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Abstract—Edge optimization of semantic segmentation results
is a challenging issue in remote sensing image processing. This
article proposes a semantic segmentation model guided by a block-
in-block edge detection network named BIBED-Seg. This is a two-
stage semantic segmentation model, where edges are extracted first
and then segmented. We do two key works: The first work is edge
detection, and we present BIBED, a block-in-block edge detection
network, to extract the accurate boundary features. Here, the edge
detection of multiscale feature fusion is first realized by creating the
block-in-block residual network structure and devising the multi-
level loss function. Second, we add the channel and spatial attention
module into the residual structure to improve high-resolution re-
mote sensing images’ boundary positioning and detection accuracy
by focusing on their channel and spatial dimensions. Finally, we
evaluate our method on International Society for Photogrammetry
and Remote Sensing (ISPRS) Potsdam and Vaihingen data sets
and obtain ODS F-measure of 0.6671 and 0.7432, higher than other
excellent edge detection methods. The second work is two-stage seg-
mentation. First, the proposed BIBED is individually pretrained,
and subsequently, the pretrained model is introduced into the
entire segmentation network to extract boundary features. In the
second segmentation stage, the edge detection network is used to
constrain semantic segmentation results by loss cycles and feature
bootstrapping. Our best model obtains the OA of 90.2%, 87.7%,
and 81.5%, the IOU of 76.0%, 69.6%, and 61.3% on the ISPRS
and WHDLD datasets, respectively.

Index Terms—Channel attention mechanism, edge detection,
high-resolution remote sensing, multiple-residual convolution
blocks, semantic segmentation, spatial attention mechanism.

I. INTRODUCTION

EDGE optimization in semantic segmentation has always
been the focus of research, especially for high-resolution

remote sensing images with complex and diverse targets, which
is a great challenge. Most of the existing methods are refined
from postprocessing by adding postprocessing steps such as
morphological filtering and CRF [1], [2]. For example, after the
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Fig. 1. Semantic segmentation. Left: Segmentation based on DCNN, object
boundary is blurred. Right: We propose to mitigate this effect with a clear object
boundary map.

semantic segmentation of marine aquaculture based on FCN,
Pan et al. [3] used CRF to refine the edges, which improves
the edge definition of marine aquaculture and further improves
the extraction accuracy. Also, many studies put edge features
into the network as a branch to optimize the loss function
and further enhance the edge information of the segmentation
results. Guo et al. [4] designed an edge prediction branch to
predict the boundary of the salt body, which guides feature
learning through the supervision of boundary loss so that the
network can distinguish the features on both sides of the seman-
tic boundary. Although these methods can improve the edge
blur of classification results to a certain extent, they cannot
retard the misclassification phenomenon within the boundary.
They can easily enhance the “false” edge in the classification
results. Therefore, this article focuses on the remote sensing
edge information extraction of the remote sensing image itself
and its guiding value for the training of semantic segmentation
(see Fig. 1). We aim to eliminate the influence of boundary
ambiguity and intraclass dissimilarity on semantic segmentation
results through accurate boundary information. This has strict
requirements for edge feature detection methods, and also brings
challenges to the existing algorithms.

Edge detection is an image processing technique for finding
objects’ boundaries (points with noticeable brightness changes)
within digital images. It can significantly reduce the amount of
data, eliminate irrelevant information, and retain the essential
structural attributes of the images. With the development of
remote sensing technology, the resolution of remote sensing
images is improved gradually. The features of ground object
information shown by high-resolution remote sensing images
are becoming more and more complex. The characteristics
of the edge of intraclass and interclass are becoming more
and more abundant, bringing significant challenges to remote
sensing interpretation. Therefore, high precision edge detec-
tion is of great significance to the interpretation (especially
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for segmentation [5], [6], target detection, and recognition[7],
[8]) of high-resolution remote sensing images. From low-level
visual cues using hand-crafted features [9], [10], [11], [12] to
deep-learning models [13], [14], [15], [16], the accuracy of edge
detection has been significantly improved.

At first, in the field of computer vision, differential operators
were primarily used mainly for image edge detection, divided
into two main categories: The first-order differential operators
commonly used are Robert [17], Prewitt [18], and Sobel [19],
and the second-order differential operators commonly used are
LOG [20], Laplace [21], and so on. These operators have many
advantages, such as simple principles, easy implementation,
and convenient calculation. However, the defects are also ob-
vious: the poor anti-interference ability and the unideal detec-
tion effect. Subsequently, many new traditional algorithms have
emerged, such as spherical fitting [22], wavelet transform [23],
self-adaptive smoothing filter [24], particle swarm optimization
[25], and the Canny algorithm [26]. The Canny algorithm has a
higher signal-to-noise ratio and shows the best detection effect.
Especially for remote sensing images, it has become the most
commonly used and practical edge detection algorithm. Based
on the traditional edge detection algorithms, many scholars have
carried out a lot of research on the edge detection of remote
sensing images [27], [28], [29]. However, the antinoise ability
of traditional algorithms is still weak, the detection results are
prone to “weak” edges, and there are great defects in the accurate
extraction of interclass boundaries in the image.

With the rapid development of deep learning in image pro-
cessing, CNN is widely used because of its excellent semantic
information extraction ability [30], [31]. Edge detection based
on deep CNN has become a new trend. Famous image edge
detection methods based on CNN include N4-Fields [32], Deep-
Contour [45], DeepEdge [33], and HED [34]. These methods
show excellent results in natural color images, and their edge
detection accuracy is much higher than traditional detection
algorithms. However, many of the abovementioned methods
may have some problems in the edge detection of remote sensing
images: similar to VGG, ordinary convolutional neural networks
cannot tap deeper and complex spatial semantic information;
single tandem feature extraction is easy to lose key informa-
tion in shallow features of images; and lack of training and
research for multitarget and multispectral images. It easily leads
to unclear extraction results and low detection accuracy. This
inaccurate edge information does not significantly promote the
semantic segmentation results of remote sensing.

