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Assessment of Spatiotemporal Characteristic
of Droughts Using In Situ and Remote

Sensing-Based Drought Indices
Sepideh Jalayer , Alireza Sharifi , Dariush Abbasi-Moghadam , Aqil Tariq , and Shujing Qin

Abstract—Drought has been identified as one of the signifi-
cant complicated natural disasters exacerbated by land degra-
dation and climate change. Hence, monitoring drought and
evaluating its spatiotemporal dynamics are essential to man-
age regional drought conditions and protecting the natural en-
vironment. In this study, various single remote sensing-based
drought indices including soil moisture condition index (SMCI),
precipitation condition index (PCI), temperature condition in-
dex (TCI), and vegetation condition index (VCI) and combined
RS-based drought Indices including optimized meteorological
drought index (OMDI) and synthesized drought index (SDI) have
been used to investigate the spatiotemporal variations of me-
teorological and agricultural droughts between 2000 and 2021
in Iran. The in situ drought indices, including the standard-
ized precipitation index (SPI) and standardized precipitation
evapotranspiration index (SPEI) series of 1, 3, 6, 12, and 24 months
were utilized to verify remote sensing-based drought indices and
evaluate their applicability for analyzing drought conditions. The
results indicated that the correlation coefficients of the in situ
drought indices with the combined drought indices are higher
than the RS-based single drought indexes. Generally, single-factor
drought indexes, including VCI, TCI, PCI, and SMCI, have specific
characteristics. The PCI and SMCI have an acceptable correlation
with the short-term SPI and SPEI and are more applicable to
monitoring short-term drought conditions. Further, the TCI has
better performance in monitoring long-term drought conditions
in Iran. This research concluded that the central, eastern, and
southeastern parts of Iran mainly were experiencing exceptional
and extreme drought conditions as the worst agricultural and
meteorological drought conditions observed in the years 2008 and
2021 in the region during the last 20 years. The results also showed
that, in 2019 and 2020, most areas of Iran had higher OMDI and
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SDI values and the severity of the drought has decreased in these
years. Particularly, this research provides an essential reference
for reasonably choosing RS-based drought indices for monitoring
meteorological and agricultural droughts from a local to global
scale.

Index Terms—Agricultural drought, combined drought index,
optimized meteorological drought index (OMDI), standardized
precipitation evapotranspiration index (SPEI), synthesized
drought index (SDI).

I. INTRODUCTION

DROUGHT is expressed as prolonged water scarcity,
whether atmospheric (below-normal precipitation), or

surface and subsurface water, which can last for months or
years. Drought leads to soil retrogression and degradation, water
scarcity, desertification, vegetation destruction, sandstorm,
wildfire, and other disaster phenomena [1], [2], [3]. Drought
ranks first among different types of hazards due to climate
change [4]. Changes in rainfall patterns and temperature are the
critical determinant elements of drought, causing significant
losses to agriculture and affecting crop production [5], [6].
Therefore, monitoring and assessment of drought and analyzing
its spatiotemporal dynamics on multiple time scales are essential
to protect the natural environment, restore pastures and balance
land and water resources against regional drought conditions [7].
One of the most manageable steps we can take to help mitigate
the impacts of drought is sustainable water management as well
as, using remote sensing datasets to assess drought-related
variables and categorize drought severity across large
regions. Drought is often grouped into four basic categories:
meteorological, hydrological, agricultural, and socio-economic
[8], [9], [10], [11]. Meteorological drought refers to the degree
of dryness or lack of precipitation and the length of the dry
period. Agricultural drought relates various meteorological
drought characteristics to agricultural effects, focusing on
deficiency in rainfall, differences between the actual (ETa) and
the potential evapotranspiration (PET), and lack of soil moisture
(SM) [12]. Hydrological drought is defined as the lack of surface
and underground water supplies. It is measurable by evaluating
stream flow, snowpack, and lake and groundwater levels. To
understand the association between agricultural and meteo-
rological droughts, it is necessary to examine the correlation
between vegetation indices and climate variability [5], [13], [14],
[15], [16].
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Traditional procedures for monitoring drought conditions are
based on ground measurements of hydro-climatic variables,
including rainfall, temperature, relative humidity, and soil water
content. For instance, the palmer drought severity index (PDSI)
utilizes rainfall and temperature, the standardized precipitation
index (SPI) uses rainfall regimes, crop moisture index integrates
SM, rainfall, and temperature, standardized anomaly index uses
rainfall variability, and soil moisture drought index incorporates
weekly SM and evapotranspiration values [17], [18], [19], [20],
[21]. However, the number and uneven spatial distribution of
available stations across the landscape impact the reliability
of such interpolation. As well as, the implementation of the
observation stations is often time-consuming, expensive, and can
fail for many reasons. Therefore, remote sensing data, because
of its continuous and comprehensive datasets from precipitation,
temperature, SM, PET and ETa, and vegetation growth, can be
employed to analyze drought spatiality during a long period of
time. RS datasets have been utilized to assess drought-related
variables and categorize drought severity across large regions
[22]. Satellite precipitation products (SPPs) are the most im-
portant sources of data for analyzing the spatial distribution of
precipitation and seasonal drought monitoring. There are various
SPPs available, such as the Climate Prediction Center morphing
method, Tropical Rainfall Measuring Mission (TRMM), and
Global Satellite Mapping of Precipitation to produce drought
indices [23], [24], [25].

A number of distinct drought indices derived from RS-based
datasets have been developed to exhibit drought conditions. Pei
et al. [26] proposed the vegetation condition index (VCI) formed
on the relative normalized difference vegetation index (NDVI)
change considering the minimum historical NDVI value. The
VCI has been evaluated to monitor water stress conditions and
assess the intensity, duration, and effect of vegetation drought.
Pei et al. also, by normalizing land surface temperature (LST)
values to the maximum range of a particular area, developed the
temperature condition index (TCI) to assess stress on vegetation
as a consequence of temperatures and severe wetness. The
TCI and VCI have been used to evaluate thermal conditions
and cumulative humidity over a range of vegetation types and
determine the spatiotemporal variations of drought across the
world [27], [28]. The soil moisture condition index (SMCI)
illustrates SM condition considering the historical values, and
the SMCI value range changes between 0 and 100, where the
value close to 0 indicates extreme SM stress, while values
nearby 100 describe the extremely wet condition. The PCI is a
meteorological drought index to evaluate the concentration and
variability of rainfall in time, which ranges from 0 to 100 based
on variations in rainfall from highly unfavorable to optimal [29],
[30], [31], [32].

