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Abstract—For subpixel mapping (SPM), ensuring the opera-
tional efficiency of the algorithm and mitigating the effect of abun-
dance errors often cannot be achieved simultaneously. To solve
the problem, we propose a new SPM method based on the spatial
adaptive attraction model (SAAM) and conditional random fields
(CRFs). First, the proposed SAAM obtains the spatial adaptive
attraction value by adaptively adjusting the spatial attraction value
obtained using the traditional spatial attraction model, thereby
turning the display form of the abundance constraints in the
SPM into an implicit form for expression, to perform the phys-
ical significance of the abundance constraints with the relative
size of the attraction value of each subpixel. Second, the spatial
adaptive attraction value of the implicitly represented abundance
constraints and the local spatial smoothing prior are modeled in the
CRFs, and the model makes full use of the spatial information in
the label field while considering the abundance constraint. Third,
Graph-cut is used to optimize the model, the proposed SPM can not
only guarantee the operational efficiency, but also extinguish the
influence of abundance error and decrease the noise artifact on the
results of SPM. Experiments on three remote sensing images show
that the proposed SPM accuracy is considerably better than the
previously available SPM methods and is the least time-consuming.
This study provides a new solution for the SPM of remote-sensing
images.
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I. INTRODUCTION

LAND cover information obtained by classifying remote
sensing images plays a vital role in various applications,

such as environmental disaster damage assessment, precision
agriculture, and urban planning [1], [2], [3]. Traditional hard
classification methods treat each pixel in the remote sensing
image as a unit by assigning class labels to each pixel while the
spatial resolution remains constant. However, using traditional
hard classification methods to extract land cover information ac-
curately is difficult because of the mixed pixels containing mul-
tiple land cover classes. Mixed pixel is a common phenomenon
in remote sensing images [4], [5], particularly in hyperspectral
images. Spectral unmixing or soft classification techniques are
widely used to solve the problem of mixed pixels [6]. However,
the soft classification technique only estimates the abundance
map and the area proportions of different land cover classes
within the mixed pixel. It does not provide information on the
spatial distribution of land cover classes within the mixed pixel.

The concept of subpixel mapping (SPM) was proposed by
Atkinson in 1997 to obtain the spatial distribution information of
various land cover classes within the mixed pixel in the remote
sensing images and solve the land cover map of the subpixel
scale [7]. SPM divides low-resolution pixels into high-resolution
subpixels and assigns class labels to these subpixels according
to certain criteria. SPM techniques, often considered the further
processing of soft classification, transform the abundance maps
obtained from soft classification into land cover maps on the
subpixel scale. Therefore, SPM divides low spatial resolution
pixels into several highly refined subpixels to produce a hard
classification land cover map with high spatial resolution, which
is highly valued in coastline mapping, land cover change mon-
itoring, urban building recognition, and other applications [8],
[9], [10], [11], [12], [13], [14].

Different SPM methods have been developed since the con-
cept of SPM was proposed. As shown in Fig. 1, these SPM
methods can be roughly divided into two types: the two-step
strategy method and the optimization strategy method [15]. The
two-step strategy SPM method consists of two steps. First, the
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Fig. 1. Two types of SPM method.

subpixel soft attribute values for all classes of all subpixels are
estimated with the optimization strategy. Second, the class allo-
cation for the subpixels is performed according to the subpixel
soft attribute values and abundance constraints. The two-step
strategy SPM method strictly adheres to abundance constraints,
where the number of subpixels of each land cover class within
the mixed pixel corresponds to the input abundance map. Ex-
amples of the two-step strategy SPM method include tradi-
tional subpixel/pixel spatial attraction model (SASPM) [16],
pixel-swapping algorithm (PSSPM) [17], linear optimization
model [18], and the spatial interpolation algorithm [19], [20].
In addition, some AI-based methods exist, such as genetic
algorithm [21], [22], BP neural network algorithm [23], and
artificial immune algorithms [24]. Abundance constraints are
valuable and meaningful in determining the spatial distribution
of subpixels for different land cover classes, as the abundance
map contains some useful information about the land cover
classes. The less the abundance map error, the more useful the
information. However, soft classification or spectral unmixing
remains an open problem. The obtained abundance map does not
necessarily accurately predict the true proportion of land cover
classes within the mixed pixel, thereby affecting the performance
of SPM techniques.

The optimization strategy SPM method was developed to
reduce the effect of abundance error caused by soft classification
or spectral unmixing on SPM. This type of SPM method relaxes
the constraints on abundance and eliminates the uncertainty
caused by soft classification. Furthermore, the optimization
strategy SPM method takes the SPM problem as an optimization
problem, iteratively generating the optimal SPM results using
different objective functions and optimization strategies. Ex-
amples of optimization strategy SPM method include the SPM
model based on Markov random field [25], [26], the Hopfield
neural network SPM model [27], [28], SPM model based on
maximum a posteriori (MAP) [29], and spectral-spatial con-
straint model [30]. These methods have achieved good results
in alleviating the effect of abundance errors on the result of SPM.

Although the optimization strategy SPM method can handle
the impact of abundance error on SPM to a certain extent, its
operation speed is often slow. Moreover, the optimization is
very time-consuming and cannot handle remote sensing images
with large regions. By contrast, although the two-step strategy

SPM method is affected by the abundance error, it runs fast and
can handle an extensive range of remote sensing images. The
SPM method based on the spatial attraction model has obtained
extensive engineering applications because of its high efficiency
and clear physical relevance of spatial correlation. This study
aims to solve the many noise artifacts in the result of the spatial
attraction model due to the abundance error while maintaining
high efficiency. Therefore, a new SPM for remote sensing im-
ages based on spatial adaptive attraction model (SAAM) and
conditional random fields (CRFs) is proposed in this study with
the following contributions.

1) An SAAM is designed, which obtain spatial adaptive
attraction value by adaptively adjusting the spatial attrac-
tion value obtained using the traditional spatial attraction
model. Spatial adaptive attraction values turn the display
form of the abundance constraints into an implicit form
for expression to maintain the relative size of the spatial
correlation of each land cover class and characterize the
physical significance of the abundance constraints. Thus,
the smoothing of the noise artifacts is facilitated.

2) Spatial adaptive attraction value and the local spatial
smoothing prior are modeled in the CRFs. The unary
potential term designed from the spatial adaptive attraction
values can calculate the cost that each subpixel is given
the corresponding class label. The pairwise potential term
modeled using a multilevel logistic (MLL) model favors
the adjacent subpixel to adopt the same class labels, so
that the spatial information in the label field can be fully
utilized while considering the abundance constraint.

3) The CRFs model is optimized using the Graph-cut, make
the proposed SPM can not only ensure the advantages
of fast running speed and high efficiency of the two-step
strategy SPM method, but also extinguish the influence of
abundance error to a certain extent and decrease the noise
artifact on the results of SPM.

