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Abstract—Remote sensing image retrieval (RSIR) aims to search
and retrieve the images of interest from a large remote sensing
image archive, which has remained to be a hot topic over the past
decade. Benefited from the advent and progress of deep learning,
RSIR has been promoted by developing novel approaches, con-
structing new datasets, and exploring potential applications. To
the best of our knowledge, there lacks a comprehensive review
of RSIR achievements, including systematic and hierarchical cat-
egorization of RSIR methods and benchmark datasets over the
past decade. This article, therefore, provides a systematic survey
of the recently published RSIR methods and benchmarks by re-
viewing more than 200 papers. To be specific, in terms of image
source, label, and modality, we first group the RSIR methods into
some hierarchical categories, each of which is reviewed in detail.
Following the categorization of the RSIR methods, we list the
benchmark datasets publicly available for performance evaluation
and present our newly collected RSIR dataset. Moreover, some
of the existing RSIR methods are selected and evaluated on the
representative benchmark datasets. The results demonstrate that
deep learning-based methods are currently the dominant RSIR
approaches and outperform handcrafted feature-based methods
by a significant margin. Finally, we discuss the main challenges of
RSIR and point out some potential directions for the future RSIR
research.

Index Terms—Deep learning, feature extraction, literature
review, remote sensing image retrieval (RSIR), similarity measure.

I. INTRODUCTION

OVER the past decades, remote sensing (RS) earth ob-
servation has reached an unprecedented level, and the

available RS data have grown exponentially; however, we are
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Fig. 1. Number of open publications on RSIR from 2010 to 2022. Data are
collected by the advanced search of Google Scholar (all in title: “RS” OR aerial
OR satellite “image retrieval”).

overwhelmed by the massive data with too much useless in-
formation due to the limitation of data processing techniques.
Therefore, in the era of RS big data, how to efficiently organize
and manage large RS archives and quickly search and retrieve
the data of interest remains to be a significant challenge in the
RS community.

Remote sensing image retrieval (RSIR), which aims to search
and retrieve images of interest from a large RS image archive,
is an effective technique to solve the problems mentioned above
[1]. In the early years, many RSIR methods are derived from
the text-based image retrieval and particularly content-based
image retrieval (CBIR) in computer vision (CV) field [2], [3],
[4]. Although RSIR can be regarded as the application of CBIR
in the RS field, RSIR is a more challenging task than CBIR due to
the high complexity of RS images, including multiscale objects,
varied resolutions, different imaging modes, and so forth. To
advance RSIR, RS literature has invested significant effort to
develop RS image-specific methods, making RSIR an active
research topic, as shown in Fig. 1. The number of publications on
RSIR has dramatically increased over the past decade, especially
from the year of 2012. On the one hand, deep learning achieved
remarkable performance on the large-scale ImageNet in 2012,
which has drawn much attention from the RS community since
then. On the other hand, RS benchmark datasets have been in-
creasingly constructed and publicly available, making it possible
for developing deep learning based RSIR methods.

RSIR in early years is performed based on the metadata
(thereby also called metadata or text-based RSIR), such as

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3270-7268
https://orcid.org/0000-0003-3691-8721
https://orcid.org/0000-0003-4587-6826
mailto:zhouwx@nuist.edu.cn
mailto:guanhy.nj@nuist.edu.cn
mailto:221309020008@hhu.edu.cn
mailto:shaozhenfeng@whu.edu.cn
mailto:mdelavar@ut.ac.ir