Different approaches have been employed to detect drought
conditions for various underlying surfaces and monitor drought
processes. Kloos et al. [33] applied the drought indexes, includ-
ing TCI, VCI, and vegetation health index (VHI), and analyzed
correlations between NDVI and LST from 2001 to 2020. Jiang
et al. [34] utilized the Pearson correlation analysis to evaluate the
relationships among climatic factors, vegetation conditions, and
drought. In addition, they used a regression model to analyze
the impacts of climatic factors on vegetation coverage based

on the standardized evapotranspiration deficit index, NDVI, and
gridded meteorological dataset in China [34]. Zeng et al. [6]
evaluated the sc-PDSI and the standardized precipitation evap-
otranspiration index (SPEI) as drought indices to enhance the
drought monitoring capability of VHI. Almeida-Ñauñay et al.
[35] calculated meteorological drought indices, including SPI
and SPEI, and agriculture drought indexes, including VHI and
standardized VHI (SVHI), to optimize the correlation between
both drought types. Pei et al. [36] analyzed NDVI–climate
relationship at the 30-day time scale. They assessed temporal
variations in NDVI and climate variables and discovered the
correlation coefficient between them. Wang et al. evaluated the
spatiotemporal variations of LST, NDVI, and the relationship
between them was examined in China over a period of 16 years.
In addition, eight scenarios have been determined to investigate
the driving forces in vegetation dynamics [37]. All these studies
have utilized single drought indices to detect meteorological and
agricultural droughts and analyzed the correlation between both
types of droughts.

Accordingly, in this research, combined drought indexes have
been employed to investigate the spatiotemporal variations of
meteorological and agricultural droughts and analyze the asso-
ciation between them. This study has been conducted to specify
the spatiotemporal characteristics of meteorological drought on
the annual scales over the period 2000–2021 in a large study
area using the optimized meteorological drought index (OMDI),
by combining the PCI, SMCI, and TCI through the constrained
optimization procedure which is a new multiple remote sensing-
based drought index especially using this method. Furthermore,
this study attempts to determine the spatiotemporal agricultural
drought patterns in a vast country (Iran) by incorporating the
single drought indices, including VCI, TCI, and PCI, through
principle component analysis (PCA), which has better results
than other single-based indices such as NDVI, VHI, standardized
vegetation index, etc., that have been used in previous research
for the vast study areas. In addition, in this study, all remote
sensing-based indices have been evaluated through correlation
coefficient analysis with in situ-based meteorological indices,
including the SPI and SPEI series of 1, 3, 6, 12, and 24 months
which contain a long period from 2000 to 2021. Overall, this
work provides a basic reference for reasonably choosing RS-
based drought indexes for large-scale drought monitoring to
obtain a better understanding of the environmental conditions.

II. MATERIALS AND METHODS

A. Study Area

As a country in the Middle East, Iran covers an area of 1.62
million km2. Geographically, Iran is located in West Asia and
borders the Caspian Sea, Persian Gulf, and Gulf of Oman. Iran is
a vast country and extends between 25° 03′ 0′′ N to 39° 47′ 0′′ N
latitudes and 44° 05′ 0′′ E to 63° 18′ 0′′ E longitudes (see Fig. 1).
The minimum and maximum heights of the country are −147
and 5595 m, respectively. The mean annual rainfall is about 250
mm, which means the average precipitation in Iran is less than
one-third of the average rainfall in the world. The temperature
range is from −36 to 60 centigrade. Iran has different types of
climates, generally an arid and semi-arid country.
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Fig. 1. (a) Location of Iran on the world map. (b) Iran map along with the distribution of meteorological stations and elevation (m).

B. Remote Sensing Datasets

Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) is a 30+ year quasi-global daily rainfall dataset
[38]. CHIRPS provides 0.05° resolution satellite imagery, which
compared with other precipitation datasets, including TRMM
(0.25-degree spatial resolution) and Global Precipitation Mea-
surement (0.1° spatial resolution), has a higher spatial resolution.
We obtained the daily CHIRPS data through the Google Earth
Engine (GEE) platform to create gridded rainfall time series

and produce a precipitation condition index (PCI) for each year
from 2000 to 2021. MOD11A2.061 Terra LST and Emissivity
8-Day Global 1 km product was utilized to produce the TCI
for the time period 2000–2021. NDVI data were acquired from
the MOD13A1 V6.1 product that presents a Vegetation Index
value at a per-pixel basis with 500 m spatial resolution. The
MODIS NDVI product was calculated from atmospherically
corrected bidirectional surface reflectance that has been masked
for water, clouds, heavy aerosols, and cloud shadows through
the GEE platform during the period 2000–2021. The FLDAS
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TABLE I
SATELLITE-BASED PRODUCTS INCLUDING CHIRPS DATA, LST, NDVI, AND SM

(Famine Early Warning Systems Network (FEWS NET) Land
Data Assimilation System) Noah Land Surface Model dataset
with 0.1°× 0.1° spatial resolution in the GEE platform was
used to obtain monthly SM data for the years 2000–2021.
Satellite-based products, including CHIRPS data, LST, NDVI,
and SM have been utilized as listed in Table I.

C. Ground-Based Datasets

In this research, the monthly average precipitation, the
monthly minimum, and maximum temperatures, and evapotran-
spiration data from 2000 to 2021 were collected from the Iran
Meteorological Organization to compute the SPI and SPEI series
of 1, 3, 6, 12, and 24 months for the period 2000–2021 to specify
the weights of the OMDI. As well as, in situ meteorological
indices, including the SPI and SPEI series of 1, 3, 6, 12, and
24 months were calculated in the RStudio software to verify RS
drought indices and evaluate their applicability for analyzing
drought conditions over large regions through the coefficient
of determination between RS-based and in situ-based drought
indexes.