Therefore, we deeply excavate the semantic information and
spatial features of high-resolution remote sensing and propose
an end-to-end edge detection network based on multiple residual
convolutional blocks, named BIBED, to obtain more precise
boundary information. Enables these features to constrain and
guide the semantic segmentation task effectively. Two experi-
ments are mainly carried out in this article. The first experimental
result shows that for the edge detection task of high-resolution
remote sensing images, BIBED can realize high-precision
detection of remote sensing images. It is significantly better than
traditional edge detection methods (such as Canny) and other
deep learning edge detection models. The second experimental

result shows that for the semantic segmentation task of
high-resolution remote sensing images, the effective edge
features obtained by BIBED can significantly improve the
segmentation accuracy of high-resolution remote sensing.

The key contributions of the article are as follows.
1) BIBED Network: We propose an end-to-end edge detec-

tion network that effectively detects ground object bound-
aries in high-resolution remote sensing images. First, we
establish a block-in-block network structure to fuse edge
features from low-level to high-level. Second, in the block
structure, according to the characteristics of large pixel se-
ries of high-resolution remote sensing images, the residual
structure is introduced to solve the problem of gradient
disappearance and improve model stability and accuracy
while continuously deepening the network. In addition,
according to the characteristics of multiband and complex
spatial information of high-resolution remote sensing im-
ages, the channel attention mechanism and spatial atten-
tion mechanism are constructed in the residual structure,
focusing on the band and spatial dimension, respectively.
To improve the accuracy of edge detection and positioning.

2) BIBED Loss: We construct a multiscale feature fusion
loss function in BIBED, which further integrates low-
dimensional and high-dimensional features by training
and assigning weights to improve the accuracy of edge
detection; Aiming at the problem of the imbalance of the
proportion of positive and negative samples in the bound-
ary images, we introduce the balanced coefficient into
focal and cross-entropy loss function, to reduce the weight
of a large number of simple negative samples in training
to mine complex samples, to achieve the balance between
positive and negative samples, and prevent overfitting of
network training.

3) BIBED-Seg Model: We construct a two-stage semantic
segmentation model based on BIBED, i.e., edge detec-
tion first and then classification. BIBED is used to guide
the semantic segmentation task of high-resolution remote
sensing images, i.e., to improve the final semantic segmen-
tation results through effective edge features. In addition
to this, we design a dual-loss joint constraint training, i.e.,
boundary loss and segmentation loss.

4) Proof Experiments: We conduct extensive experiments on
the Potsdam, Vaihingen, and WHDLD datasets to demon-
strate the effectiveness and advancement of BIBED-based
semantic segmentation. Among them, in the edge detec-
tion experiments, it is verified that BIBED outperforms
other state-of-the-art models for edge accuracy detection
of high-resolution remote sensing images by comparison
experiments. In the semantic segmentation experiments,
we compare several excellent semantic segmentation net-
works to demonstrate further the BIBED-Seg model’s
ability to improve semantic segmentation accuracy.

II. RELATED WORK

This article is related to edge detection methods based on deep
learning and edge-aware segmentation.
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A. Deep Learning-Based Edge Detection

In recent years, deep learning-based methods generally use
convolutional neural networks to extract multilevel hierarchical
features. In 2014, Bertasius et al. [33] proposed DeepEdge to
achieve image contour feature extraction at different scales
by building a multiscale depth network. Yaroslav et al. [32]
proposed a new architecture based on combining convolutional
neural networks with the nearest neighbor search for difficult
image processing operations, named N4-Fields. In 2015, Shen
et al. [45] proposed a new training strategy and loss function
(called positive-sharing loss) to extract contour edges based on
deep networks effectively. Xie et al. [34] proposed an end-to-end
edge detection model that leverages the outputs from different
intermediate layers with skip connections. In 2019, Liu et al. [46]
introduced a richer convolutional feature, which makes good
use of feature hierarchies in CNNs, for edge detection. He et al.
[39] proposed a new multiscale feature output strategy, where
an individual layer is supervised by labeled edges at its specific
scale rather than directly applying the same supervision to all
CNN outputs.

Our method aims to achieve accurate extraction of remote
sensing image edges (boundaries) under complex features by
multispatial-channel attention blocks and residual networks and
by constructing multiscale feature extraction and training strate-
gies.

B. Deep Learning-Based Edge-Aware Segmentation

Edge optimization and enhancement in image classification
and segmentation have been a hot research direction. At first,
people focused on postprocessing of classification to solve this
problem, such as edge optimization of classification results by
CRF [1]. Later, with the rapid development of deep learning,
attention was focused on combining edge optimization with deep
learning models to generate more accurate classification results,
i.e., edge-aware-based classification, and semantic segmenta-
tion methods. Michieli et al. [47] proposed a novel approach
(GMENet) for segmentation tasks combining object-level con-
text conditioning, part-level spatial relationships, and shape
contour information. Chen et al. [48] proposed an edge-aware
convolution kernel to extract RGB-D image feature maps more
efficiently using the geometric information contained in the
depth channels to improve the semantic segmentation accuracy.
Kuang et al. [49] proposed a new body and edge-aware net-
work for 2-D medical image segmentation, called BEA-SegNet,
which fused the body segmentation result and the edge features
to get the final result.

This edge-aware approach is also commonly used in the
direction of remote sensing semantic segmentation. Yuan et al.
[50] combined the two tasks of cloud segmentation and cloud
edge detection together to encourage better detection near cloud
boundaries, resulting in an end-to-end approach for accurate
cloud detection. Cheng et al. [51] proposed an edge-aware
convolutional network for the segmentation of remote sensing
harbor images, which was achieved by loss of edge-aware reg-
ularization.

Edge-aware joint training has been widely used in remote
sensing segmentation work. Our approach is based on joint
training, where the clear boundary results are jointly input to the
semantic segmentation network along with the original image.
It enables the overall model to allow the network to learn useful
edge information in addition to loss optimization and, thus,
output better and more accurate segmentation results.

III. METHODOLOGY

A. BIBED-Seg Model

In the classification of remote sensing images, the semantic
segmentation based on deep learning is limited by the number
and quality of training samples. The network classifies pixels by
learning the spectral information of the image and the spatial se-
mantic information between pixels. However, the classification
results still have the problems of fuzzy boundaries and inaccurate
positioning. And the same ground object is prone to misclassi-
fication of pixel values, resulting in the decline of classification
accuracy. It is our desire to let neural networks learn useful
boundary information to assist semantic segmentation tasks.