The rest of this article is structured as follows. The traditional
spatial attraction model is described in Section II. The proposed
SPM is described in Section III. Section IV conducts the exper-
imental analysis on four remote sensing images. Section V has
the relevant discussion. Section VI comprehensively concludes
this study.

II. SPATIAL ATTRACTION MODEL

The SPM method based on the spatial attraction model was
proposed by Mertens in 2006 [16]. This method quantifies the
spatial correlation as a subpixel within the central mixed pixel
subject to the spatial attraction of different land cover classes
in the neighborhood mixed pixel. The spatial attraction values
of each subpixel within the central mixed pixel are calculated
from the abundance of each land cover class of its neighborhood
pixels and the Euclidean distance between the subpixel and the
adjacent pixels. After the spatial attraction value of the subpixel
is obtained, class labels are assigned to the subpixels based
on the abundance of each land cover class within the central
mixed pixel. The neighborhood pixel of the central mixed pixel
contains at most eight neighborhood systems, namely, the 3 × 3
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Fig. 2. Coordinate system and the distance calculation between pixels and
sub-pixels.

neighborhood system of the central mixed pixel. The remaining
pixels cannot be attractive because of the long Euclidean distance
from the central pixel.

Suppose that the set of pixel sites for the whole remote sensing
image is I , and the number of pixels is N . In this case, the pixel
at site i in the image is represented as xi. The set of subpixel
sites within each pixel is represented by J , where each pixel
contains d2 subpixels, with d being the scale factor of the SPM.
The class label of the subpixel at the site j is represented as li,j
within the ith pixel. Therefore, the remote sensing image can be
represented as X = {xi|i ∈ I}, and the labels of subpixels can
be represented as L = {li,j |i ∈ I, j ∈ J}. Moreover, the total
number of land cover classes included in the image with K
and each land cover class is represented as k(k = 1, 2, . . . ,K).
The spatial attraction values can be expressed by the following
equation:

atki,j =

Np∑
t=1

fk
t

Dt i,j
(1)

where atki,j represents the spatial attraction value of the subpixel
at site i, j that belongs to classk, and the set is expressed asAT =
{atki,j |i ∈ I, j ∈ J, k ∈ K}. Np is the set of the neighborhood
pixel sites for the pixel xi, and fk

t is the abundance where the
neighborhood pixel xt belongs to the class k. The abundance set
is expressed as F = {fk

i |i ∈ I, k ∈ K}. Dt i,j is the Euclidean
distance between the subpixel at site i, j and the neighborhood
pixel at the site t. The schematic diagram is as follows.

Fig. 2 defines the 3× 3 neighborhood system and the coor-
dinate system of subpixel according to the scale factor d = 3,
where the upper left corner with the coordinate of (0, 0) is the
starting point. Given that the center of the pixel and subpixel
is the calculation point, the coordinate of the first pixel in the
upper left corner is (1.5, 1.5), and the coordinate of the first
subpixel is (0.5, 0.5). Assuming that the coordinate of the pixel
is (Pa, Pb) and the coordinate of the subpixel is (Sa, Sb), the
distance between the pixel and the subpixel is calculated as
follows:

DPa,Pb Sa,Sb

=

√
[Pa + 0.5− d(Sa + 0.5)]2 + [Pb + 0.5− d(Sb + 0.5)]2.

(2)

The spatial attraction value is the soft attribute value of the
subpixel belonging to a certain class. The larger the value,
the greater the possibility is that the subpixel belongs to this
class. After the spatial attraction values are obtained for all
the classes of each subpixel within the central mixed pixel,
the continuous soft attribute values are converted into discrete
subpixel class labels according to the abundance constraints and
class allocation process

max J =

K∑
k=1

d2∑
j=1

δ(li,j , k) · atki,j (3)

s.t.
K∑

k=1

δ(li,j , k) = 1, j = 1, 2, . . . , d2

d2∑
j=1

δ(li,j , k) = int(fk
i · d2) (4)

where δ(·) is the Kronecker delta function (δ(a, b) = {1, a = b
0, a �= b

).

Equation (4) satisfies two of the class allocation requirements.
The first one is that, for each subpixel, it should be assigned
to one and only one class. The second is that for each class, the
number of subpixels belonging to it should be consistent with the
abundance, and they should be completely exhausted during the
class assignment, namely the abundance constraints. The abun-
dance constraint specifies the number of subpixels belonging to
the different land cover classes within the central pixel, thereby
presenting the physical significance of the SPM based on the
linear mixed model. The abundance constraint for (3) is display
form, which enforces the number of subpixel of each land cover
class in the mixed pixel according to the abundance and the scale
factor. If the label of the subpixel is directly obtained according
to the class corresponding to the maximum spatial attraction
value of the subpixel, the proportion of each class within the
mixed pixel obtained by spectral unmixing cannot be satisfied

li,j = argmax
k

(
atki,j

)
d2∑
j=1

δ(li,j , k) �= int(fk
i · d2). (5)

However, if the subpixel label is assigned strictly according
to the abundance constraint, the abundance error can have a
considerable impact on the performance of the SPM, namely, the
noise artifacts in the SPM results that caused by the abundance
error.

III. PROPOSED APPROACH

A. Spatial Adaptive Attraction Model (SAAM)

To satisfy the abundance constraint is an important problem
in SPM, and it is the key to maintain the significance of the
SPM algorithm. The abundance constraints of traditional spatial
attraction model is in display form, which limits its further
combination with other models (e.g., CRFs). In order to facilitate
the integration with the CRFs, thus allowing for the spatial
smoothing of the noise artifacts, and weakening the influence
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of the abundance error on the results of SPM, the SAAM is
proposed in this part by referring to the adaptive visiting order of
classes method proposed in [31] based on the traditional spatial
attraction model. The objective function is shown as follows:

max Ja =

K∑
k=1

d2∑
j=1

δ(li,j , k) · aatki,j (6)

li,j = argmax
k

(aatki,j)

d2∑
j=1

δ(li,j , k) = int(fk
i · d2) (7)

where aatki,j represents the spatial adaptive attraction value of
the subpixel at site i, j that belongs to class k, and the set is
expressed as AAT = {aatki,j |i ∈ I, j ∈ J, k ∈ K}. The model
adjusts the display form of the abundance constraints of spatial
attraction value to an implicit form with an adaptive scheme,
while maintaining the relative size of the spatial correlation of
each land cover class. That is, when the label of the subpixel
is directly obtained according to the class corresponding to the
maximum spatial adaptive attraction valueaatki,j of the subpixel,
the proportion of each class within the mixed pixel obtained by
spectral unmixing can be satisfied, as shown in (7). So, the spatial
adaptive attraction value satisfies the requirements of integration
with CRFs. The calculation steps are as follows:

Step-1: The pixel xi is selected and the number of subpixels
for each land cover class within this pixel is calculated Ck

i =
int(fk

i · d2), k ∈ K based on the abundance fk
i , k ∈ K and the

scale factor d. According to (10), the local Moran index Rk
i , k ∈

K of each class of the pixel xi is calculated. Meanwhile, the
d2 subpixels within the pixel xi are marked as 0 value, namely
Mi,j = 0, j ∈ d2.