D. Methodology

First, the Spatial Analyst extension has been utilized to subset
the GEE datasets, which were in TIFF format to the region
of interest in ArcGIS 10.7.1 software. Then, upscaling and
downscaling of all images to 1 km was conducted by the nearest
neighbor resampling. Afterward, drought indexes were calcu-
lated and integrated for comprehensive drought monitoring.
The conventional drought indices, including VCI, TCI, PCI,
SMCI, synthesized drought index (SDI), and OMDI can be
classified into two types. The first one contains a single-factor
index, including VCI, TCI, PCI, and SMCI, that is derived from
NDVI, LST, precipitation, and SM, respectively. The second
type comprises a weighted combination of multiple single-factor
indices, and examples of this type are the SDI and OMDI.

In this study, the constrained optimization procedure was
employed to specify the optimal weights for the MODIS-derived
TCI, CHIRPS-derived PCI, and FLDAS-derived SMCI based

on the SPI and SPEI to calculate the OMDI over the last
two decades. The OMDI values were calculated based on the
monthly scales during the period 2000–2021 to evaluate the
spatiotemporal meteorological drought patterns in Iran. In ad-
dition, the spatiotemporal variability of the agricultural drought
was analyzed in a Middle Eastern Country (Iran) based on the
monthly scales from 2000 to 2021 through the SDI. The SDI is
an agricultural drought index computed from multiple RS-based
datasets, including precipitation from the CHIRPS data and LST
and vegetation index from the MODIS Data. Accordingly, the
temporal trends of VCI, TCI, PCI, SMCI, SDI, and OMDI on
the monthly scales over the period 2000–2021 were produced.
Finally, the average of all monthly maps within each year for
a specific index was applied in ArcGIS to produce the spatial
patterns of VCI, TCI, PCI, SMCI, SDI, and OMDI based on
annual scales from 2000 to 2021. The research methodological
framework is presented in Fig. 2.

1) Standardized Precipitation Index: In situ precipitation
data is the only input parameter to compute the SPIi over
any time scale which provides early warning of drought. The
SPIi is a meteorological drought index to analyze the rainfall
deficit at different timescales and assess drought conditions.
Therefore, the SPI series of 1, 3, 6, 12, and 24 months are based
on the probability of precipitation accumulation on a range of
timescales. The SPIi calculated in this study is based on monthly
precipitation data which fits gamma distribution. Equation (1)
is utilized to compute the probability density function of the
gamma distribution [39]

f(x)i =
1

βαΓ (α)
xα−1e

−x
β (1)

Γ(α)i =

∫ ∞

0

yα−1e−ydy (2)

where Γ(α)i is the gamma function as (2), i: based on the
monthly scales, αi > 0 and βi > 0: the shape and scale param-
eters, x > 0: the cumulative precipitation. To fit the distribution
parameters, the maximum likelihood solutions are utilized to
optimally estimate αi and βi from the sample data using (3)
and (4), respectively. As well as, x̄ is average rainfall and Ai is
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Fig. 2. Methodological framework for comprehensive drought assessment.

calculated using (5) where n is the number of precipitation series

αi =
x̄

β
(3)

βi =
1

4A

(
1 +

√
1 +

4A

3

)
(4)

Ai = ln (x̄)− n−1
∞∑

n=1

(ln (x)) . (5)

The cumulative probability for a given month then can be
obtained by the following equation:

F(x)i =

∫ x

0

f (x) dx =
1

βαΓ (α)

∫ x

0

xα−1e
−x
β . (6)

The SPI can be calculated as follows:

SPIi = S
t− (C1 +C2t) + C0

[(d3t + d2) t + d1] t + 1
(7)

ti =

√
ln

1

f(x)2
(8)

where F(x)i is Γ function, S is the positive and negative coef-
ficient of cumulative probability distribution, when G(x) > 0.5,

S= 1 and when G(x)≤ 0.5, S=−1.C0 = 2.5155,C1 = 0.8028,
C2 = 0.0103, d1 = 1.4327, d2 = 0.1892, d3 = 0.0013 [39].

2) Standardized Precipitation Evapotranspiration Index:
The computation of the SPEIi is based on precipitation (Pi) and
potential evapotranspiration (PETi). In this research, the PET
was computed in R software which required monthly average
precipitation, the monthly minimum and maximum tempera-
tures, and latitude (Iran is located at latitude 32.5) as inputs.
The SPEIi evaluates the impact of PET on drought duration and
severity which is more suitable for the detection, assessment,
and observation of droughts in any climatic zone in the world.
The SPEIi applies the monthly difference betweenPi and PETi.
Equation (9) is utilized to compute the PETi [40]

PETi = 16 ∗Ki ∗
(
10Ti

hi

)m

(9)

mi = 6.75 ∗ 10−7 ∗ h3i − 7.71∗10−5∗h2i + 1.79∗10−2

(10)

hi =

(
Ti

5

)1.514

(11)

Ki =

(
Li

12

)
∗
(
Ni

30

)
(12)
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where T is the average daily temperature (degrees Celsius), N
and L are the number of days and the average day length of the
month, h is heat index that depends on the average temperature
of 12 months, αi, βi, and γi are scale, shape, and origin param-
eters. The m is a coefficient based on h (10). For h and k, the
respective calculation formula can be defined as (11) and (12).
The difference between Pi and PETi for the month i is obtained
using (13). The probability density function of a three-parameter
Log-logistic distributed variable has been defined as (14). The
probability distribution function of Di based on the Log-logistic
distribution is then given by (15). The SPEIi can be computed
using (16), where W = -2∗ln (Pi), and C0, C1, C2, D1, D2,
and D3 are constant weights [41]