1448 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

image resolution, geographic coordinate, sensor type, and image
acquisition time; however, it does not take image content (i.e.,
buildings, roads, and rivers) into consideration [5]. Therefore,
content-based RSIR (CBRSIR) that performs search and re-
trieval of RS images using low-level visual features [6], [7],
[8], [9], [10], [11], [12], [13], [14] has gained much attention.
Nevertheless, CBRSIR faces two significant challenges for large
RS image archives: First, RS images usually contain a few
object classes with varied scales; thus, low-level features are
not available for the accurate representation of image content.
Therefore, RSIR usually obtains unsatisfactory performance
based on single low-level feature (e.g., spectral feature) or com-
bined low-level features (e.g., spectral feature and texture fea-
ture); second, low-level features, known as handcrafted features,
require laborious efforts. Moreover, it is not feasible to develop
an effective feature representation suitable for RS images with
different resolutions, different object types, and different image
complexities. Thus, for CBRSIR, it is necessary to draw our
attention from previously hand-engineered features to currently
learned features. From here on, RSIR is termed for CBRSIR,
unless otherwise stated.

Since 2012, deep learning has gradually developed as a
dominant technique for feature extraction due to its remarkable
performance on recognition tasks [15]. Accordingly, as an alter-
native to handcrafted features, deep learning has also explored
by the RS community [16], [17], [18], [19], [20]. Yuan et al.
[16] analyzed the potential of deep learning for environmental
RS tasks (e.g., land cover mapping, environmental parameter
retrieval, data fusion and downscaling, as well as information
reconstruction and prediction). Ball et al. [17] gave a detailed
survey of deep learning used for RS tasks in theories, tools, and
challenges. Zhang et al. [18] provided a technical tutorial on
the state-of-the-art (SOTA) deep learning techniques for RS big
data from the four perspectives of image processing, pixel-based
classification, target recognition, and scene understanding. Zhu
et al. [19] analyzed the challenges of using deep learning for
RS data analysis, reviewed the recent advances, and provided
resources, attempting to ridiculously simple deep learning in the
RS domain. Ma et al. [20] summarized several main subfields
of deep learning used in RS and conducted a deep review to
describe and discuss those techniques in all of these subfields.

These works demonstrate that deep learning has been one of
the dominant techniques for RS tasks. Driven by deep learning,
a great number of RSIR methods have been presented. The
readers are referred to the reviews on RSIR [21], [22], [23], [24],
[25]. Sudha and Aji [21] conducted a systematic study on the
existing RSIR methods to guide the new researchers in the RS
domain to choose effective methods for performance improve-
ment of the RSIR system in different schemes. Gu et al. [22]
comprehensively reviewed deep learning based methods for RS
image understanding and pointed out some future directions and
potential applications. Sudha and Aji [23] concentrated on the
advancements and current trends related to deep learning based
RSIR and analyzed how to use deep learning techniques and
frameworks to address the challenges. Tong et al. [24] focused on
three core issues of RSIR, i.e., feature extraction, similarity met-
ric, and relevance feedback, and systematically investigated deep

TABLE I
COMPARISONS BETWEEN THE EXISTING SURVEY WORKS AND OURS

features for RSIR. In the recent work, Li et al. [25] systematically
reviewed the emerging achievements of RSIR and discussed its
applications, including fusion-oriented RS image processing,
geolocalization, and disaster rescue. To date, it seems to be
the most systematic and comprehensive review on RSIR. How-
ever, the existing RSIR methods were coarsely categorized into
CBRSIR, hash-based RSIR, cross-modal RSIR (CMRSIR), and
interactive RSIR, which was not a reasonable division of RSIR
methods. For instance, in most studies, CBRSIR, as one kind of
RSIR methods, actually contains hash-based RSIR, CMRSIR,
and interactive RSIR. While in [25], they were categorized as
four paralleled methods. Furthermore, the existing benchmark
datasets were also coarsely categorized into single-modality data
and multimodality data.

We, therefore, provide a comprehensive review of RSIR
achievements, including RSIR methods and benchmark datasets
over the past decade in this article. In addition, we also release
a new dataset and present an RSIR method evaluated on the
new released dataset. Our work categorizes the existing RSIR
methods into a hierarchical category, and the benchmark datasets
are categorized accordingly. To the best of our knowledge,
it is the most sophisticated categorization of RSIR methods
and benchmark datasets, and is complementary to the existing
reviews. The comparisons between the several existing review
works and ours are summarized in Table I.