Our overall segmentation process, BIBED-Seg Net, is divided
into two steps (see Fig. 2). Step 1: Edge (boundary) detection.
Here, we propose and design a BIBED network for boundary
extraction of high-resolution remote sensing images. Step 2:
Semantic segmentation. The boundary feature map obtained by
BIBED participates in the training and prediction of the semantic
segmentation network. That is, the pretraining model of BIBED
is used to constrain the classification network in advance, en-
hance the classification boundary, reduce the classification error
rate between and within classes, and improve the segmentation
accuracy.

B. Overview of BIBED

For high spatial resolution remote sensing images, this article
proposes a semiautomatic edge detection method based on con-
volution neural networks with residual structure, which is used
to assist the semantic segmentation of high-resolution remote
sensing images. The network and edge detection process are
shown in Fig. 3. First, the input high spatial resolution remote
sensing image passes through the network structure of different
blocks to extract the feature information at different scales;
Second, the feature maps of different scales are fused; Finally,
the fused feature map is binary classified by sigmoid activation
function, and the final detection result is obtained.

C. Network Structure of Block-in-Block

Given the excellence of the vgg16 model [34] in edge de-
tection, the edge detection of remote sensing images is also
based on DCNN in this article. But different from the pure
convolution block network structure in vgg16, we construct a
block-in-block network architecture. The first block does not
use the residual structure but a simple convolution structure
composed of a 7×7 convolution layer, a 3×3 convolution layer,
and a 3 × 3 max-pool layer. Others are mainly composed of
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Fig. 2. Framework of BIBED-Seg model. (The semantic segmentation network structure is deeplabv3+ [42]).

Fig. 3. Overall framework of BIBED.

three types of small blocks with residual structure: Conv_block,
Identity_block, and CSAM_block (see Fig. 4).

Identity_block: A standard residual network structure, which
can solve the problem of gradient disappearance while deep-
ening the network depth, enables the model to be continuously
optimized and further improves the accuracy of the model. It
is suitable for recognizing and detecting high-resolution remote
sensing image data with extremely complex spectral and spatial
information. As shown in Fig. 4(b), the structure comprises
two convolution modules and a direct skip connection. Each
convolution module comprises a 3×3 convolution layer, batch
normalization layer (BN), and Relu activation function. The
steps of all convolution layers are 1.

Conv_block: Residual network structure with convolution
skip connection. To better retain the feature information Fig. 4. Network structure of each large block (block2 – block5 in BIBED).
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Fig. 5. Feature extraction framework of CSAM in BIBED.

extracted from the upper layer network, this structure cancels
the traditional maximum pooling layer but uses a step size of 2 in
the convolution layer instead of the pooling layer to achieve the
purpose of downsampling. Therefore, to connect skip features
effectively, adding a convolution module with the same step size
of 2 to the skip connection is necessary. As shown in Fig. 4(a),
the structure comprises two convolution modules and a skip
connection containing one convolution block. Similarly, each
convolution module comprises a 3×3 convolution layer, a BN
layer, and a Relu activation function. The difference is that the
step size of the convolution layer in the first convolution module
on the left and the convolution layer in the skip connection is set
to 2, and the rest is set to 1.

CSAM_block: Residual structure with channel and spatial
attention mechanisms. Different from RGB natural images,
remote sensing images usually have multiple channels. The
channel attention structure [35] can focus on the channel features
under the condition of compressing spatial features and give
higher weight to the channel, significantly influencing the detec-
tion results. High-resolution remote sensing images have higher
spatial resolution and more complex spatial correlation features.
The spatial attention structure proposed by Woo [36] can focus
on the spatial characteristics of images under the condition
of compressing channel features, which is suitable for target
detection and positioning of high-resolution images. Therefore,
aiming at the difficulties of detection and positioning of edge
and low detection accuracy of high-resolution remote sensing
images, this article uses the method of combining channel atten-
tion mechanism (CAM) and spatial attention mechanism (SAM)
with the residual network in the last small block (CSAM_bolck),
in order to improve the accuracy of boundary detection of
high-resolution multispectral remote sensing images. As shown
in Fig. 4(c), the skip connection in the CSAM_block is composed
of two 3×3 convolution modules, CAM and SAM. First, the
input features after convolution pass through the CAM, then
channel weight coefficient is output, and multiply it with the
feature map through the convolution layer to obtain new channel
features; Second, the feature is input into the SAM, and the
corresponding spatial weight coefficient is output, which is

multiplied with the channel feature map to obtain a new spatial
feature; Finally, the new spatial feature map is fused with the
output feature map from the previous piece of structure. The
compression of channel and spatial features by the two attention
structures is realized by global maximum pooling and global
average pooling operations, as shown in Fig. 4(d) and (e).

Fig. 5 shows our method’s feature extraction process of the
channel and spatial attention. CAM: In the channel attention
mechanism, as shown in Fig. 5(a), the global average and
maximum pooling layers use different information to compress
space features. The input feature (F), which is H×W×C size,
can be compressed into two features, w_c1, and w_c2, with
the size of 1×1×C, and then through a shared MLP structure
composed of two sharable parameter neural network layers
and finally added the two features output by MLP based on
element-wise to obtain the channel weight coefficient feature
(w_c with the size of 1×1×C) through a sigmoid activation
function, where w_c = {w1, w2, . . . , wc}, c is the number of
channels in images; SAM: In spatial attention mechanism, as
shown in Fig. 5(b), by using different information, the global
average and maximum pooling layers can compress the input
feature (F_CAM) of H×W×C into two features, w_s1 and
w_s2 with the size of H×W×1, then connect the two features
in the channel dimension and pass through a 7×7 convolution
layer. Finally, the spatial weight coefficient (w_s with the size
of H×W×1) is obtained through a sigmoid activation function,

where w_s =

⎧⎪⎪⎪⎨
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w0,0 w0,1

w1,0 w1,1

. . . w0,W

. . . w1,W

...
...

wH,0 wH,1

...
...

. . . wH,W
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.

The specific calculation formulas of CAM and SAM in this
article are as follows:

F_CAM = w_c ∗ F =

c∑
i=1

wif i (1)

F_SAM = w_s ∗ F_CAM =

C∑
i=1

H∑
h=0

W∑
w=0

wh,wf
i
h,w. (2)
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Fig. 6. Structure of the multiscale fusion extraction.