Step-2: The local Moran index Rk
i , k ∈ K of the pixel xi is

sorted by the value, and the visiting order of the class of the
pixel xi is determined by that order, that is, the class k with the
large local Moran index, whose corresponding atki,j , j ∈ d2 will
be visited first.

Suppose that if K = 5, assuming R2
i > R1

i > R3
i > R5

i >
R4

i , then at2i,j � at1i,j � at3i,j � at5i,j � at4i,j , j ∈ d2, and can

be expressed as at
(1)
i,j � at

(2)
i,j � at

(3)
i,j � at

(4)
i,j � at

(5)
i,j , j ∈ d2

(The � is the sequential priority, independent of the size of the
atki,j value, and (1), (2), . . ., (K) represents the order of class
visited).

Step-3: The atki,1, at
k
i,2, . . . , at

k
i,d2 of the currently vis-

ited class k of the pixel xi are processed in descend-
ing order atki,D1

, atki,D2
, . . . , atki,Dd2

. Then, according to

Ck
i , the first Ck

i subpixels in the new sequence, i.e.,
D1, D2, . . . , DCk

i
, are marked as 1 value, namely Mi,D1

=
1,Mi,D2

= 1, . . . ,Mi,D
Ck
i

= 1.

Assuming the current visited class k = 2, the scale factor d =
3, and the C2

i = 3, then the result of the descending order of
the spatial attraction values belonging to the class 2 of xi can
be expressed as at2i,3 > at2i,5 > at2i,1 > at2i,7 > at2i,4 > at2i,2 >

at2i,9 > at2i,8 > at2i,6, and the first three subpixels are marked as
1, namely Mi,3 = 1,Mi,5 = 1,Mi,1 = 1.

Algorithm 1: SASM.
Input: the abundance F , the spatial attraction value AT ,
the number of pixels N , the number of class K, the scale
factor d, and the local Moran index Rk

i , k ∈ K, i ∈ N
Output: the spatial adaptive attraction value AAT

For i = 1 : N do
Based on the Rk

i , k ∈ K value, determine the class
visiting order

(1), (2), . . . , (K).
Mi,j = 0, j = 1, 2, . . . , d2

MAX = max(atki,j), j ∈ d2, k ∈ K
For (k) = 1 : (K) do

C
(k)
i = int(f

(k)
i · d2)

Rank the at
(k)
i,1 , at

(k)
i,2 , . . . , at

(k)
i,d2 in descending order

at
(k)
i,D1

, at
(k)
i,D2

, . . . , at
(k)
i,Dd2

.

For c = 1 : C
(k)
i do

Mi,Dc
= 1

end for
For j = 1 : d2 do
aat

(k)
i,j = at

(k)
i,j − (1−Mi,j) ·MAX

If (k) < (K) do
at

(k)+1
i,j = at

(k)+1
i,j −Mi,j ·MAX

end if
end for

end for
end for

Step-4: All the spatial attraction value atki,j , j ∈ d2 of the
current visited class k are adjusted according to (8) to obtain
the spatial adaptive attraction value aatki,j , j ∈ d2:

aatki,j = atki,j − (1−Mi,j) ·max
(
atki,j

)
, j = 1, 2, . . . , d2.

(8)
Following the class visiting order determined by step 2, the

d2 spatial attraction value atk
′

i,j , j ∈ d2 of the class k′ for the
next visit of the pixel xi are treated according to (9). The
adjusted spatial attraction value atk

′
i,j , j ∈ d2 are then recycled to

Step 3

atk
′

i,j = atk
′

i,j −Mi,j ·max
(
atk

′
i,j

)
, j = 1, 2, . . . , d2. (9)

Step-5: All of the pixels in the image do this operation. Finally,
spatial adaptive attraction value aatki,j is output. The complete
process is summarized in Algorithm 1.

The proposed SAAM has the following features.
1) Compared with the display form of the abundance con-

straint of (3), the spatial adaptive attraction value adjusted
by (8) achieves the effect of an implicit form of abundance
constraint. For subpixels marked as 0, where Mi,j = 0,
(8) automatically suppresses the spatial attraction value
of the currently visited class k to less than 0, and the
spatial attraction value of the next visit class k′ remains un-
changed. For subpixels marked as 1, where Mi,j = 1, (9)
automatically suppresses the spatial attraction value of the
next visit class k′ to less than 0, and the spatial attraction
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Fig. 3. (a) Schematic diagram of the spatial adaptive attraction value. The abundance of Class1 is 0.25, the abundance of Class2 is 0.75, and the red font is the
maximum attraction value within this mixed pixel. The number of adaptive adjusted Class1 maximum attraction value is 1, which is 25% of the mixed pixel, as
shown in the green part, the number of Class2 maximum attraction value is 3, which is 75% of the mixed pixel, as shown in the blue part. (b) Effect of different
class visit order on adjusting the attraction value.

value of the currently visited class k remains unchanged.
This ensures that the number Ck′

i of subpixels for the next
visit class k′ is less than the number of subpixels marked
as 0, and then, when the spatial attraction value of class k′

is operated in descending order, the Mi,j corresponding
to the first Ck′

i spatial attraction values are all equal to
0. And so that only one of K spatial adaptive attraction
value for each subpixel within the mixed pixel is the max-
imum and is positive, and the rest of the spatial adaptive
attraction values are less than 0. Moreover, the number of
subpixels of class corresponding to the maximum spatial
adaptive attraction value of all subpixels in the mixed pixel
satisfies the abundance constraint, namely (7), as shown
in Fig. 3(a). According to the above, it can be concluded
that, when the label of the subpixel is obtained according to
the class corresponding to the maximum spatial adaptive
attraction value of the subpixel, the two requirements of
the class allocation are satisfied, namely (4). Therefore,
the spatial adaptive attraction value implicitly expresses
the abundance constraint, and through the adjustment of
(8), the spatial adaptive attraction value of each subpixel
in the mixed pixel can not only maintain the relative size
of the spatial correlation of each land cover class and
characterize the physical significance of the abundance
constraints. Meanwhile, the adjustment in (8) and (9) is an
adaptive and simple scheme that does not require manual
participation.