The rest of this article is organized as follows. Section II
surveys the conventional and deep learning RSIR methods
of different categories. Section III introduces the benchmark
datasets for the performance evaluation of RSIR. The perfor-
mance metrics and results of RSIR methods are presented in
Section IV. Section V discusses the current challenges and
potential solutions for RSIR. Section VI points out some future
directions of RSIR. Finally, Section VII concludes this article.
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Fig. 2. Hierarchical category network of the existing RSIR methods.

II. CONVENTIONAL AND DEEP LEARNING METHODS FOR RSIR

Over the past decade, the RS community has witnessed the
rapidly developed RSIR methods, including the handcrafted
feature-based approaches and the recent deep learning based
ones. To detail these RSIR methods, we organize the existing
RSIR methods by a four-level hierarchical category network, in
terms of data, as shown in Fig. 2. To our best of knowledge,
the hierarchical categorization network provides a sophisticated
organization of RSIR methods.

Similar to the scheme in [25], our hierarchical RSIR category
network is composed of unisource retrieval and cross-source
retrieval at the first level. The categorization criteria are that
whether the query image and the retrieved images are from the
same source or not. To be specific, for unisource retrieval, both
the query image and the retrieved images are from the same
source, while for cross-source retrieval, the query image and
the retrieved images are from different sources, and generally
two sources. In the second level, unisource retrieval is further
categorized into single-label RSIR (SLRSIR) and multilabel
RSIR (MLRSIR), depending on whether an image is associ-
ated with one label or multiple labels. Regarding cross-source
retrieval, it is categorized into three subcategories, including
CMRSIR, retrieval across different sensors (RASRSIR), and

cross-view RSIR (CVRSIR), depending on whether the im-
ages are from the same modality, sensors, view or not. It is
notable that for CMRSIR and CVRSIR, we also provide their
subcategories to cover the existing RSIR methods. Specifically,
CMRSIR consists of retrieval between sketch and image, re-
trieval between optical and SAR images, retrieval between text
and images, as well as retrieval between audio and images.
CVRSIR contains retrieval between ground images, retrieval
between ground and overhead images (e.g., ground–satellite,
ground–aerial, and ground–drone), as well as retrieval between
overhead and overhead images (e.g., drone–satellite). Table II
presents the categorization criteria and detailed description for
each RSIR subcategory.

In the following part, we review the existing SLRSIR, MLR-
SIR, RASRSIR, CMRSIR, and CVRSIR methods, respectively,
over the past decade. Because of the remarkable performance
of deep learning for RSIR, we mainly focus on deep learning
based RSIR methods.

A. SLRSIR Methods

SLRSIR is to perform retrieval with single-label images and
has been the dominant RSIR methods. In this scenario, each
of the query and retrieved images belongs to only one image
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TABLE II
DETAILED CATEGORIZATION CRITERIA AND DESCRIPTION OF RSIR METHODS

Fig. 3. Flowchart of SLRSIR method. The retrieved images with red rectangles stand for images that are correctly retrieved.

category. Generally, there are three modules in a typical RSIR
system, including feature extraction, feature indexing, and simi-
larity measures [25]. In practice, feature extraction and similarity
measures are two indispensable parts because feature indexing is
mostly used for large-scale RS image archives. Fig. 3 illustrates

the flowchart of the SLRSIR method, which mainly contains two
steps, including feature extraction and similarity measures. For
feature extraction, the handcrafted features and deep learning
features are available for the representation of the query im-
age and images in the database. In the second step, the query
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image is compared with each of the images in the database by
calculating their feature similarity. Then, these similarity values
are subsequently sorted in descending order to return the top k
similar images. The kth image is determined as a correct query
if it has the same category as the query image. Moreover, for one
query, the higher ranks of the correctly retrieved images indicate
the better performance of the SLRSIR method. The authors can
be referred to Section IV for SLRSIR performance metrics in
detail.

