.7 to get the results and computational time.

On the IP dataset, for our method and other two AL-based
methods (i.e., MVSS-AL and FAAL), the initial training set
contains 160 labeled samples (i.e., ten labeled samples per class),
and the top 50 informative samples are selected and assigned true
labels in each of the following four rounds of AL. Totally, 360
labeled samples are used for three AL-based methods. For the
other eight algorithms (i.e., SVM, RODA, 3DLSN, HybridSN,
DBMA, SSRN, SF, and SSFTT), we randomly select 360 labeled
samples as the training set and the remaining samples for testing.

On the UP dataset, for our method and other two AL-based
methods, the initial training set contains 45 labeled samples
(i.e., five labeled samples per class), and the top 50 informative
samples are selected and assigned true labels in each of the
following four rounds of AL. Totally, 245 labeled samples are
used for three AL-based methods. For other eight algorithms,
we randomly select 245 labeled samples as the training set and
the remaining samples for testing.

On the SA dataset, for three AL-based methods, the initial
training set contains 48 labeled samples (i.e., three samples per
class), and the top 30 informative samples are selected and
assigned true labels in each of the following four rounds of
AL. Totally, 168 labeled samples are used for three AL-based
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methods. For other eight algorithms, we randomly select 168
labeled samples as the training set and the remaining samples
for testing.

On the HHK dataset, for three AL-based methods, the initial
training set contains 105 labeled samples (i.e., five samples per
class), and the top 30 informative samples are selected and
assigned true labels in each of the following four rounds of
AL. Totally, 225 labeled samples are used for three AL-based
methods. For other eight algorithms, we randomly select 225
labeled samples as the training set and the remaining samples
for testing.

The overall accuracy (OA), class accuracy (CA), average
accuracy (AA), and kappa coefficient (k) on the testing set are
used to evaluate the classification performance of each method.
To ensure the stability of the experimental results, we conduct
ten random experiments for each method.

D. Classification Results

1) IP Dataset: On the IP dataset, 360 labeled samples are
used for each method, and the averaged results are shown in
Table V.

From Table V, we can see that our proposed PDAC-ASPL
method achieves optimal performance in terms of OA, AA,
and . Due to the joint use of SPL and AL, the proposed method
is likely to select high-confidence samples for all categories,
which enlarges the training set to increase the classification
performance. Hence, the proposed PDAC-ASPL generates the
best averaged accuracy on all categories. In addition, for the
“Grass-pasture-mowed”” and “Oats” categories with limited la-
beled samples, PDAC-ASPL and FAAL methods correctly clas-
sify all samples, which demonstrates that the AL strategy can
select informative samples in these categories to improve the
small-sample classification performance.

Fig. 8 visually shows the classification maps of different
methods. It can be clearly seen that the classification maps of
FAAL and PDAC-ASPL are much more consistent with the
ground truth than the map of other methods. Compared with
FAAL, our PDAC-ASPL provides much better results in the
“Soybean-mintill” category as shown in blackish green color.

2) UP Dataset: On the UP dataset, 245 labeled samples are
used for each method. Table VI shows the per class accuracy,
OA, AA, and « of different methods, where the bolded values
indicate the best value. It can be seen that our method achieves
optimal performance in terms of OA, AA, and x using only 245
(0.6%) labeled samples. The higher « coefficient shows that the
prediction labels of our PDAC-ASPL are highly consistent with
true labels. Compared with two AL-based methods, the proposed
PDAC-ASPL shows 19% and 6% performance improvement in
OA over MVSS-AL and FAAL, respectively. This demonstrates
that both the AL strategy for selecting informative samples and
the SPL strategy for selecting high-confidence samples in our
PDAC-ASPL are effective. Compared with the classical DL
method, such as HybirdSN and SSRN, our PDAC-ASPL also im-
proves the OA by at least 3%. Compared with recently proposed
transformer-based methods, the PDAC-ASPL improves the OA
by at least 4.5%. For UP data, the categories “Asphalt” and
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TABLE V