2) The class visit order in the SAAM process affects the
results. Fig. 3(b) shows the class visit order of two cases,
which produces different results. Therefore, the class visit
order is solved by the local Moran index to determine
it reasonably. The local Moran index is based on the
pixel, and the order of visits to each class within the
pixel is determined based on the spatial autocorrelation
of the local region of the pixel. As the center, the pixel
defines a window of Nw ×Nw size. In this study, Nw

takes the value of 3. Then, the spatial autocorrelation of
the pixel (e.g., xi) for the class k in the local region is
quantified by the Moran index, as shown in the following

equation:

Rk
i =

N2
w

∑N2
w

n1=1

∑N2
w

n2=1Wn1n2

[
fk
n1

− fk
i

] [
fk
n2

− fk
i

]
(∑N2

w
n1=1

∑N2
w

n2=1Wn1n2

)∑N2
w

n1=1

[
fk
n1

− fk
i

]2
(10)

where f i
n1

and fk
n2

represent the abundance of the class

k of any pixel within the local window centred on xi. fk
i

represents the mean of the abundance of all class k within
the local window.

Wn1n2
=

{
1, if xn1

is adjacent to xn2

0, others.
(11)

The class with largeRk
i values is prioritized by comparing

Rk
i to specify the class visit order within xi. The local

Moran index determines the order of class visits by con-
sidering the spatial correlation within the class without
any a priori information. Thus, the process of the solution
is adaptive.

B. Modeling of SPM Based on CRFs

In the Bayesian framework, SPM is usually a posterior proba-
bility distribution problem. The posterior probability of subpixel
class label given the abundance of each class can be equally
written in the following form by using the Bayesian rule [32]:

p(L|F )︸ ︷︷ ︸
(1)

∝ p(L,F ) = p(L)p(F |L)︸ ︷︷ ︸
(2)

. (12)

For terms (1) and (2) in (12), two special probabilistic frame-
works can be used to model the posterior probability distribution:
discriminative CRFs framework and generative Markov random
fields (MRFs) framework [33].

The MRFs framework is a generative model that models the
joint probability distribution of random variables. However, in
an image processing task, the random variable is modeled by
the posterior probability distribution and derived as a combined
form of the prior probability distribution and the likelihood
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probability distribution, expressed as follows:

p(L|F ) ∝ p(L)p(F |L) (13)

where the label field L has the MRFs property, and the prior
probability distribution p(L) can be modeled using the Gibbs
distribution. p(F |L) is the likelihood probability distribution for
the observed data. If a sufficient correct likelihood function can
be designed to make the most accurate expression of the genera-
tion process of the observed data, then the MRFs framework can
fully mine the information of the observed data theoretically. For
the feasibility and convenience of computation and modeling,
the MRFs framework assumes that the observed data are con-
ditionally independent and that the observed data of individual
or local regions are modeled. Thus, the likelihood probability
distribution can be expressed in the form of a factor product.
The prior probability distribution is modeled using MRFs in
the generative MRFs framework. Thus, the spatial correlation
information can be exploited. However, the likelihood probabil-
ity distribution prevents the generative MRFs framework from
exploiting the spatial correlation information of the observed
data because of the independence assumption. Therefore, on
the basis that the label field L has a MRFs property, Professor
Lafferty of Carnegie Mellon University defines the discriminant
CRFs framework to model directly the posterior probability
distribution as a Gibbs distribution with the following form [34]:

p(L|F ) =
1

z
exp

⎧⎨
⎩−

∑
C∈I,J

VC(L)

⎫⎬
⎭ (14)

where Z is the normalization constant, C is a clique, and VC(L)
is the potential function of the clique C. Equation (14) has
no strict independence assumption. Thus, the requirement of
several independent hypothesis distributions of the observed
data in the MRFs framework can be overcome, and the spatial
correlation information of the observed data can be modeled
flexibly. The CRFs framework does not need to describe and
express the observed data, avoiding the explicit modeling of the
likelihood probability distribution in the MRFs framework. It is
also directly focused on L itself, which simplifies the problem
to some extent.

The CRFs framework is a discriminant model that directly
obtains the posterior probability distribution of the label field
L in the SPM. According to (14), the corresponding energy
function can be defined in the following form:

E(L) = −logp(L|F )− logZ =
∑

C∈I,J
VC(L). (15)

According to the Bayesian MAP, the SPM label field L can
be estimated by the maximum posterior probability:

L̂ = argmax
L

p(L|F ) = argmin
L

E(L). (16)

The SPM problem is converted by (16) to minimize the energy
function E(L). In this study, only unary potential and pairwise
potential are considered. The energy function E(L) can be

expressed in the following form:

E(L) = λ
∑

i∈I,j∈J
Φi,j(li,j) +

∑
i∈I,j∈J,t∈Ni,j

Φi,j i,t(li,j , li,t)

(17)
where Φi,j is the unary potential term, Ni,j is the site set of the
neighborhood system of li,j , and Φi,j i,t is the pairwise potential
term computed over the neighborhood system of li,j . λ is the
tuning parameter of the unary potential and pairwise potential.

Unary Potential: The unary potential term is the modeling of
the cost penalty for the subpixel to obtain a certain class label. It
is related to the probability that subpixel belongs to each class;
that is, the larger the probability is that the subpixel belongs to a
certain land cover class, the smaller the cost penalty of assigning
the subpixel is to the class label. This study uses the proposed
spatial adaptive attraction value to model the unary potential
energy in the following form:

Φi,j(li,j = k) = −p(li,j = k) = −aatki,j (18)

where p(li,j = k) indicates the probability that the label of
the subpixel at site i, j belongs to the class k. AAT is the
spatial adaptive attraction value described above, derived from
the abundance F of each class. Based on the SAAM, p(li,j)
maintains the magnitude of the spatial correlation of the subpixel
and implicitly characterizes the limits of abundance constraints.

Pairwise Potential: The pairwise potential energy is the inter-
pretation of the spatial prior knowledge of land cover classes,
where adjacent subpixel tends to have the same class labels that
have important information in determining the land cover classes
of the subpixel. This study models the pairwise potential energy
function of the 8-neighborhood system using an MLL regression
model with the following formula:

Φi,j i,t(li,j , li,t) =

{
0, if li,j = li,t
η, others

(19)

where η measures the weight of labeling smoothing potential.
As for the parameter η, we simply set it to 1 [35].

The pairwise potential energy based on (19) encourages ad-
jacent subpixels to acquire the same class labels and punish
nonadjacent subpixels for having different class labels, thereby
achieving a smooth effect on the result.

C. Optimization of SPM Based on CRFs

In this article, we use Graph-cut based α-expansion inference
algorithm [36][37] to optimize and solve the established energy
function [i.e., (17)]. Graph-cut based α-expansion algorithm
is an optimization algorithm for solving the energy function
minimization problem, which has been verified to be a fast
and effective algorithm in practice and experiments, so, it has
received wide attention in various applications [38].

Graph-cut algorithms are usually applied to binary labeling
problem and can quickly converge to a global energy minimum.
However, SPM is usually a multiclass labeling problem. For the
multiclass labeling problem, the Graph-cut based α-expansion
designs a special local search algorithm that can be used for the
energy function minimization problem of multivalued variables.
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Fig. 4. Flow diagram of the proposed SPM.