Di = Pi − PETi (13)

f(x)i =
β

α

(
x− γ

α

)β−1

∗
[(

1 +

(
x− γ

α

)β
)]−2

(14)

F (x)i =

[(
1 +

(
a

x− γ

)β
)]−1

(15)

SPEIi = W − C0 +C1W+C2W
2

1 + D1W+D2W2 +D3W3
. (16)

3) Vegetation Condition Index: The VCIi is utilized for the
evaluation of vegetation in drought conditions affecting agricul-
ture. The VCIi compares the NDVIi data for a given period with
the highest and lowest values of the NDVI data for the whole
period. Equation (17) is used to calculate the VCIi. The NDVIi
is the smoothed 16-day NDVIi, NDVI min and NDVI max defined
as minimum and maximum values of NDVIi for all pixels and
periods, respectively [42], and i is based on the monthly scales

VCIi =
NDVIi − NDVImin

NDVImax − NDVImin
∗ 100. (17)

4) Temperature Condition Index: The TCIi is a RS-based
thermal stress indicator to assess the water stress on vegetation
due to higher soil surface temperatures. Where the LST i is the
smoothed 8-day land surface temperature, LST max and LST min

defined as maximum and minimum LSTi value in multiyear,
and i is based on the monthly scales. The TCIi for each pixel
and period is calculated using (18) [33], [43], [44], [45]

TCIi =
LSTmax − LSTi

LSTmax − LSTmin
∗ 100. (18)

5) Soil Moisture Condition Index: The SMCIi is a normal-
ization of SM values which ranges from 0 to 100 corresponding
to alterations in SM from very dry or unfavorable status to very
wet or optimum conditions. The SMCIi for each pixel and period
is calculated using (19). Where the SMi is the soil moisture data
(FLDAS) (in soil layer of 0–10 cm), SM max and SM min are the
corresponding multiyear absolute maximum and minimum, and
i is based on the monthly scales [42]

SMCIi =
SMi − SMmin

SMmax − SMmin
∗ 100. (19)

6) Precipitation Condition Index: The PCIi which normal-
ized by the CHIRPS data is described for the recognition of

the deficit in precipitation during a period from climate signal.
Equation (20) is used to calculate the PCIi. Where CHIRPS,
CHIRPSmax, and CHIRPSmin are the pixel values of rainfall,
maximum and minimum of it, respectively, and i is based on the
monthly scales. The PCI also ranges from 0 to 100 corresponding
to variations in rainfall from highly unfavorable (close to 0) to
optimal (close to 100) [46], [47]

PCIi =
CHIRPS − CHIRPSmin

CHIRPSmax − CHIRPSmin
∗ 100. (20)

7) Synthesized Drought Index: The PCA is a dimensionality-
reduction procedure that is mostly employed to reduce the
dimensionality of large data sets. The SDIi is defined as an
agricultural drought indicator to monitor the spatiotemporal
characteristics of agricultural drought, which is derived from
weighted combinations of multiple single-factor indexes includ-
ing VCIi, TCIi, and PCIi. The PCA was employed in ENVI
software to obtain the principal information from VCIi, TCIi,
and PCIi and discard the correlated signal from them. The
first principal component (PCI) includes more than 75% of the
uncorrelated information from the single drought indices. The
SDIi for each pixel and period is calculated using (21) [48],
[49]. Therefore, in this study the SDIi is calculated based on
the monthly scales from 2000 to 2021. For instance, the average
weights of the VCIi, TCIi, and PCIi of SDIi obtained as 0.22,
0.21, and 0.57 for the year 2021

SDIi = α ∗ VCIi + β ∗ TCIi + γ ∗ PCIi (21)

where α + β + γ = 1.
8) Optimized Meteorological Drought Index: The OMDIi is

defined as a multisensor microwave RS-based drought index to
analyze the spatiotemporal trends of meteorological drought,
which is an integration of multiple single-factor indices in-
cluding TCIi, PCIi, and SMCIi. This index was developed
to enhance the meteorological drought observation ability of
satellite remote sensing. The constrained optimization proce-
dure is employed to specify the optimal weights (αi and βi)
of RS-based variables; hence, multiple single-factor indices
have been combined through maximizing the correlation with
in situ drought indexes including SPIi and SPEIi. Overall, this
procedure is utilized to integrate the TCIi, PCIi, and SMCIi,
using the SPIi and SPEIi as reference datasets [50], [51], [52],
[53]. The optimization weight procedure is expressed by the
following formulas:

f(x, y)i = max

(
E [(X− ux) ∗ (Y − uy)]

σx ∗ σy (22)

Xi =

{
SPIi

SPEIi
(23)

Yi = αi ∗ TCIi + βi ∗ PCIi + (1− αi − βi) ∗ SMCIi
(24)

where the constraints:

0 < αi < 1, 0 < βi < 1. (25)

In (22), f(x, y) indicates the situation with the highest cor-
relation between Xi and Yi, where Xi is the SPIi and SPEIi,
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TABLE II
DROUGHT INDICES CLASSIFICATION SCHEME FOR VCI, TCI, PCI, SMCI, SDI, AND OMDI [56]

and Y is the OMDIi. σx and σy are standard deviations, ux
and uy are mean values of Xi and Yi. In general, this theory
has been employed to examine the correlation of the each single
drought index with the SPIi and SPEIi of the specific month and
the OMDIi is calculated for each month from 2000 to 2021. In
this study, a nonlinear programming was employed in MATLAB
using Optimization Toolbox to maximize the nonlinear objective
function as shown in (22) with subject to bound constraints (0<
αi < 1, 0 < βi < 1) and obtain optimal weights of OMDI. For
instance, the average optimal weights of the TCIi, PCIi, and
SMCIi, obtained as 0.18, 0.56, and 0.26 for the year 2021. The
drought indices applied in this research were classified based
on the categories used in Table II. The values of each of these
indices vary from 0 to 100, where values close to 100 illustrate
no drought condition and near-zero values indicate exceptional
drought conditions for these indices. Hence, for meteorological
and agricultural droughts monitoring, OMDI and SDI values
were analyzed, and a lower value (near-zero) represents a more
severe drought.