Referring to different hierarchical network structures of
ResNet [37], we design different BIBED network structures of
different levels (different numbers of blocks) based on the above
blocks, named BIBED-N, N indicates the number of CSAM
blocks in the network.

D. Edge Extraction of Multiscale Feature Fusion

Compared with the HED network, which only extracts the last
layer features of vgg16. This article constructs a multifeature
fusion edge extraction structure based on a multilevel and mul-
tiscale feature map. We believe that the information on features
output by every Block is useful. Therefore, as shown in Fig. 6,
all feature maps (f1 – f5) obtained by different blocks are fused,
which can fuse information from shallow layer to deep layer
and from low dimension to high dimension, retain details, and
remove redundancy. Finally, the final boundary results through
a 3×3 convolution layer and a sigmoid activation function.
Where side_branch acts as the effect of upsampling, the reduced
dimension features are restored to the original image size to
facilitate subsequent feature fusion. It is mainly composed of
convolution and anticonvolution layers (Up-sampling layers).

E. Loss Function

BIBED-Seg has two loss common constraints (Loss of
BIBED and loss of segmentation), and its loss function can be
expressed as

LS = w1LBIBED + w2LSeg. (3)

Since LS is oriented to the classification task and BIBED
will be pretrained separately, we will focus on LSeg in the
segmentation task so that w1 = 0.3 and w2 = 0.7 in this
article. Where the loss of segmentation is generally a multiclass
cross-entropy loss or multiclass Dice loss function. And the edge
detection loss function will be the focus of the research in this
article.

Based on the abovementined multiscale fusion ideal, this
article designs a multilevel feature fusion loss function. A total of
six losses are produced in the network training process, including
the loss of features at five different scales (Block1-Block5)Lside,
and the loss of fusion feature Lfuse. The six losses are trained
at the same time. The Lside and Lfuse in the training process are
weighted and summed to obtain the final overall loss, as shown
in

LBIBED = wsideLside + wfuseLfuse (4)

Lside =

n∑
i=1

λili. (5)

LMBED is the overall loss function of the network, wside and
wfuse are weights for the loss of side features and fused features
( wside = 0.4, wfuse = 0.6), li is the side loss function of the
output of the Block_i, λi is the weight coefficient of the feature_i
in different blocks, n is the number of Blocks (n = 5). Since
our experiment focuses on accurate image boundary detection
instead of complex edge information, we give greater weight to
the deeply extracted features considering feature fusion. So, the
λi in this article are set as 0.1, 0.2, 0.3, 0.3, and 0.1, respectively.

For the overfitting problem of network training due to the
imbalance of positive and negative samples in the edge map, the
loss functions with balance factors in favor of binary classifica-
tion are used.

The loss functions of Lside in this article use the focal loss
function [38] with balanced factors, as shown in (6). The loss
function can excavate complex samples by reducing the weight
of many simple negative samples in training to solve the problem
of the unbalanced proportion of positive and negative samples
in the remote sensing edge detection task in this article

loss =

{−β(1− y′)γ log y′, y = 1

− (1− β) y
′γ log (1− y′) , y = 0

(6)
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where y′ is the probability value output through the sigmoid
activation function, generally between 0-1; y represents the
actual value (0 or 1) of ground truth; β is the balance factor
that can balance the positive and negative samples, β is set to
0.7 in this article, the larger the β, the higher the attention to
positive samples; γ factor can solve the problem that simple
and easy samples cannot be distinguished, which is generally
greater than 1, γ is set to 2. For positive samples, the higher the
prediction probability y′ , the smaller the loss value. For negative
samples, the smaller the prediction probability y′, the greater the
loss value.

The loss function ofLfuse in this article designs a cross-entropy
loss with class-balanced. Due to inconsistent annotations by
different annotators, we introduce a threshold for loss computa-
tion. For a ground truthY = {yj , j = 1, 2, . . . |num_pixels|},
yj ∈ [0, 1] , we define a constant ε, Y + = {yj , yj > ε} and
Y − = {yj , yj = 0}. Only pixels corresponding to Y + and
Y − are computed in loss function. So, we define Lfuse as

Lfuse(Y
′, Y ) = −α

∑
j∈Y −

log(1− y′j)− θ
∑
j∈Y +

log(y′j) (7)

where Y ′ = {y′j , j = 1, 2, . . . , |num_pixels|}, yj ∈ (0, 1) de-
notes a predicted edge map, α and θ are balanced fac-
tors that balance the edge and nonedge pixels α = μ ·
|Y +|/(|Y +|+ |Y −|), θ = |Y −| /(|Y +|+ |Y −|), μ controls
the weight of positive samples relative to negative samples.

F. Evaluation Index

To quantitatively evaluate the extracted boundary results, we
first need to binarize the results, taking values of 0 and 1,
which requires us to set a threshold for the detection results.
There are two threshold methods. The first is the optimal dataset
scale (ODS), which adopts a fixed threshold for all images
in the dataset to maximize the F-score on the whole dataset.
The second is called the optimal image scale (OIS), which
selects an optimal threshold for each image to maximize the
F-score of the image. We report the F-measure of both ODS and
OIS in our experiments. F-measure is the harmonic average of
accuracy (P) and recall (R), which is expressed by the following
formula:

F =
2 · Precision × Recall

Precision + Recall
. (8)

In addition, we quantitatively evaluate the edge detection
results by average precision (AP) and mean intersection over
Union (MIOU), which is a typical measure of semantic segmen-
tation. It is evaluated by calculating the ratio of the intersection
and Union of the actual value and the predicted value

MIOU =
1

n

n∑
i=1

xii∑n
j=1 xij +

∑n
j=1 xji − xii

(9)

where n denotes the total number of categories (for segmenta-
tion, n= 6), xii denotes the number of correctly classified pixels
in each class, and xij denotes the number of predictions of i to j,
i.e., prediction errors FN. xji denotes the number of predictions
of j to i, i.e., prediction errors FP. (i = 01,…,n; j = 01,…,n).

Fig. 7. Boundary data. (a) and (c) are the images and boundary ground truth
maps of the Potsdam dataset with the size of 512×512, (b) and (d) are the
images and boundary ground truth maps of the Vaihingen dataset with the size
of 1024×1024.