The local search algorithm repeatedly calculates the global
minimum of the binary labeling problem in its inner loop using
the Graph-cut algorithm. That is, at each α-expansion step, the
binary labeling operation is performed so that each subpixel
is either kept the current label or converted to a specific label
α ∈ K. This operation for subpixel labels is performed simul-
taneously, and thus is exponential number for any specific label
of possible transformation, which ensures that the algorithm has
a strong local minimal property. Therefore, the Graph-cut based
α-expansion can reduce the multiclass labeling problem to a
sequence of optimization subproblems with binary variables,
which can be easily optimized by Graph-cut methods.

D. Complete Algorithm

The newly developed SPM (SACRF) framework based on
SAAM and CRFs is summarized in Fig. 4.

IV. EXPERIMENT AND ANALYSIS

Four remote sensing imagery were selected in verifying and
analyzing the proposed algorithm to verify the performance of
the proposed method. The four remote sensing images include
a simulated hyperspectral imagery, a synthetic hyperspectral
imagery, and two real multispectral imagery.

The methods for comparison include the traditional PSSPM,
SASPM, spatial-spectral interpolation algorithm (SSSPM) [39],
and radial basis function interpolation algorithm (RBF-
SPM) [40]. All the abundances involved in the experiment were
obtained by performing a nonnegative least squares solution of
the original images. A hyperparameter search with interval 1
was performed in the range of 1−20 to determine the value
of the optimal tuning parameter λ. The results were quantified
using the Kappa coefficient, overall accuracy (OA), and producer
accuracy (Prod.Acc).

A. Experiment 1: Simulated Hyperspectral Imagery

Hyperspectral imagery was simulated using a linear mixing
model [41] and zero-mean i.i.d. Gaussian noise [42]. Five spectra

Fig. 5. (a) Simulated class label map for the subpixel, and the red and black
rectangles are local magnification. (b) Five reference endmembers are randomly
selected from the U.S. geological survey digital spectral library.

were randomly selected as endmembers from the U.S. Geo-
logical Survey Digital Spectral Library [43], with 188 bands
each, as shown in Fig. 5(a), the 3000× 2400 subpixel label field
was designed according to the land-use and land-cover features,
corresponding to the number of selected endmembers, as shown
in Fig. 5(b). The original high-resolution hyperspectral im-
agery was reconstructed by combining the selected endmembers
with the simulated subpixel label field. Then, the mean-value
processing of the original high-resolution imagery yields the
coarse-resolution hyperspectral imagery with the downsampling
scales of 4, 5, and 6, respectively. So, the reconstruction scale
factor was set to 4, 5, and 6, respectively. Then, the simulated
coarse-resolution hyperspectral imagery are further degraded
using the zero-mean i.i.d. Gaussian noise. In this experiment,
different bands in the hyperspectral images were contaminated
by noise with the same variance using the following formula.

σ2
e =

∑
ix

2
ie

10SNRN
(20)

where xie represents the value of the e band of the ith hyper-
spectral pixel without noise. N is the number of pixels in the
simulated hyperspectral imagery. SNR is the signal-to-noise
ratio, the larger the SNR, the less noise the imagery. In this
experiment, the SNR was set to 10. Finally, the simulated
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Fig. 6. SPM results of simulated hyperspectral imagery at the scale factors 4,5,6, and the red and black rectangles are local magnification. (a) PSSPM.
(b) SASPM. (c) RBFSPM. (d) SSSPM. (e) SACRF.

TABLE I
SPM ACCURACY FOR SIMULATED HYPERSPECTRAL IMAGERY (HIGHEST VALUE IN BOLD)

hyperspectral images were solved by nonnegative least squares,
respectively, and the abundance maps of sizes 750× 600× 5,
600× 480× 5, and 500× 400× 5 were obtained as the input
data.

Fig. 6 shows a visual comparison of the experimental results.
The visual effect obtained by the SACRF method is smoother
than that by other SPM methods because the former considers
the spatial prior model in the energy function and is constrained
by the abundance in the implicit form. Given the strict abundance
constraints, many noise artifacts exist in the results of PSSPM,
SASPM, RBFSPM, and SSSPM, which did not provide satis-
factory visual effects. The local magnification within the red
and black rectangles is a clear display of various kinds of SPM
results. Compared with those of other SPM methods, the local
magnification map of the proposed method and the true label
[see Fig. 5(a)] are the most consistent. The noise artifact in the
results of other methods seriously affects the visual effect.

Table I shows the quantitative evaluation of the Kappa and
OA of the SPM results for the true label. The OA and Kappa
of the proposed SACRF method are higher than those of the
other methods. The traditional PSSPM, SASPM, RBFSPM, and
SSSPM methods are close because of their strict abundance

constraints. The OA of the proposed method at the three scale
factors are 97.27%, 97.08%, and 96.53%, which are 41.01%,
33.19%, and 33.05% higher than those of the SSSPM. Moreover,
the OAs of the proposed method are 40.75%, 31.60%, and
32.47% higher than those of RBFSPM, 39.74%, 30.96%, and
31.17% higher than those of SASPM, and 41.61%, 33.44%, and
34.11% higher than those of PSSPM.

Table II shows the producer accuracy statistics of experimen-
tal results from simulated data for various methods at different
scale factors. The indicators reflected in the table are consistent
with the results reflected in Table I and Fig. 6. It can be seen that
the proposed method achieves good results and obtains high
values for all classes of SPM.

Table III shows the statistics of the running times of all
algorithms to illustrate the operational efficiency of the algo-
rithms for the simulated hyperspectral imagery. All algorithms
in this study were run on matlab2010a, where the proposed
method invoked the open-source toolbox GCO-3.0 written with
C + + to implement the Graph-cut algorithm. As can be seen
from Table III, the proposed method maintains operational ef-
ficiency despite not having the least running time when pro-
cessing 3000× 2400 sizes images under different scale factors.
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TABLE II
PRODUCER ACCURACY FOR SIMULATED HYPERSPECTRAL IMAGERY (HIGHEST VALUE IN BOLD)

TABLE III
RUNNING TIME FOR SIMULATED HYPERSPECTRAL IMAGERY (MINIMUM

VALUE IN BOLD)

Fig. 7. (a) True color display of the original image, (b) region of interest,
(c) the true label.

Meanwhile, the proposed method can also handle the noise
artifacts while maintaining high efficiency, which fully explains
the advancement of the proposed method.

B. Experiment 2: Synthetic Hyperspectral Imagery

As shown in Fig. 7(a), the image of experiment 2 was taken in
a small mountain village in Gulin, Sichuan Province, using a Cu-
bert UHD185 hyperspectral camera. It includes three land cover
classes: plastic film, soil, and vegetation. The hyperspectral cam-
era is a frame camera, and the image consists of one high spatial
resolution band of 1000× 1000 and 138 low spatial resolution

bands of 50× 50. A hyperspectral image of 1000× 1000 with
138 bands can be obtained through the internal fusion algorithm
of the camera. The fused hyperspectral image was classified
using the support vector machine algorithm in ENVI software.
The wrong classification pixels were manually corrected to
obtain an accurate 1000× 1000 ground truth map and serve
as the true label for the SPM, as shown in Fig. 7(c).