E. Data Validation

In this study, the Pearson correlation coefficient (r) has been
utilized to investigate the relationships and validity of different
indexes [11]. Equation (26) shows the correlation coefficients
among the variables. Where “r” is a correlation coefficient that
varies between −1 and 1, and n is the total number of sample
sequences which is equal to 12 months of all years from 2000
to 2021 for 2500 same spatial sample points extracted from the
image of each specific index in Arc GIS software. The xi and
yi represent values of the x-variable and values of the y-variable
in a sample, respectively. Then, n is the length of the datasets. x̄
and ȳ are the average values of xi and yi, respectively [54]

r =

∑n
i=1(xi − x̄) ∗ (yi − ȳ)√(∑n

i=1 (xi − x̄)2
)
∗
(∑n

i=1 (yi − ȳ)2
) . (26)

III. RESULTS AND DISCUSSION

The monthly total precipitation, the monthly minimum and
maximum temperature data during the period 2000–2021 were
collected at the 101 meteorological stations of Iran Meteorolog-
ical Organization to calculate the SPI and SPEI series of 1, 3,
6, 12, and 24 months as shown in Fig. 3. The SPI reflects the
anomalies (standard deviations from the mean) of the observed

total precipitation for a certain accumulation period. When the
SPI is calculated for short-term accumulation (e.g., SPI-1 to
SPI-6), it can be utilized as an indicator to assess immediate
effects including SM deficits and monitor agricultural drought
conditions. While, the SPI is calculated for long-term accumu-
lation (e.g., SPI-12 to SPI-48), it can be utilized to monitor
streamflow, reservoir, and groundwater storage. The SPI and
SPEI values more negative than −1 represent times of drought
and drier periods, e.g., the SPI and SPEI values less than −2
indicate extreme drought conditions. The SPI and SPEI values
between −1 and 1 illustrate near-normal condition, and the
values higher than 1 represent wet conditions. For all time scales
of both indices (SPI and SPEI), the main wet (2019 and 2020)
periods show up in both time series. The differences between
the SPIi and SPEIi for any time scale indicate an increase in
the duration and magnitude of meteorological droughts in the
SPEI series, which is associated with the temperature increase
and could not be recognized using the SPI [39].

A. Spatial Patterns of Multiple Single-Factor Indices
Including VCIi, TCIi, PCIi, and SMCIi

According to the variant ranges of vegetation indices, the in-
tensity, affected areas, and duration of droughts can be assessed.
The values of VHIs such as VCIi and TCIi change from 0
(an unfavorable condition) to 100 (an optimum condition), with
normal conditions within 50–60 based on the average cumula-
tive moisture and temperature conditions. Low values represent
extreme moisture stress, thermal, or vegetation condition. For
instance, VCIi < 50 represents moisture stress, 50 < VCIi < 60
for normal moisture condition, and VCIi > 60 represents ideal
moisture conditions [55]. As well as, drought-related stress can
be evaluated according to VCIi and TCIi if their values are below
50. The VCI maps for the study area for the years 2008, 2019,
2020, and 2021, and the temporal trend of VCI on the monthly
scales over the period 2000–2021 are shown in Fig. 4.

The higher values of VCIi, demonstrate less drought inten-
sity. It is observed from the VCI maps that VCIi value in Iran
is less than 40 in most areas and areas with VCIi more than 60
are detected in the north of the country, near to the Caspian Sea.
As the drought worsens, VCIi declines and the values are less
than 30 in most regions of the study area indicating intensified
moisture stress from drought. Very intensive moisture stress can
be noticed almost in the entire study area in 2008 and 2021. In
addition, the time series of VCI during the period 2000–2021
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Fig. 3. Evolution of the SPI and SPEI in Iran between 2000 and 2021 for multiple timescales.

illustrates monthly values of VCI range from 21 to 36. It also
demonstrates that the VCI of the year 2008 and 2021 had the
highest rates of drought with the average value of 26.92 and
26.91, respectively. While the years 2019 and 2020 recorded
the highest VCI values as 30.88 and 31.05, respectively, which
indicate moderate drought.

The TCI is expressed in %, the TCI <5 represents ex-
ceptional drought intensity, TCI <15 represents extreme-to-
exceptional drought intensity, TCI <25 represents severe-

to-exceptional drought intensity, TCI <35 represents moderate-
to-exceptional drought intensity, TCI <40 represents mild-to-
exceptional drought intensity, 40 < TCI < 50 indicates near
normal, and TCI >50 demonstrates no drought [57]. The spatial
patterns of TCI for the years 2008, 2019, 2020, and 2021,
and the temporal trend of TCI on the monthly scales over the
period 2000–2021 are shown in Fig. 5. The TCI analysis was
performed in GEE platform and ArcGIS 10.7.1 in which higher
values of TCI indicate normal conditions (located in Northern
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Fig. 4. Spatial patterns of VCI for the years 2008, 2019, 2020, and 2021, and the temporal trend of VCI on the monthly scales over the period 2000–2021.

Iran in regions near the Caspian Sea, northwestern parts, the
Alborz Range on the north, and the Zagros Range on the west)
and near-zero values indicate drought-related stress conditions
[located in the central parts (deserts) and southeastern regions
(Lut Desert especially Rigzar)]. Furthermore, the time series of
TCI during the period 2000–2021 illustrates monthly values of
TCI ranging from 27 to 47. It also demonstrates that TCI of
the year 2008, 2013, and 2021 had the highest rates of drought
with the average value of 32.05, 33.28, and 32.18, respectively,
which indicate moderate drought. While the years 2004, 2019,

and 2020 recorded the highest TCI values as 35.3, 38.27, and
36.72, respectively, which indicate mild drought.