The literature has committed to SLRSIR over the past decade,
and a number of advanced methods have been proposed, espe-
cially the methods driven by deep learning. Before the advent of
deep learning in the RS community, SLRSIR mainly relies on
handcrafted features, such as spectral features, texture features,
and even combined features. Shao et al. [26] have proposed
improved color texture descriptors for RSIR by taking color
information into consideration. Bosilj et al. [27] have presented
pattern spectra descriptors, which are computationally efficient
histogram-like structures and described the global distribution
of arbitrarily defined attributes of connected image components.
Aptoula [28] exploited global morphological texture descriptors
for RSIR, which outperforms the best-known retrieval scores,
despite its shorter feature vector length. Chen et al. [29] have
proposed a radar RSIR algorithm to solve the time-consuming
problem. Kavitha and Vidhya Saraswathi [30] have proposed
a fuzzy multicharacteristic clustering technique to provide re-
trieval outcomes with elevated retrieval accuracy. Sunitha and
Sivarani [31] have proposed an efficient RSIR system utilizing
weighted Brownian motion-based monarch butterfly optimiza-
tions to improve the retrieval accuracy along with computational
intricacy. Ben-Ahmed et al. [32] have focused on the most
relevant channels and studied spectral sensitivity functions in
constructing discriminative representations for hyperspectral
image retrieval. Tekeste and Demir [33] have introduced local
binary patterns (LBP) variants for the first time in the frame-
work of RSIR problems and presented a comparative study to
analyze and compare advanced LBP variants for RSIR. Zhang
et al. [34] have proposed a hyperspectral RSIR system based
on spectral and texture features. Du et al. [35] have considered
the topological structure of local features and proposed a new
method to represent by taking the structural information of
local features into consideration. Sukhia et al. [36] have utilized
local ternary pattern to obtain upper and lower texture images
and divided them into dense patches to build a final histogram
representation. Yang et al. [37] have proposed a simple method to
improve recognition performance of the typical Bag of Words
(BoW) framework by representing images with local features
extracted from base images in a large-scale image database. To
further improve performance of RSIR, the combined features
are also explored and exploited. For instance, Chaudhuri et al.
[38] have introduced an unsupervised graph-theoretic approach
for region-based retrieval by using intensity, texture, and shape
features extracted from the regions to describe the node attributes
of the graph. Ye et al. [39] have proposed an RSIR method
based on the query-adaptive feature weights to fuse features and
utilized two image similarities to improve retrieval performance.
The rest of the works have been focused on RSIR in compressed

image archive [40], image reranking [41], feature hashing [42],
and relevance feedback [43].

Although handcrafted features have been demonstrated their
capacity for RSIR, it is difficult to further improve retrieval
performance due to the limitations of low-level features. The
popularity and success of deep learning, particularly convolu-
tional neural network (CNN), in RS community [16], [17], [18],
[19], [20] have promoted the literature to develop a great number
of deep learning driven methods for RSIR. The existing RSIR
methods can be coarsely divided into five groups, including fea-
ture extraction-based methods, novel network-based methods,
attention-based methods, metric learning-based methods, and
hashing-based methods.

1) Feature Extraction-Based Methods: Feature extraction-
based RSIR is to treat the pretrained deep networks as fea-
ture extractors or fine-tuning these networks to extract image
features. To ensure high efficiency and accuracy, Cheng et al.
[44] have proposed a distributed system architecture for high-
resolution satellite image retrieval by combining deep and tradi-
tional handcrafted features. Ye et al. [45] have exploited a CNN
regression model to develop a query-adaptive feature fusion
method to alleviate the huge variation in retrieval performance
among different image queries. In another work, they calculated
the fuzzy class membership of images to reduce the overall
search time [46]. Fan et al. [47] have used CNN to extract
the effective coverage information of images and presented
an automatic accurate high-resolution RSIR method. Vharkate
and Musande [48] have proposed a hybrid visual geometry
group network by integrating dimensionality reduction, feature
extraction, loss function optimization, matching process, and
relevance feedback for the appropriate retrieval of RS images.
Zhuo and Zhou [49] have focused on feature dimension reduc-
tion and extracted low-dimensional, representative, and discrim-
inative features from fully connected layers of CNN by using
an extended method. Similarly, Hou et al. [50] have extracted
low-dimensional features from the fully connected layers by
fine-tuning the pretrained MobileNets, Sadeghi-Tehran et al.
[51] have derived feature representations via a CNN feature
extractor, and Ye et al. [52] have fine-tuned the pretrained CNNs
to extract features.