IV. EXPERIMENT AND RESULTS

A. Experimental Data

Experiments are performed on the Potsdam and Vaihingen
2-D dataset of International Society for Photogrammetry and
Remote Sensing (ISPRS) to assess the performance of the pro-
posed method in edge detection and segmentation.

Potsdam dataset: Potsdam data set provides 38 images with
four bands (R, G, B, NIR) from a typical historic city with giant
building blocks, narrow streets, and dense settlement structures
in Germany with a pixel resolution of 6000×6000 and spatial
resolution of 0.05 m. The semantic segmentation’s ground truth
with and without boundaries contains six most common land
cover categories, which are labeled in different colors: imper-
vious surfaces (white); low vegetation (cyan); trees (green);
buildings (blue); cars (yellow); backgrounds (red). We crop each
image into 100 patches with the size of 512×512 for training
and testing. The number of images in the training, validation,
and test data sets is 2400, 600, and 800.

Vaihingen dataset: Vaihingen data set provides 33 images
with three bands (R, G, B) from a relatively small village
with many detached buildings and small multistory buildings
in Germany with a spatial resolution of 0.09 m. The seman-
tic segmentation’s ground truth with and without boundaries
contains six most common land cover categories, which are
labeled in different colors: impervious surfaces (white); low
vegetation (cyan); trees (green); buildings (blue); cars (yellow);
and backgrounds (red). We crop each image into 20 patches with
the size of 1024×1024 for training and testing. The number of
images in the training, validation, and test data sets is 450, 50,
and 160.

Edge ground truth acquisition: Based on the classified ground
truth data with boundary and without boundary, the difference
processing is carried out to obtain the boundary edge map we
need, see Fig. 7.

B. Performance on BIBED

This part mainly discusses the effectiveness of the BIBED-N
network with different channel-spatial attention layers in remote
sensing image boundary extraction, and we believe that too much
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Fig. 8. Boundary detected by BIBED-N on the Potsdam dataset.

TABLE I
NETWORK STRUCTURES OF BIBED WITH DIFFERENT CSAM BLOCKS

or too little CSAM will affect the edge detection results. Here, we
mainly design four BIBED-N networks, and several experiments
are carried out on Potsdam and Vaihingen data sets.

1) Potsdam Dataset: In this section, we conduct experiments
on the Potsdam data set with the BIBED-N network. The detec-
tion results are shown in Fig. 8. When the number of CSAM
blocks is few, such as BIBED-4, due to too few convolution
layers, the edge detection result is poor, and the edge is rough and
easy to break. With the increase in the number of CSAM blocks,

the detection effect is significantly improved, in which BIBED-
13 and BIBED-16 perform well, and the detection of small
targets and edge fractures is improved considerably. Table II
records the performance ability of BIBED-N under the Potsdam
data set, including edge evaluation, parameters, and network
computation. The best performance is denoted in bold, and the
second-best is marked with underlines in the table. As can be
seen from Table II, the increase in the number of CSAM_block
will effectively improve the accuracy of edge detection on
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TABLE II
VALIDITY OF EDGE DETECTION FROM BIBED-N ON POTSDAM DATASET

Fig. 9. Boundary detected by BIBED-N on Vaihingen dataset.

TABLE III
VALIDITYO OF EDGE DETECTION FROM BIBED-N ON VAIHINGEN DATASET

BIBED, although the amount of calculation will also increase.
However, compared with 4 and 8 blocks, 13 blocks significantly
improve, while 16 blocks have no significant improvement in
detection accuracy compared with 13 blocks. On the contrary,
ODI-F and Edge-IOU have decreased, and calculation and time
have also increased significantly. Therefore, BIBED-13 per-
forms best for the Potsdam dataset, with the highest ODS-F
and Edge-IOU of 0.6671 and 0.522, respectively, while OIS-F
is 0.7275, only 0.23% lower compared to BIBED-16.

2) Vaihingen Dataset: In this section, we conduct experi-
ments on the Vaihingen data set with the BIBED-N network.
The detection results are shown in Fig. 9. The statistics of edge
evaluation, parameters, and network computation are shown in
Table III. Like the Potsdam data set, BIBED-13 also showed the

best effect on the Vaihingen data set, with ODS-F of 0.7432 and
Edge-IOU of 0.617.

To sum up, this article finally selects BIBED-13 as the final
leading network for edge detection of remote sensing images,
including subsequent ablation experiments, comparison ex-
periments, and BIBED-Seg semantic segmentation, completed
based on the BIBED-13 network.

Then, we discuss the improvement effect of multilevel feature
fusion results on edge detection. Fig. 10 shows the output
features of the different blocks (Block1-Block5) and the results
of the fusion features from BIBED-13. It can be seen that
the output features gradually become coarse as the number of
convolution layers deepens. The convolutional features of the
output (f) of block5 become blurred, and the intermediate layers
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Fig. 10. Side output is produced by BIBED-13 (b)–(f). (g) Represents the edge feature after fusion of (b)–(f). The upper parts are selected from the Potsdam data
set. The lower half is selected from the Vaihingen data set.

TABLE IV
VALIDITY OF SIDE BRANCH FROM BIBED-13

(b)–(e) contain essential details that do not appear and are very
important. Therefore, we believe it is necessary to fuse such
crucial information, and (g) is the edge feature after fusing
the intermediate output features. It can be seen that the output
features (g) become clear without missing the critical boundary
information and the rich texture information at the beginning,
which is the boundary feature we want to get.