Iran’s 20-year average annual rainfall is 250 mm [58]; this
statistic shows that our country’s annual rainfall is much lower
than the world. The average rainfall in Kerman province is
140 mm per year [59], according to the recorded statistics;
this amount has decreased in recent years. In this research, the
CHIRPS dataset of daily, monthly, and yearly rainfall data from
2000 to 2021 have been utilized to evaluate the spatial patterns
of PCI during the period 2000–2021 within Iran as an indication
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Fig. 5. Spatial patterns of TCI for the years 2008, 2019, 2020, and 2021, and the temporal trend of TCI on the monthly scales over the period 2000–2021.

of climate change. The spatial distributions of PCI for the years
2008, 2019, 2020, and 2021, and the temporal trend of PCI on
the monthly scales over the period 2000–2021 are presented in
Fig. 6. The PCI also varies from 0 to 100 based on variations
in rainfall from highly unfavorable to optimal. According to the
PCI maps in Fig. 6, more than half of the country has a low
PCI value, displaying conspicuous drought conditions. Highest
PCI values are recorded in Northern Iran in regions near to the
Caspian Sea, representing no drought conditions. Minimum PCI
values are recorded located in the central parts (deserts) and
southeastern regions (Lut Desert especially Rigzar), indicating
obvious drought conditions. Moreover, the time series of PCI

during the period 2000–2021 illustrates monthly values of PCI
range from 0.6 to 30. It also demonstrates that PCI of the year
2008 and 2021 had the highest rates of drought with the average
value of 8.28 and 8, respectively, which indicate exceptional
drought. While the years 2004, 2019, and 2020 recorded the
highest PCI values as 12.81, 13.61, and 14, respectively, which
indicate extreme drought.

SM plays an underlying role in many water-related applica-
tions, such as water resources management, drought analysis,
agriculture, and climate change studies. In most regions of
Iran, SM values are not measured and limited measurements do
not provide sufficient spatial and temporal resolution for large
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Fig. 6. Spatial patterns of PCI for the years 2008, 2019, 2020, and 2021, and the temporal trend of PCI on the monthly scales over the period 2000–2021.

study areas. Therefore, remote sensing data because of its global
coverage and continuous datasets from SM can be employed to
drive SM information during a long period of time in Iran. The
SMCI is a SM index derived from the FLDAS datasets, which
contain global monthly SM data in different depths [11]. The SM
is incorporated in SMCI using a normalization considering the
maximum and minimum time range values for each pixel, where
values close to zero illustrate drought conditions and nearby 100
represent higher moisture conditions. The SMCI maps show
spatial patterns like that of the TCI maps. The spatial patterns of
SMCI for the years 2008, 2019, 2020, and 2021, and the temporal
trend of SMCI on the monthly scales over the period 2000–2021
are shown in Fig. 7. According to the SMCI maps shown in

Fig. 7, Northern Iran (north western and northeastern parts) in
regions near to the Caspian Sea, the Alborz Range on the north,
and the Zagros Range on the west exhibit no drought conditions,
whereas the central parts and southeastern regions have low
SMCI values, indicating very dry or unfavorable-conditions. In
addition, the time series of SMCI during the period 2000–2021
illustrates monthly values of SMCI range from 19 to 62. It also
demonstrates that SMCI of the year 2008, 2016, and 2021 had
the highest rates of drought with the average value of 31.62,
32.87, and 30.99, respectively, which indicate moderate drought.
While the years 2005, 2019, and 2020 recorded the highest SMCI
values at 36.87, 38.57, and 37.52, respectively, which indicate
mild drought.
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Fig. 7. Spatial patterns of SMCI for the years 2008, 2019, 2020, and 2021, and the temporal trend of SMCI on the monthly scales over the period 2000–2021.

B. Spatial Patterns and Temporal Trends of Agricultural
Drought

All maps of SDI presented below have values changing from 0
to 100, where 0–10 exhibits exceptional drought, 10–20 exhibits
extreme drought, 20–30 exhibits severe drought, 30–40 exhibits
moderate drought, 40–50 exhibits mild drought, 50–60 exhibits
near normal, and 60–100 represents no drought. Fig. 8 depicts
the spatial patterns of agricultural drought over the years 2000–
2021, with SDI values varying from 0 to 100. The SDI maps
indicate that the SDI values mainly range from 0 to 10 (displayed
by red color in the maps) during the period 2000–2021, which
represents that most of the study area is under exceptional
agricultural drought, while no drought area (60—100) is almost
negligible.

The central parts, eastern, and southeastern regions have low
SDI values (0–10), indicating exceptional agricultural drought.

The Northwest of Iran, Alborz Range on the north as well
as the Zagros Range on the west exhibit moderate to mild
drought conditions with some green patches indicating very
small drought (50–60) showing areas that may be going into
or are coming out of drought. Northern Iran in regions close
to the Caspian Sea have high SDI values (60–100), indicating
no drought conditions (displayed by dark green color in the
maps). The time series of SDI during the period 2000–2021
as shown in Fig. 9 illustrates average monthly values of SDI
in Iran vary from 16 to 33. It also indicates that SDI of the
year 2008 and 2021 had the highest drought rates with an aver-
age value of 19.63 and 17.24, respectively, indicating extreme
drought. While the years 2019 and 2020 recorded the highest
SDI values 24.79 and 24.62, respectively, which indicate severe
drought. Fig. 10 demonstrates the area of agricultural drought
classes on the annual scales from 2000 to 2021, based on SDI
values.
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Fig. 8. Spatial patterns of agricultural drought on the annual scales over the years 2000–2021, based on SDI values.

Fig. 9. Time series of agricultural drought on the monthly scales during the period 2000–2021, based on SDI values.