The region of interest was selected in the 1000× 1000 hyper-
spectral image, as shown in Fig. 7(b). It was solved by nonneg-
ative least squares to obtain 1000× 1000× 3 abundance maps.
Then, the1000× 1000× 3 abundance maps were downsampled
at scale factors 2, 4, and 5. The 500× 500× 3, 250× 250× 3,
and 200× 200× 3 synthetic abundance maps were obtained as
input data. Therefore, the scale factors of the SPM algorithm in
this experiment were set to 2, 4, and 5.

Fig. 8 shows the experimental results for scale factor 4 of syn-
thetic hyperspectral imagery. The results of PSSPM, SASPM,
RBFSPM, and SSSPM methods strictly consider abundance
constraints. Thus, many noise artifacts are produced, and the
effect of SPM is seriously affected, such as the local magnifica-
tion within the red and yellow rectangles, which is the result of
the abundance error obtained by spectral unmixing. The SACRF
method alleviates the effect of abundance error on the SPM by
adding smoothed prior information, yielding smooth results, and
showing desirable visual effects at different scale factors.

Table IV lists the quantitative evaluation of these SPM meth-
ods at different scale factors to evaluate the effectiveness of these
SPM methods using the OA and Kappa coefficients. Table IV
shows that the traditional PSSPM, SASPM, RBFSPM, and
SSSPM methods have similar quantitative evaluation indicators.
The OA and Kappa of the proposed SACRF method are higher
than those of the other methods. The OA of the proposed method
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Fig. 8. SPM results of synthetic hyperspectral imagery at the scale factors 4, and the red and yellow rectangles are local magnification. (a) PSSPM. (b) SASPM.
(c) RBFSPM. (d) SSSPM. (e) SACRF. (f) True Label.

TABLE IV
SPM ACCURACY FOR SYNTHETIC HYPERSPECTRAL IMAGERY (HIGHEST VALUE IN BOLD)

at the three scale factors are 88.45%, 88.62%, and 88.75%, which
are 7.66%, 7.81%, and 7.73% higher than those of the SSSPM.
Moreover, the OAs of the proposed method are 7.68%, 8.39%,
and 8.54% higher than those of RBFSPM, 7.87%, 8.54%, and
8.78% higher than those of SASPM, and 8.38%, 10.23%, and
11.38% higher than those of PSSPM.

Table V shows the producer accuracy of the experimental
results of synthetic data for various methods at different scale
factors. The indicators reflected in the table are consistent with
the results reflected in Table IV and Fig. 8. The proposed method
achieves good results and achieves high values for all classes.
It can be noted that the producer accuracy of the vegetation is
very low, because of its few pixels, but the proposed method still
achieves the highest value.

The running times of all algorithms are counted in Table VI
to illustrate the operational efficiency of the algorithms for the
1000 × 1000 imagery. Similar to experiment 1, experiment
2 was also run on matlab2010a, where the proposed method
invoked the open-source toolbox GCO-3.0 written with C + +
to implement the Graph-cut algorithm. Table VI shows that the
proposed method has the shortest running time and the highest
efficiency when processing the 1000× 1000 sizes image at

different scale factors. The effectiveness of the proposed method
is fully illustrated.

C. Experiment 3: Real Multispectral Imagery

The data for this experiment were obtained using the multi-
spectral images taken from the Landsat 8 satellite, which was
developed by the United States and then launched on February
11, 2013. Landsat 8 satellite carries two main loads: Operational
Land Imager (OLI) and Thermal Infrared Sensor. OLI has nine
bands. The spatial resolution of band1−band7 and band9 is
30 m. Band8 is a panchromatic band, and its spatial resolution
is 15 m. In this experiment, the data of the first seven bands of
Landsat8 images were processed, and two regions were selected
for experiments.

1) The region of Baodi, Tianjin, China: This region was
acquired on December 13, 2018, in Baodi, Tianjin, China, and
the size is 460 × 580, as shown in Fig. 9(a).

The data areas were divided into three classes: town, water,
and vegetation. The multispectral band with a spatial resolution
of 30 m and the panchromatic band with a spatial resolution of
15 m were fused using the Gram–Schmidt Pan Sharpening fusion
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TABLE V
PRODUCER ACCURACY FOR SYNTHETIC HYPERSPECTRAL IMAGERY (HIGHEST

VALUE IN BOLD)

TABLE VI
RUNNING TIME FOR SYNTHETIC HYPERSPECTRAL IMAGERY

(MINIMUM VALUE IN BOLD)

Fig. 9. (a) True color display of the original image (460 × 580). (b) True
color display of original image after fusion (920 × 1160). (c) The true label
(920 × 1160).

algorithm brought by ENVI software to obtain the true label and
facilitate the quantitative evaluation of the SPM algorithm by
obtaining the 920 × 1160 multispectral image with a spatial
resolution of 15 m, as shown in Fig. 9(b). Then, the fused
multispectral image was classified using the SVM algorithm
in ENVI software. The wrong classification pixels were man-
ually adjusted and finally obtained a true label, with a size of
920 × 1160, as shown in Fig. 9(c). Thus, the scale factor of this
experiment was also set to 2.

As shown in Fig. 10, this experiment selected the region of
interest on the original multispectral image of 460 × 580 to
obtain the input abundance. Then, unmixing was performed

Fig. 10. (a) Region of interest; (b)–(d) all class abundance map.

TABLE VII
SPM ACCURACY FOR REAL MULTISPECTRAL IMAGERY OF REGION BAODI

(HIGHEST VALUE IN BOLD)

TABLE VIII
PRODUCER ACCURACY FOR REAL MULTISPECTRAL IMAGERY OF REGION

BAODI (HIGHEST VALUE IN BOLD)

using a nonnegative least square algorithm to obtain an abun-
dance map measuring 460× 580× 3 as the input data, as shown
in Fig. 10(b)–(d).

The results of the SPM in Fig. 11 are consistent with the results
of experiments 1 and 2. The SPM result obtained by the SACRF
method proposed in this experiment is smoother than that by
other SPM methods. Given that PSSPM, SASPM, RBFSPM,
and SSSPM methods strictly follow the abundance constraints,
many noise artifacts exist in the results, seriously affecting the
final SPM results. The local magnification within the red and
black rectangles in Fig. 11 shows that the results obtained by
the proposed SPM method best fit the true label. Moreover, the
proposed SPM method eliminates many noise artifacts and has
the best visual effect.

Table VII shows the quantitative evaluation of the Kappa
and OA. The proposed SPM method has the highest accuracy
value and the best quantitative evaluation index. In particular, its
OA is 86.33%, which is 7.54%, 11.39%, 11.05%, and 12.16%
higher than the OA of SSSPM, RBFSPM, SASPM, and PSSPM,
respectively.