However, we find that the features of the network’s first block
(block1) are too rich and contain too much complex texture
information, and the features of the last block (block5) are
too fuzzy, resulting in excessive edge adhesion. As shown in
Table IV, the ODS-F and Edge-IOU of the output characteristics
of block1 and block5 are much lower than those of other blocks.
These are the factors that affect the accuracy of results from
fusion features. To solve this problem, we put forward two ideas:
Idea 1: Remove the last block structure of the network and build
a four-block network. The results show that boundary extraction
has not been improved, but the accuracy of ODS-F has decreased
by 4.5% on the Potsdam data set and 2.03% on the Vaihingen
data set (see Table V). It shows that the effect of the five-block
structure is better than that of the four-block structure. Although
the output characteristics of the last block are fuzzy, it still plays

TABLE V
VALIDITY OF EDGE DETECTION FROM BIBED-13 BASED ON OUR IDEA

an essential role in the side-loss training and fusion stage. Idea
2: In the feature fusion and side branch training stage, we focus
on the features of block-2,3,4 on the network, especially the
block-34. Therefore, during training, the weights of the side
loss are set as 0.1, 0.2, 0.3, 0.3, and 0.1, respectively. As shown
in Table V, the idea of weighted training and fusion of Idea 2 has
achieved satisfactory results on both data sets. Compared with
the direct summation, its edge evaluation gets the highest score.
On the Potsdam dataset, ODS-F is 66.71%, and Edge-IOU is
0.522, an increase of 2.24% and 0.032, respectively, over the
normal fusion. On the Vaihingen dataset, ODS-F is 74.32%, and
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TABLE VI
VALIDITY OF DIFFERENT ATTENTION MECHANISMS BASED ON BIBED

Edge-IOU is 0.617, an increase of 1.93% and 0.038, respectively,
over the normal fusion.

C. Ablation Study of BIBED

To better understand our model and prove the effectiveness
of each module, we conducted ablation experiments using our
testing dataset.

Effect of different attention mechanisms: To demonstrate the
effectiveness and sophistication of the CSAM mechanism, we
also introduced other attention mechanisms into the BIBED
model for ablation experiments. The selected other attention
mechanisms include nonlocal self-attention [54], DANet dual
attention [55], and criss-cross attention [56]. Table VI shows
the ODS-F of the edge detection results of this group ablation
experiment on the ISPRS dataset, and it can be seen that the
proposed structure combining CSAM in this article is more
suitable for remote sensing boundary detection than several other
attention structures.

Effect of the network components: First, we discuss the perfor-
mance of our proposed method with CSAM (residual structure
with channel and spatial attention mechanisms). The experi-
ments were conducted on BIBED-13, and several experiments
were carried out: edge detection of removing CAM (residual
structure with SAM), removing SAM (residual structure with
CAM), removing CSAM (only residual structure), and pure
convolution (vgg16), respectively. And we evaluate the ODS-F,
OIS-F, and Edge-IOU on the Potsdam and Vaihingen data set.
As shown in Table VII, compared with the pure convolution
network, the residual convolution structure can improve the
edge detection ability of the network, improving the ODS-F
from 0.5774 to 0.6133 and Edge-IOU from 0.433 to 0.467 for
Potsdam data set. For the Vaihingen data set, the ODS-F and
Edge-IOU also increased by 4.68% and 3.7%, respectively. And
the residual structure combining channel and spatial attention
mechanisms allows the network detection capability to be im-
proved even more. The best performance is achieved by using
both attention modules together. Compared with the residual
convolution network, combined with CSAM can improve the
ODS-F from 0.6133 to 0.6671, OIS-F from 0.6487 to 0.7275,
and Edge-IOU from 0.467 to 0.522 for the Potsdam data set. For
the Vaihingen data set, the ODS-F, OIS-F, and Edge-IOU also
increased by 4.68%, 6.89%, and 5.3%, respectively.

Fig. 11 shows the visualization results of the boundary de-
tection with different network components. The top three rows
show the results of the Potsdam data set, and the bottom two
are for the Vaihingen data set. In comparison, the boundary
of ground objects detected by the pure convolution network
based on vgg16 is relatively blurred. There are problems such as

false detection, missing detection, and line discontinuity in the
boundaries of many ground objects (small buildings, trees, and
low vegetation). The network with residual structures alleviates
these problems, but the boundaries of the detected features are
still blurred, and the limits of many different types of parts are
connected. The proposed method, i.e., the residual convolution
network combining CSAM, is best for edge detection on both
data sets. The detected boundaries are relatively straightforward.
The results have the sharpest edges of small targets, sparse veg-
etation, and trees, alleviating the problem of boundary adhesion.

Therefore, it can be concluded that the method proposed in
this article, which introduces both channel attention and spatial
attention in the residual convolution neural network, can effec-
tively improve the edge detection capability of high-resolution
remote sensing images.

Effect of different block nums: Second, we discuss the influ-
ence of different numbers of blocks in the proposed method
on the edge detection accuracy of remote sensing images. The
experiments are conducted with the BIBED-13 network as the
backbone, and the number of network blocks is analyzed from
2 to 6, respectively, while keeping the number of CSAM_block
consistent. The four precisions of ODS-F, OIS-F, AP, and Edge-
IOU with different numbers of blocks are recorded, as shown
in Fig. 12. The line graph on the left is from the Potsdam
dataset, and the right is from Vaihingen. It is found that the
accuracy of edge detection increases with the number of blocks
at the beginning. When the number of blocks in the network is
five, the edge detection accuracy of both data sets reaches the
highest, while when the number of blocks is 6, the accuracy
decreases. It is because the number of blocks is too large. The
edge features extracted will become more blurred, and a lot of
helpful information will be canceled out, leading to a decrease in
accuracy after feature fusion. Therefore, the leading network of
this article selects five blocks as the optimal number of blocks.

D. Comparisons With Other State-of-the-Art (Edge Detection)

In this part, we compare the proposed method with other
edge detection algorithms, including the Canny algorithm [26],
DeepContour [33], HED [34], CED [16], BDCN [39], PiDiNet
[52], and eGAN [53]. The experimental data are completed on
the Potsdam and Vaihingen data set.

Potsdam data set: The comparison of Potsdam is summa-
rized in Table VIII. The best performance is denoted in bold,
and the second-best is marked with underlines in the table.
BIBED-13 obtains the ODS F-Measure of 0.6671, the OIS
F-Measure of 0.7275, the AP of 0.7668, and the Edge-IOU of
0.522, outperforming all other competing methods. Compared
with the VGG16-based HED detection algorithm, the ODS-F
and Edge-IOU of our method improved by 4.9% and 6.7%,
respectively. This is followed by the SEM module-based BDCN
network, as well as PiDiNet and eGAN, with similar detection
results. Take BDCN, for example, whose detection results of
ODS-F and Edge-IOU can reach 0.6446 and 0.513. But both
are lower than our proposed BIBED-13 network. In addition,
the traditional Canny detection algorithm does not perform well
in front of other deep learning models, with an ODS-F of only
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TABLE VII
VALIDITY OF DIFFERENT NETWORK COMPONENTS FROM BIBED-13 (CAM IN THE TABLE REPRESENTS CHANNEL ATTENTION MECHANISM, SAM IN THE TABLE

REPRESENTS SPATIAL ATTENTION MECHANISM)

Fig. 11. Visualizations of edge detection results with or without CSAM (Ablation study). (a)–(c) are selected from the Potsdam data set. (d)–(e) are selected
from the Vaihingen data set.