Most of the area of Iran prevailed in the state of drought in
2008 (36.81% exceptional drought, 28.58% extreme drought,
14.81% severe drought, 11.86% moderate drought, and 5.3%
mild drought), and the intensity of drought has increased as op-
posed to previous years. The next year, the severity of the excep-
tional drought has decreased from 36.81% (593966.27 km2) in
2008 to 30.3% of the area (489192.60 km2) in 2009, and the area
of no drought class has increased from 1.3% (21124.72 km2) to
1.9% (30607.49 km2). There is an analogous pattern in 2021,
where almost all regions faced drought conditions (37.72%
exceptional drought, 28.91% extreme drought, 14.34% severe
drought, 10.99% moderate drought, and 4.6% mild drought).
Near normal and no drought classes had a very limited presence

(2% and 1.55%, respectively). In 2019 and 2020, most areas
of Iran had higher SDI values. In the year 2019 and 2020,
the severity of the drought has decreased during the period
2000–2021. The area of exceptional drought class was 29%
(468005.03 km2) in 2019 and 29% (468067.64 km2) in 2020.
The area of extreme drought class was 24.55% in 2019 and
24.15% in 2020. As well as, the area of no drought class has
increased in 2019 (2.64%) and 2020 (2.54%).

According to the temporal trend of agricultural drought shown
in Fig. 10, more areas were affected by exceptional agricultural
drought in 2008 (36.81%) and 2021 (37.72%). As well as,
the area representing extreme drought is highest in the years
2008 and 2021. Therefore, the years 2008 and 2021 have been
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Fig. 10. Temporal trend of agricultural drought on the annual scales during the period 2000–2021, based on SDI values.

considered as agricultural drought years. The severity of the
agricultural drought decreased in 2019 and 2020, and its area
is lowest in 2019 and 2020 during the period 2000–2021. In
addition, peak is detected in the area of no drought class in
2019, whereas the situation is the opposite in 2008.

C. Spatial Patterns and Temporal Trends of Meteorological
Drought

The maps of OMDI presented below have values changing
from 0 to 100, where 0–10 illustrates exceptional drought, 10–20
illustrates extreme drought, 20–30 illustrates severe drought,
30–40 illustrates moderate drought, 40–50 illustrates mild
drought, 50–60 illustrates near normal, and 60–100 represents
no drought. Fig. 11 depicts the spatial patterns of meteorological
drought over the years 2000–2021, with OMDI values varying
from 0 to 100. The OMDI maps in Fig. 11 indicate that the OMDI
values mostly range from 10 to 20 (displayed by dark orange
color in the maps) during the period 2000–2021, which repre-
sents that most of the study area is under extreme meteorological
drought, while no drought area (60–100) is almost negligible.
The time series of OMDI during the period 2000–2021 as shown
in Fig. 12 illustrates monthly values of OMDI ranging from 12
to 39. It also indicates that OMDI of the year 2008 and 2021
had the highest rates of drought with the average value of 19.81
and 18.33, respectively, which indicate extreme drought. While
the years 2019 and 2020 recorded the highest OMDI values as
25.78 and 25.35, respectively, which indicate severe drought.
Fig. 13 illustrates the area of meteorological drought classes on
the annual scales over the period 2000–2021, based on OMDI
values. The central, eastern, and southeastern parts of Iran had
the lowest OMDI values ranging from 0 to 10. The Northwest of

Iran, Alborz Range on the north as well as the Zagros Range on
the west had OMDI values ranging from 50 to 60, representing
near normal condition. In 2021, most of the area of near normal
class has been converted to mild drought and has decreased from
11.31% in 2020 to 5.6% in 2021.

OMDI values were lowest in 2008 and 2021, most of which
were between 10 and 20, indicating extreme drought con-
ditions. In 2008, extreme drought class dominated the area
(27.56%) followed by exceptional drought (20.40%), severe
drought (18.56%), moderate drought (13.56%), mild drought
(12.59%), near normal (6.27%), and no drought class had a very
limited presence (1.03%). There is an analogous pattern in 2021,
where almost all regions faced drought conditions (27.53%
extreme drought, 20.44% exceptional drought, 19.15% severe
drought, 13.96% moderate drought, 12.32% mild drought, and
5.6% near normal). The area representing no drought class is
lowest (1.02%) in the year 2021 during the period 2000–2021.
Therefore, these years are considered as meteorological drought
years in which most regions of Iran were under exceptional to
extreme meteorological drought, with no drought status in some
areas of Northern Iran in regions close to the Caspian Sea.

The severity of the exceptional and extreme meteorological
drought decreased in 2019 and 2020. The areas of exceptional
and extreme meteorological droughts are 11.72% and 20.71% in
2019, and 10.98% and 20.78% in 2020, respectively. In addition,
in the year 2019 and 2020 OMDI had higher values in almost the
entire Iran and no drought class had more area (3.05% in 2019
and 3.07% in 2020) compared to other years during the period
2000–2021.

The results represent that in the years 2008 and 2021
almost the entire Iran had meteorological and agricultural
droughts hence these years were regarded as drought years.
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Fig. 11. Spatial patterns of meteorological drought on the annual scales over the years 2000–2021, based on OMDI values.

Fig. 12. Time series of meteorological drought on the monthly scales during the period 2000–2021, based on OMDI values.

The north-western side of Iran and some areas of Zagros Range
were mostly having near normal meteorological drought; hence
these regions are most vulnerable to drought drivers. The central,
eastern, and southeastern parts of Iran were mostly having
exceptional and extreme drought conditions, and the severity of
meteorological and agricultural drought was also high in these
areas of Iran. The cause of this severity is that rainfall in these
areas is low and irregular [60], [61]. The amount of precipitation
varies in different years and it may not even rain for several years.
Rainfall is often heavy and in the form of showers. Due to the
heat, dry air, and strong winds, the amount of evaporation and

transpiration is higher than the annual rainfall in these areas [62],
[63].

The meteorological drought occurs because of the rainfall
deficiency and its period determines the severity of drought in
a region. An agricultural drought occurs when a precipitation
deficiency leads to a decrease in SM influencing pastures and
rain-fed agriculture. When the rainfall is less than normal, the
meteorological drought severity escalates during the time and
generates more severity in the agriculture drought and affects
the crop yield and native vegetation condition. Therefore, mete-
orological drought has a definite effect on agricultural drought,
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Fig. 13. Temporal trend of meteorological drought on the annual scales over the years 2000–2021, based on OMDI values.

Fig. 14. Correlation coefficients between drought indices.

and the main effect is the decline of available agricultural water
resources, which leads to crop water stress and reduce the yield.