CLASSIFICATION RESULTS (%) ON THE IP DATASET

Class | SVM RODA 3DLSN DBMA HybridSN SSRN MVSS-AL FAAL SF SSFTT PDAC-ASPL
I 2672 4659 1742  70.80 65.22 98.25 83.00 96.08 10.61 68.18 91.64
2 15787 6829 59.17 8177 82.40 80.24 59.59 84.78 49.69 82.92 84.45
3 16526 7297 4835 8532 84.28 77.04 47.09 89.10 40.46 83.35 83.03
4 4478 76.64 2693 9215 77.92 86.34 51.01 89.26 1525 69.26 92.03
5 | 8524 78.86 6838 94.82 92.69 96.11 85.39 84.86 67.46 83.43 85.03
6 |81.56 8132 9584 97.25 99.64 91.98 88.26 96.74 8431 95.16 97.18
7 6471 5556 11.11  41.75 53.57 33.33 87.04 100 9.88 64.20 100
8 18443 7299 98.84 97.84 96.23 91.57 90.10 99.61 88.18 98.34 97.38
9 2828 4474  8.77 48.61 65.00 33.33 82.96 100 10.52 38.60 100
10 | 62.70 8225 49.61 79.79 84.16 85.53 59.45 79.73 53.58 86.53 83.91
11 |67.50 83.05 77.19 85.13 86.03 94.39 69.76 86.06 74.57 88.74 92.58
12 | 5405 6844 3252 77.46 66.55 86.82 39.94 74.87 37.16 67.75 77.59
13 |86.96 86.62 93.10 100 98.37 98.86 95.87 9270 81.22 96.44 98.50
14 190.74 91.85 90.96 93.92 97.97 96.57 88.33 94.27 9498 97.95 95.44
15 | 6543 8472 4397  80.60 65.51 95.95 41.82 69.46 26.64 79.36 94.97
16 |97.50 9222 7778 9891 68.46 98.62 90.31 100 31.21 97.74 97.82

OA |70.50 79.31 68.10 86.22 86.22 86.81 68.49 87.00 63.68 87.03 89.81
AA 6648 7419 5625  82.89 80.25 84.06 72.49 89.84 4848 81.12 91.97
k 6613 7637 63.14 84.24 84.27 85.07 63.95 85.18 58.08 85.20 88.35

(h)

Fig. 8.  Classification map on IP. (a) Ground truth. (b) SVM. (c) RODA. (d) 3DLSN. (e) DBMA. (f) HybridSN. (g) SSRN. (h) MVSS-AL. (i) FAAL. (j) SF.
(k) SSFTT. (1) PDAC-ASPL.

“Bitumen” are similar materials and are difficult to be classified Fig. 9 visually shows the classification maps of different meth-
from each other. MVSS-AL shows poor results on these two  ods. It can be seen that the map of PDAC-ASPL is more similar
categories. FAAL can well classify the “Bitumen” category to the ground truth map than maps of comparison methods.
but performs poor on the “Asphalt” category. In contrast, the In particular, for categories “Bare Soil” in blackish green color
proposed PDAC-ASPL provides consistently good results on and “Bricks” in green color, our method shows much better

these two categories.

results.