Fig. 12. Comparison of edge detection accuracy with different numbers of blocks (2 to 6).

0.4097 and an Edge-IOU of only 0.237, the worst performance
among all compared methods. This also indicates that the Canny
algorithm is unsuitable for high-resolution remote sensing im-
ages’ interclass boundary feature extraction.

To form a more intuitive comparison, we visualize the edge
detection results (binarization to 0 and 255) in Fig. 13. The first

three rows are the detection results of the Potsdam dataset. It
can be seen that the Canny algorithm has the worst accuracy
because its detection operator is more inclined to image edge
calculation than boundary extraction, and its detection results
have more false edges. And we debugged a variety of minimum
and maximum thresholds, which cannot solve this problem well.
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TABLE VIII
VALIDITY OF BOUNDARY DETECTION RESULTS IN DIFFERENT METHODS ON THE POTSDAM DATASET

Fig. 13. Visualizations of edge detection results output by our proposed BIBED and other baseline methods for comparison. (a)–(c) are selected from the Potsdam
data set. (d)–(f) are selected from the Vaihingen data set.

If the threshold is too large, then too few edges are detected,
resulting in the boundary not being detected either. Our pro-
posed BIBED-13 network detects the boundary better than other
deep learning models, and the results are closer to the ground
truth boundary map. It shows better learning and expression
ability in boundary detection of special features (small targets
and nonregular features), and the continuity of the boundary is
improved.

Vaihingen data set: The comparison of Vaihingen is summa-
rized in Table IX. The best performance is denoted in bold, and

the second-best is marked with underlines in the table. BIBED-
13 obtains the ODS F-Measure of 0.7432, the OIS F-Measure
of 0.7868, the AP of 0.8034, and the Edge-IOU of 0.522, which
also outperforms all other competing methods. Compared to
HED, the four accuracies are 4.51%, 7.57%, 7.62%, and 3.8%
higher, respectively. Compared to the second-best performer,
PiDiNet, the four accuracies improved by 0.96%, 2.31%, 2.11%,
and 0.6%, respectively. And the Canny algorithm still performs
the worst. As shown in Fig. 10, the bottom three rows are
the detection results of the Vaihingen dataset. Compared to
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TABLE IX
VALIDITY OF BOUNDARY DETECTION WITH DIFFERENT METHODS ON THE VAIHINGEN DATASET

TABLE X
VALIDITY OF SEMANTIC SEGMENTATION RESULTS BY DIFFERENT BIBED-SEG MODEL WITH DIFFERENT SEGMENTATION NETWORKS

the Potsdam data set, this data set has more buildings and is
heavily wooded with more prominent boundaries, so the overall
detection is better.

E. Performance of BIBED-Seg Net

This part mainly discusses the influence of boundary features
on pixel-level semantic segmentation results for high-resolution
remote sensing images by our proposed method BIBED-Seg
Net. To verify the validity and reliability of our proposed method,
we conducted several experiments on the Potsdam, Vaihingen,
and WHDLD datasets. WHDLD contains 4940 RGB images
in 256×256 captured by Gaofen 1 Satellite and ZY-3 Satellite
over Wuhan urban area. By image fusion and resampling, the
resolution of the images is to reach 2 m/pixel. The images are
labeled with six classes, i.e., bare soil, building, pavement, veg-
etation, road, and water. The training datasets for the semantic
segmentation experiments in this article are all effectively data-
augmented and image-enhanced, and the experimental results
are more stable.

First, we conduct trial experiments on several advanced se-
mantic segmentation models, namely, FCN [40], UNet [41],
and Deeplab V3+ [42]. These models are combined with the
BIBED network proposed in this article, thus forming the new
boundary-based semantic segmentation networks BIBED-FCN,
BIBED-UNet, and BIBED-V3+. We visualized and compared
the classification results of the BIBED-Seg network with the
original semantic segmentation network, as shown in Fig. 14. It
can be seen that the semantic segmentation results of the network
combined with BIBED are significantly improved compared
with the semantic segmentation results without edge informa-
tion. The interclass boundaries are more accurate and precise,
and the number of misclassified pixels and noise points within

TABLE XI
VALIDITY OF SEMANTIC SEGMENTATION RESULTS IN DIFFERENT METHODS

EDGE-SEG ON POTSDAM DATASET

classes is significantly reduced. In particular, the classification
results are more accurate for those irregular targets, such as trees,
low vegetation, and rounded buildings.

The accuracy statistics of the splitting results are shown in
Table X. The best performance is denoted in bold, and the results
of BIBED-Seg Net are marked with underlines in the table.
When combined with valid boundary information, 1) compared
to FCN, BIBED-FCN improved the overall accuracy of seg-
mentation results by 5.7% and MIOU by 7.2% for the Potsdam
dataset. The OA improved by 7.6%, and MIOU improved by
7.7% for the Vaihingen dataset. The OA improved by 4.9%, and
MIOU improved by 7.9% for the WHDLD dataset. 2) Compared
to UNet, BIBED-UNet improved the OA of segmentation results
by 5.8% and MIOU by 7.3% for the Potsdam dataset. The OA
improved by 4.7%, and MIOU improved by 7.9% for the Vaihin-
gen dataset. The OA improved by 5.1%, and MIOU improved
by 9.1% for the WHDLD dataset. 3) Compared to Deeplabv3+,
BIBED-v3+ improved the OA of segmentation results by 4.7%
and MIOU by 5.7% for the Potsdam dataset. For the Vaihingen
dataset, the OA improved by 4.0%, and MIOU improved by
5.6%. For the WHDLD dataset, the OA improved by 5.2%, and
MIOU improved by 9.5%. It can be seen that BIBED-Seg can
significantly improve the accuracy of semantic segmentation of
Seg networks, especially IOU. BIBED-v3+ performs the best
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Fig. 14. Visualizations of semantic segmentation results output by different BIBED-Seg models with varying networks of segmentation. The top three columns
are selected from the Potsdam data set. Columns 3 to 5 are selected from the Vaihingen data set. The last two columns are selected from the WHDLD dataset.

among all methods, with OA accuracy of 90.2%, 87.7%, and
81.5% for the two datasets, respectively.