Most of the aforementioned works regard CNNs as a feature
extractor and extract features from fully connected layers. Ac-
tually, CNNs are also capable of extracting deep local features
from convolutional layers, and the process is similar to that of
scale-invariant feature transform [53]. Ge et al. [54] have aggre-
gated the outputs of midlevel layers by means of average pooling
with different pooling regions to extract CNN features for high-
resolution RSIR. Imbriaco et al. [55] have presented a pipeline
that used attentive, local convolutional features and aggregated
them using the vector of locally aggregated descriptors (VLAD)
to produce a global descriptor. Tang et al. [56] have conducted a
similar work. Specifically, they have proposed an unsupervised
deep learning method using deep convolutional autoencoder.
The learned features were aggregated using BoW framework
to obtain the final feature vector. Hu et al. [57] have provided
a comparative study on deep representations extracted from
either full-connected or convolutional layers. Napoletano [58]
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has compared a few handcrafted features with CNN features on
the two benchmark datasets. The obtained results indicate that
CNN features achieve overall better performance. The rest of
related works can be found in [59], [60], [61], and [62].

Treating the off-the-shelf networks as feature extractors often
performs well on small-scale target datasets and particularly
those similar to the source dataset on which the networks are pre-
trained. However, fine-tuning the off-the-shelf networks is often
used to further improve performance, especially for datasets that
have limited labeled images.

2) Novel Network-Based Methods: The novel network-
based methods focus on designing new CNN architectures
trained from scratch for learning powerful features. Zhou et al.
[63] have compared the performance of various CNN fea-
tures and proposed a low-dimensional CNN (LDCNN) for
high-resolution RSIR, which outperforms the fine-tuned CNNs.
Boualleg et al. have combined LDCNN model [63] with the
triplet loss and proposed a triplet LDCNN [64]. Zhang et al.
[65] constructed a triplet nonlocal neural network with dual-
anchor triplet loss for high-resolution RSIR. Zhuo and Zhou
[66] proposed an RSIR method for high-resolution RS images
with Gabor-CA-ResNet and split-based deep feature transform
network. Wu et al. [67] have developed and investigated two
new rotation-aware CNN-based RSIR methods to learn rotation-
aware representation. Liu et al. [68] have introduced an easy way
to organize semantic relationship among classes as a category
tree and proposed a tree-triplet-classification network. Wang
et al. [69] have proposed a learnable joint spatial and spec-
tral transformation model composed of parameter generation
network, spatial conversion module, and spectral conversion
module for RSIR. Sumbul and Demir [70] have proposed a
novel plasticity–stability preserving multitask learning approach
to ensure the plasticity and the stability conditions of the whole
learning procedure independently of the number and type of
tasks.

The works surveyed above focus on the conventional CNN
architectures that take images as input. There have been other
works conducted on image graphs. Wang et al. [71] have devel-
oped a graph-based learning method for effectively retrieving
RS images. The method utilized a three-layer framework that
integrates the strengths of query expansion and fusion of holistic
and local features. Chaudhuri et al. [72] have argued the effec-
tiveness of region adjacency graph-based image representations
for very high resolution (VHR) RS images in terms of localized
region and proposed a Siamese CNN architecture for assessing
the similarity between a pair of graphs. Compared with image,
graph is capable of capturing contextual information and, thus,
is possible to improve RSIR performance.