1512

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE VI
CLASSIFICATION RESULTS (%) ON THE UP DATASET

Class \ SVM RODA 3DLSN DBMA HybridSN SSRN MVSS-AL FAAL SF SSFTT PDAC-ASPL
1 88.46 79.80 91.91 87.60 93.39 95.57 80.43 85.86 69.56 93.38 98.22
2 [88.89 89.08 9296 98.30 97.81 98.64 90.76 98.84 93.57 99.22 99.41
3 16584 55.00 78.44  78.90 82.20 98.65 64.05 87.56 19.92 76.33 88.81
4 94.60 87.17 83.40 97.72 83.56 99.82 86.71 7945 74.62 87.36 98.05
5 94.80 85.72 9890  99.65 100 99.61 98.98 08.38 64.43 99.88 99.75
6 |81.67 5637 40.53 94.61 87.54 92.35 41.98 96.13 40.13 92.84 97.95
7 160.66 6193 6140 97.94 59.10 98.22 69.64 99.27 16.51 93.67 98.75
8 7745 8630 83.87 85.35 56.53 74.43 59.08 81.49 47.04 76.90 94.07
9 199.89 8258 96.11  99.93 33.02 99.89 91.18 49.82 53.10 94.12 97.94
OA |[85.54 7232 83.73 93.16 88.01 94.54 78.72 91.99 70.38 93.40 97.94
AA |83.58 7796 80.83 93.33 77.02 95.24 75.87 86.31 53.21 9041 96.99
K | 80.59 8435 7799 9091 83.97 92.77 71.43 89.31 59.52 91.22 97.26
TABLE VII
CLASSIFICATION RESULTS (%) ON THE SA DATASET
Class \ SVM RODA 3DLSN DBMA HybridSN SSRN MVSS-AL FAAL SF SSFTT PDAC-ASPL
1 97.75 99.08 9735 93.62 99.05 95.97 98.32 99.97 14.50 99.00 99.92
2 198.72 9399 99.08 98.74 99.70 98.18 95.68 100 20.43 98.98 98.93
3 18944 8741 81.22 90.58 96.90 90.58 76.30 100 19.01 97.78 99.28
4 19750 97.00 91.61 90.58 73.10 98.28 98.71 80.86 18.79 98.37 96.01
5 92,13 89.29 9493  96.79 90.45 94.87 97.57 99.83 15.61 95.73 95.84
6 99.88 90.63 98.82  99.58 99.86 99.94 99.22 99.69 35.38 97.94 99.81
7 9541 92.83 99.66 94.00 99.86 98.25 99.40 99.82 28.58 99.35 99.31
8 7238 7443 8098 7693 86.04 85.54 87.78 93.23 67.50 85.69 93.63
9 19852 90.18 99.72  96.64 99.86 97.33 96.83 99.94 83.99 99.58 99.94
10 | 82.65 85.73 84.63 9242 88.19 96.67 80.71 95.61 30.78 94.43 97.98
11 | 8421 46.25 84.10 90.74 75.72 95.62 83.03 99.93 42.01 99.00 89.25
12 19521 84.02 98.02  99.39 99.34 87.17 98.45 95.86 40.93 92.56 99.46
13 | 89.01 8536 98.25 96.71 90.17 85.43 98.46 81.59 3494 82.33 99.41
14 192.08 8257 9297 95.66 65.30 100 91.09 96.82 18.42 87.09 97.89
15 |65.64 69.21 68.92 77.20 75.96 66.42 67.13 82.33 2945 86.63 87.84
16 |97.84 3578 91.25 9641 88.63 98.42 88.17 88.49 13.21 94.58 98.14
OA |86.12 81.51 88.64 88.04 90.05 86.41 85.20 94.50 41.55 93.19 96.30
AA |90.52 8148 9134 9287 89.26 93.04 89.26 94.62 32.10 9431 97.67
Kk | 84.53 7941 8733  86.65 88.91 84.96 83.43 93.86 33.93 9242 95.87

3) SA Dataset: On the SA dataset, 168 labeled samples
are used for each method. Table VII shows the accuracy per
class, OA, AA, and « of different methods on the SA dataset,
where the bolded values indicate the best value. It can be
seen that our method shows excellent performance in multiple
classes. For categories with similar materials (e.g., categories
11-14 are subclass of “Lettuce”), the proposed PDAC-ASPL
provides the best overall results. For categories with similar
characteristics (e.g., category 8 “Grape untrained” and category
15 “Vinyard untrained” are spatially adjacent and similar),
our PDAC-ASPL also shows the best results on these two
categories. The excellent performance of the proposed method
in distinguishing pixels with similar materials or characteristics
demonstrates that the samples selected by AL and SPL are
representative and discriminative.