Second, to explore the effect of different boundary features
on the semantic segmentation results, we conducted the fol-
lowing comparison experiments based on the Potsdam data
set, which used Deeplabv3+ as the backbone: Canny-Seg,
HED-Seg, BDCN-Seg, and BIBED-Seg (ours). As shown in
Fig. 15, compared with the traditional Canny algorithm and
the recent HED, BDCN, the BIBED model proposed by this
article performs best in improving the semantic segmentation
effect of high-resolution remote sensing. In short, the semantic
segmentation results based on the BIBED edge detection method
proposed in this article are closer to the ground truth map.

The quantitative evaluation of the above segmentation re-
sults is shown in Table XI. Semantic segmentation results by

BIBED-Seg obtain the OA of 90.2%, the Kappa of 89.8%, and
the MIOU of 76.0%. 3.8%, 5.0%, and 5.3% higher than results
by HED-Seg; 1.7%, 2.5%, and 2.4% higher than BDCN-Seg.
The semantic segmentation result combining edge information
obtained by the Canny algorithm is the worst. OA is only
65.6%. It shows that the edge information detected by the Canny
algorithm is mixed and disorderly, which is useless for the
semantic segmentation task of high-resolution remote sensing
images, which will only interfere with the model’s training and
reduce the segmentation accuracy.

Finally, we also explored the enhancement effects of each
category. Table XII and Fig. 16 show the IOU and IOU improve-
ment of the segmentation results of each category in the Potsdam,
Vaihingen, and WHDLD data sets. Compared with the semantic
segmentation results without edge features, the IOU of each class
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Fig. 15. Semantic segmentation results by BIBED-v3+ with different edge detection methods (including comparative experiments: The semantic segmentation
results with traditional Canny, the semantic segmentation results with HED, the semantic segmentation results with BDCN, and with BIBED).

TABLE XII
IOU IMPROVEMENT OF SEMANTIC SEGMENTATION RESULTS BY BIBED-V3+ COMPARED WITH DEEPLABV3+

TABLE XIII
VALIDITY OF RESULTS IN DIFFERENT EDGE-AWARE SEMANTIC SEGMENTATION METHODS

of the semantic segmentation results guided by BIBED has been
significantly improved, among which the promotion effect of
low vegetation and trees is the most significant, with an increase
of 9.1% and 8.4% in Potsdam data set, and increased by 7.9%
and 8.7% in Vaihingen data set. For the WHDLD dataset, the
improvement in IOU was more pronounced for all categories,
with the six categories improving by 10.8%, 12.7%, 12.5%,
6.1%, 8.9%, and 5.7%, respectively.

Finally, to further demonstrate the advancedness of the pro-
posed method in this article, we conducted a comparison exper-
iment between BIBED-Seg and several advanced edge-aware

deep learning methods on two remote sensing datasets, as
shown in Table XIII. All methods were done on the same
training and test sets, and it was found that the BIBED-
Seg model proposed in this article achieved the best accu-
racy evaluation results, with the highest scores in both overall
pixel accuracy (OA) and intersection over Union (IOU). Re-
cent methods that focus on remote sensing segmentation with
joint training of multiple features (such as EANet, FusionNet,
and GMENet) also have good results. And the postprocessing
edge enhancement methods based on CRF have been slightly
behind.
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Fig. 16. IOU improvement of semantic segmentation results in different objects by BIBED-Seg (compared with results without edge). (a) From the Potsdam data
set. (b) From the Vaihingen data set.

V. DISCUSSION

The semantic segmentation based on boundary information
proposed in this article can lead to more accurate and stable
results obtained by advanced semantic segmentation networks,
which are mainly influenced by the two leading networks in the
model, the edge detection network and the semantic segmenta-
tion network. The better the learning and expression ability of
the two networks, then the better the overall segmentation result.
Through experiments, we can find that combining different edge
detection networks and semantic segmentation networks yields
very different semantic segmentation results. In the case where
the latter is already mature, this is the reason why we have
devoted ourselves to the study of improving the edge detection
capability.

The BIBED edge detection network proposed in this article
is mainly built with the residual structure due to the powerful
learning ability of residual networks in recent years [43], [44].
In addition, the improvement of the BIBED network boundary
detection capability is also attributed to the applicability of
the CSAM on high-resolution remote sensing images and the
balance of positive and negative samples in unbalanced binary
classification and the mining of complex samples through the
loss function.

However, edge detection, especially the detection of interclass
boundaries, remains a significant challenge, and our method,
although greatly improved, is still inadequate in terms of bound-
ary continuity and adhesion. In the future, we will continue our
research in boundary detection and improve these problems one
by one.

VI. CONCLUSION

This article proposes BIBED, a block-in-block convolution
residual block-based edge detection method for high-resolution
remote sensing images. To reduce the amount of calculation and
consider the edge features at multiple scales, we built a block-
in-block residual network structure and designed a multiscale
feature weight fusion loss function. To improve high-resolution
remote sensing images’ boundary positioning and detection
accuracy, we introduce the channel and spatial attention modules

into the residual structure to focus on the images’ band and
spatial dimension. Our method compares favorably with over
five edge detection methods on ISPRS Potsdam and Vaihingen
data sets and has shown the best performance.

Based on this, we propose the BIBED-Seg model, a two-stage
semantic segmentation model in which edges are extracted first
and then segmented. Various semantic segmentation networks
are compared on three high-resolution aerial remote sensing
data sets. It has been discovered that the method may optimize
the bounds of segmentation results and enhance segmentation
accuracy greatly, particularly in the intersection over Union.

This also supports our hypothesis that using precise and
effective boundary information to drive remote sensing image
segmentation will make it easier. Of course, this presents more
severe issues for edge detection methods and techniques, and
there is still a long way to go.
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