Table VIII is a producer accuracy statistical table for the
experimental results of region Baodi of each method at the scale
factor of 2. The indicator reflected in the table is consistent with
the results shown above in Table VII and Fig. 11. It can be seen
that the proposed method achieves high producer accuracy for
the SPM of all classes.

Table IX shows the time used to process the image. Similar
to the images in the above two experiments, the image in



CHEN et al.: SUBPIXEL MAPPING FOR REMOTE SENSING IMAGERY BASED ON SPATIAL ADAPTIVE ATTRACTION MODEL 1635

Fig. 11. Results of SPM with scale factor 2, and the red and black rectangles are local magnification. (a) PSSPM. (b) SASPM. (c) RBFSPM (d) SSSPM.
(e) SACRF. (f) True Label.

TABLE IX
RUNNING TIME FOR REAL MULTISPECTRAL IMAGERY OF REGION BAODI

(MINIMUM VALUE IN BOLD)

Fig. 12. (a) True color display of the original image (510 × 550). (b) True
color display of original image after fusion (1020 × 1100). (c) The true label
(1020 × 1100).

part was also run on matlab2010a, where the proposed method
invoked the open-source toolbox GCO-3.0 written with C + +
to implement the Graph-cut algorithm. Table IX shows that the
proposed SPM method has the shortest running time and is the
most efficient for the image.

2) The region of Heze, Shandong, China: This region was
acquired on September 2, 2016, in Heze, Shandong Province,
and the size is 510 × 550, as shown in Fig. 12(a). The data
were divided into three land cover classes: town, water, and
vegetation. The multispectral band with a spatial resolution of
30 m and the panchromatic band with a spatial resolution of
15 m were fused using the Gram–Schmidt Pan Sharpening fusion
algorithm brought by the ENVI software to obtain the true label
and facilitate the quantitative evaluation of the SPM algorithm by
obtaining a 1020× 1100 size multispectral image with a spatial
resolution of 15 m, as shown in Fig. 12(b). Then, the fused

Fig. 13. (a) Region of interest; (b)–(d) all class abundance map.

multispectral image was classified using the SVM algorithm in
ENVI software. The wrong classification pixels was manually
adjusted, finally obtaining a true label map measuring 1020×
1100, as shown in Fig. 12(c). Thus, the scale factor for this part
of the experiment is set to 2.

As shown in Fig. 13(a), this experiment selected the region
of interest on the original multispectral image of 510 × 550
to obtain the input abundance. Then, unmixing was performed
using a nonnegative least square to obtain an abundance
map measuring 510× 550× 3 as the input data, as shown in
Fig. 13(b)–(d).

Fig. 14 shows a visual comparison of the experimental results.
The visual effect obtained by the SACRF method is smoother
than that by other SPM methods because the former considers
the spatial prior model in the energy function and is constrained
by the abundance in the implicit form. Given the strict abundance
constraints, many noise artifacts exist in the results of PSSPM,
SASPM, RBFSPM, and SSSPM, which did not provide satis-
factory visual effects. The local magnification within the red
and yellow rectangles is a clear display of various kinds of SPM
results. Compared with those of other SPM methods, the local
magnification map of the proposed method and the true label
are the most consistent. The noise artifact in the results of other
methods seriously affects the visual effect.

Table X shows the quantitative evaluation of the Kappa and
OA of the SPM results for the true label. The OA and Kappa
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Fig. 14. Results of SPM with scale factor 2, and the red and black rectangles are local magnification. (a) PSSPM. (b) SASPM. (c) RBFSPM. (d) SSSPM.
(e) SACRF. (f) True Label.

TABLE X
SPM ACCURACY FOR REAL MULTISPECTRAL IMAGERY OF REGION HEZE

(HIGHEST VALUE IN BOLD)

TABLE XI
PRODUCER ACCURACY FOR REAL MULTISPECTRAL IMAGERY OF REGION HEZE

(HIGHEST VALUE IN BOLD)

of the proposed SACRF method are higher than those of the
other methods. The traditional PSSPM, SASPM, RBFSPM, and
SSSPM methods are close because of their strict abundance
constraints. The OA of the SACRF method is 93.70%, which
is 7.49%, 9.18%, 8.66%, and 9.57% higher than that of SSSPM,
RBFSPM, SASPM, and PSSPM, respectively.

Table XI is a producer accuracy statistics of the results of
region Heze experiments for each method at the scale factor
2. It can be seen from the table that the proposed method

TABLE XII
THE RUNNING TIME FOR REAL MULTISPECTRAL IMAGERY OF REGION HEZE

(MINIMUM VALUE IN BOLD)

achieves high producer accuracy for the SPM of all classes,
which illustrates the effectiveness of the proposed method.

The runtimes of all algorithms are counted in Table XII
to illustrate the operational efficiency of the algorithms for
the 1020 × 1100 image. As with the above experiments, this
experiment was also run on matlab2010a, where the proposed
method invoked the open-source toolbox GCO-3.0 written with
C + + to implement the Graph-cut algorithm. Table XII shows
that the proposed method has the shortest running time and the
highest efficiency. The effectiveness of the proposed method is
fully illustrated.

D. Sensitivity Analysis of λ

The tuning parameter λ in the proposed method is vital in
controlling the weight between unary and pairwise potential
terms. The smaller the λ value, the greater the spatial smoothing
effect played by the pairwise term, and the smoother the SPM
result, the larger the λ value, the greater the unary term plays,
and the weight of all land cover class probabilities to which the
subpixel belongs slowly increases, leading to a slow increase
in noise artifacts. A hyperparameter search with interval 1 was
performed in the range of 1–20 in all the datasets described above
to determine the optimal λ values, and its OA was calculated.
Fig. 15 shows the statistical summary results of the hyperparam-
eter search.
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Fig. 15. Sensitivity analysis for the λ value using three different datasets, i.e., Simulated Hyperspectral Imagery, Synthetic Hyperspectral Imagery, and Real
Multispectral Imagery.

Fig. 16. Performance comparison at different noise levels at different scale factor of the simulated hyperspectral imagery, i.e., d = 4, d = 5 and d = 6.

As can be seen from Fig. 15, with the increasing λ value, the
accuracy first increases and then decreases, and finally stabilizes,
which meets ours expectation that the best balance point of the λ

values between unary and pairwise potential terms can be found
between 1–20.

E. Sensitivity Analysis of Noise

In order to examine the sensitivity of the different methods to
the noise levels, we tested them on the simulated images with
different noise levels measured with the SNR, i.e., SNR =
5, 10, 15, 20, and 25. The smaller theSNR value, the more noise
in the imagery, and thus the greater the error of the abundance
map produced by unmixing. In the experiments, we tested the
results of SPM of different noise levels images at different scale
factors, and the OA is shown in Fig. 16.