Fig. 10 visually shows the classification maps, where the
proposed PDAC-ASPL provides much better results than

comparison methods in the left bottom region of the map
(mainly categories 11-14, subclass of “Lettuce”). In addition,
in the top left corner of the map (i.e., categories 8 and 15), the
results of PDAC-ASPL are more consistent with the ground
truth than other methods.

4) HHK Dataset: On the HHK dataset, 225 labeled samples
are used for each method. Table VIII shows the accuracy per
class, OA, AA, and « of different methods on the HHK dataset.
It can be seen that our method also produces the best overall
results. As the spectral resolution of HHK image is very high,
some traditional algorithms (e.g., SVM and DBMA) also show
good classification performance on this dataset. However, our
algorithm has at least 1.42% improvement in OA compared to
the more advanced AL algorithms.

5) Effect of Training Rounds: In the experiments, the pro-
posed PDAC-ASPL method is trained in five rounds. To illustrate
the accuracy of PDAC-ASPL model at each training round more
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Fig. 9. Classification map on UP. (a) Ground truth. (b) SVM. (c) RODA. (d) 3DLSN. (e) DBMA. (f) HybridSN. (g) SSRN. (h) MVSS-AL. (i) FAAL. (j) SE.

(k) SSFTT. (1) PDAC-ASPL.

intuitively, we conduct experiments on four datasets separately,
and the results are shown in Fig. 11. It can be seen that the
accuracy on four datasets gradually increases as the number of
training rounds increases, which indicates that the samples select

by AL and SPL in each round are useful. In addition, we can see
that the OA increases slowly after four round training because
the model is well trained using the selected high-confidence or
informative samples.
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Fig. 10.
(k) SSFTT. (1) PDAC-ASPL.

V. DISCUSSION
A. Computational Time for Each Method

The computational times (in seconds) of the PDAC-ASPL
and the other ten comparative methods on the four hyperspectral
datasets are shown in Table IX. All machine learning methods
were trained on the same device to obtain the computational
times. For the eight methods except for the AL-based ones,
the time includes model training and testing time. For three
AL-based methods, the time refers to the total time of

Classification map on SA. (a) Ground truth. (b) SVM. (c) RODA. (d) 3DLSN. (¢) DBMA. (f) HybridSN. (g) SSRN. (h) MVSS-AL. (i) FAAL. (j) SF.

classifier training, testing, and sample selection and iterative
training.

According to Table IX, it can be seen that the overall com-
putational time of traditional DL methods is short, and our
method runs at least 739.28 s faster than two small-sample
HSI classification methods (i.e., RODA and 3DLSN) on four
datasets. On the HHK dataset, which has less samples than other
datasets, our method is much faster than the existing AL methods
MVSS-AL and FAAL. However, since our method needs to
calculate the loss between the one-hot label predicted and the
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TABLE VIII