The multiple RS-based drought indices are an effective tool
for large-scale drought monitoring because they naturally inte-
grate SM, vegetation information, and climate variables into
drought indicators. It should be noted that this research has
represented the application of combined indicators across a vary-
ing range of climate and specific environmental conditions in a
large study area (1.62 million km2). Therefore, the assessment
indicated that these climatic-agricultural indices apply locally
to globally.

D. Correlation Analysis

The Pearson correlation coefficients (r) between RS-based
drought indexes including VCI, TCI, PCI, SMCI, SDI, and
OMDI, and in situ drought indexes are indicated in Fig. 14. In

Fig. 15. Scatter correlation diagram between agricultural and meteorological
droughts.

general, we included all months of all years from 2000 to 2021
for 2500 same spatial sample points extracted from the image
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TABLE III
LIST OF ACRONYM

of each variable in Arc GIS software to compute the correlation
coefficients between the variables. The VCI has a statistically
good correlation with the SPI-6, SPI-12, SPEI-6, and SPEI-12.
Overall, the correlation among the VCI and SPI series is higher
than those among the VCI and SPEI series. As illustrated in
Fig. 14, the TCI has a strong correlation with the long-term SPI
and SPEI; therefore, the TCI is more applicable for long-term
drought assessments across large areas. The results indicated
that the PCI has stronger correlations with the SPI series of 1,
3, and 6 months (with average coefficients of 0.624, 0.487, and
0.423, respectively), and the SPEI series of 1 and 3 months (with
average coefficients of 0.563 and 0.425). Hence, the PCI has bet-
ter performance in detecting short-term drought conditions than
other single drought indexes including VCI, TCI, and SMCI.
The correlations among the SMCI and short-term in situ-based
drought indices are relatively good. Accordingly, the SMCI has
the potential for short-term drought analysis. Generally, single-
factor drought indexes including VCI, TCI, PCI, and SMCI
have specific characteristics. The PCI has the highest correlation
with the SPI and SPEI series among RS-based single indices.
However, the overall correlation coefficients of the combined
drought indexes including OMDI and SDI within situ drought
indices are higher than RS-based single indices. Among RS-
based meteorological indices, the PCI and OMDI have stronger
correlations with the SPI-1, as 0.624 and 0.726, respectively. The
SDI has stronger correlations with the SPI series of 1, 3, and 6
months (with average coefficients of 0.672, 0.621, and 0.597,
respectively) and the SPEI series of 1, 3, and 6 months (with
average coefficients of 0.653, 0.663, and 0.587, respectively)
than other single-factor agricultural drought indices. Fig. 14
indicates that the combined drought indexes including OMDI
and SDI are highly correlated with the short-term SPI and SPEI,
therefore these RS-based drought indices are more applicable
to evaluate short-term drought conditions across vast areas. In
addition, correlation evaluation has been utilized to evaluate the
relationship between both types of droughts during the years
2000–2021 to assess the impacts of meteorological drought on
agricultural drought conditions. Fig. 15 depicts the correlation

coefficient among agricultural and meteorological drought. This
research showed the response of agricultural drought to meteo-
rological drought in Iran and illustrated that agricultural drought
is highly linked to meteorological drought with the coefficient
of determination as R2 = 0.8712. Results showed that the SDI
was highly correlated with OMDI because the distribution of
agricultural drought intensity has a strong relationship with the
meteorological droughts, which lead to a reduction of SM in
Iran.

IV. CONCLUSION

In this research, the spatiotemporal variations of the agricul-
tural and meteorological drought in Iran were analyzed using
the annual series of the SDI and OMDI indices for the period
2000–2021. The OMDI is integration of multiple single-factor
indices including TCIi, PCIi, and SMCIi to monitor meteorolog-
ical drought. The SDI is an agricultural drought index computed
from multiple RS-based datasets, which includes precipitation,
LST, and vegetation index. Results showed that 2008 and 2021
were the years having lowest values of OMDI and SDI illus-
trating extreme meteorological and agricultural drought inten-
sity, respectively, and the area of near normal and no drought
classes were the lowest in these years. The central, eastern, and
southeastern parts of Iran were mostly experiencing exceptional
and extreme drought conditions as the worst agricultural and
meteorological drought conditions observed in the years 2008
and 2021 in the region during the last 20 years.

While, in 2019 and 2020, most areas of Iran had higher OMDI
and SDI values, and the severity of drought has decreased in
these years. As well as no drought area was highest in 2019 and
2020. Since there was an overall expansion in mild, near normal,
and no drought classes in the year 2019 and 2020, the agricultural
and meteorological drought conditions in these years were lower
than in other years during the period 2000–2021. Therefore, this
study concluded that 2008 and 2021 were the driest years that
experienced agricultural and meteorological extreme droughts.
Moreover, in this research, Pearson correlation was utilized
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to consider the correlations among RS-based drought indexes
and in situ-based drought indexes, and the overall results in-
dicated that the correlation coefficients of the in situ drought
indices with the combined drought indexes are higher than the
RS-based single drought indexes. As well as, The PCI has the
highest R with the SPI and SPEI series among RS-based single
indices and can better analyze short-term drought conditions
across large areas. Further, the TCI has better performance in
monitoring long-term drought conditions in Iran. Nevertheless,
limitations and uncertainties were presented in this research.
Several future studies can be implemented in smaller study areas
using Sentinel-1 SAR data and optical data from Landsat-8 or
Sentinel-2 to produce the drought indices specially SM and veg-
etation indices. In this study, combined satellite-derived drought
indices have been employed in a vast study area, which have not
been well documented in previous studies. The results show
specific information about choosing RS-based drought indices
for monitoring meteorological and agricultural droughts across
large areas. As a country in the dry belt of the earth with approx-
imately 70% of its area in arid and semi-arid regions, droughts
and floods are widespread phenomena in Iran, accordingly this
work provides combined drought indices to identify drought
conditions for various underlying surfaces and monitor drought
processes. The detailed abbreviations and definitions used in the
article are listed in Table III.
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