As can be seen from Fig. 16, the results of PSSPM, SASPM,
RBFSPM, and SSSPM are not ideal when the image contains
much noise. This is because the image contains more noise,
resulting in a large error of the abundance map obtained from the
unmixing, and thus the results of the SPM have low accuracy.
This also shows that the dependence of these methods on the
accuracy of the unmixing algorithms is great. The proposed
method achieves good results at different noise levels, which
shows that the proposed method can better handle the influence
of the abundance error caused by unmixing on the SPM results.

V. DISCUSSION

Spectral unmixing technique estimates the area proportions of
each land cover class within the mixed pixel (i.e., abundance).

SPM is a further technique for spectral unmixing, and under
abundance constraints, the spatial distribution of each land cover
class within the mixed pixel is obtained by considering spatial
prior information, providing a land cover map with higher spatial
resolution. Therefore, to satisfy the abundance constraint is an
important problem in SPM, which is the key to maintain the
significance of the SPM algorithm. Fig. 1 shows that there are
usually two ways for SPM techniques to preserve the abundance
constraint. One is a two-step strategy method, which requires
spectral unmixing first to obtain the abundance information,
and then performs the SPM processing under the abundance
constraints of display form, that is, during the class allocation,
the number of subpixels of each class in the mixed pixel is
enforced according to the abundance information. The two-step
strategy method has the advantage of high operational efficiency,
but it is very vulnerable to abundance errors. The other is the
optimization strategy method, which constructs the likelihood
term in the objective function through a linear mixed model,
thus transforming the abundance constraint in the SPM into a
way of linear spectral reconstruction method, namely, minimize
the difference between the product between abundance and
endmembers and the observed mixed pixel spectrum. Although
this method relate restriction on abundance and eliminates the
uncertainty caused by the spectral unmixing algorithm, the
operation efficiency is slow.

In order to make the SPM algorithm have the advantage of
high operation efficiency, and can also eliminate the influence of
abundance error, this article uses CRFs to model the SPM. How-
ever, when constructing the unary potential term in the energy
function of the CRFs, the key lies in how to satisfy the abundance
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constraint while keeping the probability that subpixel belongs
to each class. To meet this requirement, this article designs the
SAAM. The traditional spatial attraction model quantifies the
spatial correlation as a subpixel within the central mixed pixel
subject to the spatial attraction of different land cover classes
in the neighborhood mixed pixel. But the model belongs to
the two-step strategy method, and the abundance constraint is
in the display form [i.e., (5)], which enforces the number of
subpixels of each class in the mixed pixel, and cannot be applied
to the CRFs. The SAAM obtains the spatial adaptive attraction
value by adaptive adjusting the spatial attraction value. The
spatial adaptive attraction value adjusts the display form of the
abundance constraints of spatial attraction value to an implicit
form [i.e., (7)] with an adaptive scheme, while maintaining the
relative size of the spatial correlation of each land cover class.
Thus, it can be applied to the CRFs to meet the requirements of
the SPM technology in constructing the unary potential term in
the energy function of the CRFs.

In order to verify the efficiency advantages of the proposed
method, the spatial size of the experimental data is relatively
large, so the algorithm operation efficiency is verified by cal-
culating the running time. However, when running on large-
size data, the operation time of the optimization strategy SPM
method is too long to make statistics, so the comparison method
in this article belongs to the two-step strategy SPM method.
Experiments show that the proposed algorithm guarantees the
operational efficiency. Meanwhile, to illustrate the advantages of
the proposed algorithm in eliminating the uncertainty caused by
the spectral unmixing algorithm, this article takes the abundance
of the nonnegative least squares solution as the input data, and
the accuracy is not the highest, and the abundance is solved with
obvious error. It can be concluded from the experiment that the
comparison methods are seriously affected by the abundance
error, so there are a lot of noise artifacts in the results, and
the accuracy is low. And the proposed algorithm in this article
can effectively solve the uncertainty caused by the unmixing
algorithm when comparing it with other methods, thus achieving
the results with relatively high accuracy than the comparison
method.

On the other hand, our approach also has some limitations. In
this article, although the SAAM is designed to meet the require-
ments of the SPM technology in constructing the unary potential
term in the energy function of the CRFs. But the SAAM is
based on the improvement of the traditional attraction mode. The
traditional attraction model is to obtain the spatial correlation of
subpixels belonging to each class through abundance, which
leads to that if the abundance error is too large, it will affect the
accuracy of the spatial correlation of subpixels belonging to each
class, thus affecting the proposed method. Therefore, in future
studies, we can design more advanced unary potential term in
the energy function of the CRFs while satisfying the abundance
constraints by considering more abundant spatial prior informa-
tion or linear spectral mixing information. At the same time, the
proposed method in this article has the tuning parameter λ, which
controls the balance between the unary and pairwise potential
terms. If too small, the result will be too smooth, and if too large,
the noise cannot be effectively processed. At present, an optimal

parameter λ is still obtained through parameter search, so in the
future research, an algorithm can be designed to find the optimal
parameter λ in an automatic way.

It is worth noting that the research and application of deep
learning in the field of remote sensing is more and more mature
and extensive. Recently, some paper [44] has used the supervised
learning method to train the designed deep learning network by
using labeled airborne data and unlabeled spaceborne data, so
as to realize the mapping of urban land cover with high spatial
resolution by using multisource data with different spatial reso-
lution and spectral characteristics, providing a new perspective
for large-scale land cover mapping. In the next research, we
will further combine the theory of subpixel mapping with deep
learning, and make breakthroughs in reducing training samples,
improving generalization capability and improving accuracy.

VI. CONCLUSION

In this study, the SPM method based on the SAAM and CRFs
are proposed. First, an SAAM is proposed. Spatial adaptive
attraction values are obtained by adaptively adjusting the spatial
attraction values obtained based on the conventional spatial at-
traction model. Spatial adaptive attraction values turn the display
form of the abundance constraints into an implicit form for
expression, allowing it to maintain the relative size of the spatial
correlation of land cover class and characterize the limit of the
abundance constraints. Thus, subsequent smoothing of noise
artifacts is facilitated. Second, the spatial adaptive attraction
values and spatially smoothed prior are modeled in CRFs. The
unitary potential designed from the spatial adaptive attraction
values can calculate the cost that each subpixel is given the
corresponding class label. The binary potential modeled by a
MLL model favors the adjacent subpixels to adopt the same
class labels to achieve a smooth effect. Finally, the CRFs model
is optimized using the Graph-cut, so that the proposed SPM
can not only ensure the advantages of fast running speed and
high efficiency of the two-step strategy SPM method, but also
extinguish the influence of abundance error to a certain extent
and decrease the noise artifact on the results of SPM. The
experiments of the three images indicate that the result generated
by the proposed SPM method is more reliable than the results
generated by the four previous SRM methods. In future work, the
design of unitary and binary potential in CRFs should be further
explored for applications to remote sensing image processing in
specific fields.
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