CLASSIFICATION RESULTS (%) ON THE HHK DATASET

Class \ SVM RODA 3DLSN DBMA HybridSN SSRN MVSS-AL FAAL SF SSFTIT PDAC-ASPL
1 91.29 64.64 91.60 99.55 91.14 94.25 90.39 6343 14.16 87.92 94.66
2 100 98.50 99.10 100 94.07 100 100 95.64 99.74 99.48 100
3 71.47 5283 92.06 70.96 717.36 59.57 81.77 89.33 8.18 74.12 94.54
4 80.21 18.30 88.86  86.88 67.93 85.57 88.55 89.54 546 85.38 90.20
5 86.13 34.38 31.48 89.19 44.57 93.61 61.60 79.29 333 51.86 95.22
6 97.09 2258 87.64  88.78 83.51 99.12 99.44 89.33 11.59 86.04 99.89
7 99.52 3424 91.85 96.71 90.94 100 99.43 100 14.65 9593 99.89
8 99.68 55.88 100 96.92 98.20 100 97.43 93.30 24.30 95.07 96.99
9 100 40.16 100 98.01 93.26 100 99.48 9247 14.06 97.56 100
10 [86.12 88.04 99.34 96.80 90.94 98.47 95.10 88.83 26.13 96.81 94.40
11 19621 79.59 99.63 96.71 99.75 88.34 98.88 96.53 8.19 99.19 99.40
12 19743 100 100 98.81 100 97.82 100 100 7.74 9941 100
13 |97.58 49.14 99.72 98.33 97.99 98.38 96.61 95.70 25.57 98.94 99.80
14 |87.83 2953 79.19 80.68 57.47 86.36 80.13 49.50 15.73 66.01 85.62
15 19534 9094 100 97.76 96.52 100 96.57 93.92 3490 9492 97.08
16 |96.64 91.78 100 97.65 97.72 97.61 99.22 91.89 7.99 96.79 99.53
17 19549 28.12 89.54 66.68 68.99 77.80 91.85 72.02 599 82.17 93.92
18 |91.41 6648 84.84 90.08 73.97 74.98 94.71 7443 955 82.51 94.33
19 |73.17 2727 81.82 78.37 75.76 91.52 93.36 9245 21.03 86.67 91.37
20 [96.17 55.80 55.72  70.05 61.90 83.20 86.31 90.35 11.59 77.04 93.98
21 (9593 71.05 4737 90.11 77.19 66.67 95.59 100 721 9457 97.59
OA |93.13 73.02 94.72 94.37 89.58 93.34 95.42 88.43 27.00 92.83 96.84
AA |92.13 57.11 86.66 89.95 82.82 90.16 92.69 87.52 17.96 88.02 96.12
K 92.52 70.62 94.25 93.89 88.68 92.78 95.03 87.45 19.13 9221 96.57
TABLE IX
COMPUTATIONAL TIMES (IN SECONDS) OF 11 METHODS ON FOUR DATASETS
Method \ SVM RODA 3DLSN DBMA HybirdSN SSRN MVSS-AL FAAL SF SSFTT PDAC-ASPL
1P 17.34 219393 1488.68 85.07 107.01  360.01 77.95 980.19 217.47 10.37 749.40
Uup 8.72 234287 2342.83 33.20 35.09 434.81 316.50 841.90 72.96 9.37 1432.11
SA 10.97 2420.19 3669.61 47.87 3493 39344  313.02  757.68 128.79 8.07 1590.77
HHK | 6.49 2174.15 4411.21 56.84 24.58 49429 29812.16 870.35 9944.55 7.82 661.34

70

60

3
The round of training

Fig. 11.  OA versus the number of training rounds on four datasets.

TABLE X
ABLATION EXPERIMENT ON THE IP DATASET

Module ‘ OA
PDC 81.67
PDAC (PDC+ALtt) | 86.33
PDAC+AL 87.91
PDAC+AL+SPL | 89.81

B. Ablation Experiment

The proposed PDAC-ASPL contains three main modules,
i.e., PDAC, AL, and SPL modules. The PDAC modifies the
original PDC by embedding the SE-based spectral and spa-
tial attention mechanism (Att) into different PDC blocks.
To verify the validity of each module in the proposed
PDAC-ASPL, we conduct experiment on IP dataset and show

vector output from the network for each sample and the BvSB  results in Table X.
values, our method takes longer time for the datasets UP and SA For the PDC-based classification, we randomly select 360
with large data volume.

labeled samples as the training set and the rest samples as
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TABLE XI
OA (%) UNDER DIFFERENT ROUND OF SPL ON THE IP DATASET

Round | 2 | 3 | 4 | 5
OA | 88.05 | 89.81 | 88.69 | 88.63

testing set. For PDAC with AL or SPL, we take the initial
training set as ten randomly selected samples per class (160 in
total) and 50 samples per round for AL. It can be seen that the
attention mechanism can improve the OA of the original PDC
network by 4.66%. By gradually considering the AL and SPL
strategies, the OA is increased by 1.58% and 1.9%, respectively.
The results demonstrate that each module can improve the
overall performance of the model.

C. Parameter Analysis

1) Training Round of SPL: The whole PDAC-ASPL model
is trained in five rounds, in which the first round is the initial
training. After the first round of initial training, the samples
that meet the AL and SPL criteria with the corresponding
labels/pseudo labels are selected and added to the second round
of training, and so on, until the end of five rounds. However,
one of the possible problems of adding pseudo labels after the
first round may be that the model is easily underfitted due to the
small number of initial training samples. That is, the prediction
ability of the model is poor in the first round and the confidence
of samples is low, so the new samples and corresponding pseudo
labels added at this time are close to noise, which will degrade
subsequent model training.

It is very important to choose an appropriate time to add
pseudo labels. We analyze the OA of PDAC-ASPL on the IP
dataset when SPL is first used from the second, third, fourth,
and fifth rounds, respectively. The result is shown in Table XI.
When SPL is added in the second round, the OA is 88.05%.
When SPL is added beginning from the third round, the OA is
89.81%, which demonstrates that SPL plays arole in the case of a
well-fitted model. When SPL is added beginning from the fourth
or fifth round, the AL model has been relatively well trained;
the samples and their pseudo labels of SPL are not significantly
improved after the addition. Therefore, we choose to add SPL
in the third round for four datasets to take into account both
training effect of the model and confidence of the samples.

2) Threshold A in SPL: The threshold parameter A deter-
mines the number of samples selected by SPL. If it is too large,
SPL is likely to select more samples with low confidence. If it is
too small, SPL will select very few samples or even no samples.
Fig. 12 shows the OA of PDAC-ASPL versus parameter A, where
X changes in the set {1075,5 x 1076,107°,10~4}.

As shown in Fig. 12, when A is 1 x 1079, the OA is low be-
cause the threshold is too small, resulting in insufficient samples
being selected. At this time, the SPL does not work, which can
be seen from Table X. On the contrary, when X is 1 X 1074, the
threshold is too large, producing too much inclusion, and thus,
the model accuracy decreases. In the experiments, we set the
value of A to 5 x 1076 for all four datasets.
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Fig. 13.  OA versus the class budget M on IP.

3) Class Budget M in SPL: Considering the problem of
unbalanced sample classes, we design a class budget M, i.e.,
selecting at most M samples in each class. Fig. 13 shows the
OA versus the class budget M, where M chooses in the set
{50,100, 150, 200, 250, 300}. As the selected samples in SPL
are not removed from the unlabeled set, part of selected M
samples in different training rounds can be the same. As shown
in Fig. 13, when the number of samples selected for each class is
insufficient, the model does not achieve the desired performance.
When too many samples are selected from each category, the OA
decreases due to the involving of more low confidence samples.
In the experiments, we set the class budget M as 100 for four
datasets.

VI. CONCLUSION

In this article, we proposed a PDAC-ASPL model for small-
sample HSI classification. The proposed model effectively in-
tegrates DL for spatial-spectral feature extraction and classifi-
cation, AL for the selection of informative samples with true
labels, and SPL for the selection of high-confidence samples
with pseudo labels. Due to the gradual and effective selection
of samples from unlabeled set to training set, the network
performance has dramatically improved even with very limited
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labeled samples for initial training. Experimental results on four
HSI datasets show that the proposed method can obtain better
classification results with fewer labeled samples.

In future research, we may consider expanding the application
range of this semisupervised method. Specifically, we may fur-
ther apply it to large-region or cross-scene image classification
problems.
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