Training from scratch with novel architectures tends to
achieve more remarkable performance compared with feature
extraction-based methods that use pretrained or fine-tuned net-
works for feature extraction. However, a large number of labeled
samples are often required to train a successful CNN. Moreover,
it is laborious to design a powerful CNN architecture even if
the pretrained CNNs are taken as the backbones in the new
architecture.

3) Attention-Based Methods: Generally, the attention-based
methods are networks integrating attention modules in the ar-
chitecture to learn more discriminative features. There have
been several representative works related to this topic [73], [74],
[75], [76], [77]. Wang et al. [73] have proposed a multiattention
fusion network with dilated convolution and label smoothing to
force the network to learn discriminative features of important
objects. Wang et al. [74] have presented a wide-context attention
network by leveraging two attention modules to adaptively learn
local features correlated in the spatial and channel dimensions.
Wang et al. [75] have introduced a second-order pooling named
compact bilinear pooling into CNN containing three stages, i.e.,
pretraining, fine-tuning, and retrieval. Xiong et al. [76] have
proposed two effective schemes for generating discriminative
features for RSIR, where in the first scheme, the attention
mechanism and a new attention module were introduced to the
CNN architecture. In the second scheme, a multitask learning
network structure was proposed to force the features to be more
discriminative. Unlike the above works that focus on the spatial
or channel attention to learn discriminative features, other works
focus on edge and node attention to highlight important image
context features by using image graphs as input. For example,
Chaudhuri et al. [77] have proposed an attention-driven graph
CNN for RSIR by attending over the edge matrix to highlight the
interactions among meaningful regions and exploiting this edge
attention mechanism together with node attention to highlight
essential image context.

Integrating attention module in CNN network provides the
literature a new manner to extract more discriminative image
features. However, the existing attention-based methods mainly
focus on extracting powerful features that ignore similarity mea-
sure, another indispensable part in an RSIR system. Therefore,
there is still room for performance improvement when more
sophisticated attention modules that take both feature extraction
and similarity measure into account.

4) Metric Learning-Based Methods: Metric learning learns a
distance metric for the input space of data from a given collection
of pair of points [78] and is able to combine with loss functions,
such as contrastive loss [79], to improve classification perfor-
mance [80]. Considering similarity measure is an indispensable
part for RSIR system; thus, there have been a great number of
metrics learning-based methods developed for RSIR, which can
be coarsely categorized into two groups. The first is integrating
metric learning in a CNN network to improve performance. Zhao
et al. [81] have proposed a global-aware ranking deep metric
learning with intraclass space sample mining and cost-sensitive
loss. Cao et al. [82] have developed a deep metric learning
approach with generative adversarial network (GAN) regulariza-
tion, aiming to obtain more accurate retrieval performance with
small training samples. Cao et al. [83] have constructed a triplet
network with metric learning to extract representative features
in a semantic space where images from the same class are close
to each other, while those from different classes are far apart
to enhance RSIR. The second is combining metric learning and
attention mechanism to learn discriminative features and, thus,
achieving better performance. Cheng et al. [84] have proposed
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an ensemble architecture of residual attention-based deep metric
learning for RSIR to improve feature distinguishability and
retrieval efficiency. Chung et al. [85] have introduced a method
for retrieving aerial images by merging group convolution with
attention mechanism and metric learning, resulting in robustness
to rotational variations. Previous research on RSIR has ignored
the advantages of joint optimization of RSIR and scene classifi-
cation. To overcome this limitation, Liu et al. [86] have presented
an eagle-eyed multitask CNN integrating three tasks, i.e., center-
metric learning, similarity distribution learning, and aerial scene
classification in a network. The extensive experiments over four
public aerial image sets demonstrate its better performance than
all of the existing methods. Other existing metric learning-based
methods have been focused on defining novel losses [87], [88],
[89], similarity learning [90], and reranking [91] to improve
RSIR performance.

RS images usually have different resolutions, different ob-
ject types, and different image complexities. Therefore, the
data-driven metric learning is suitable for deep learning-based
RSIR methods since both the features and similarity measure are
learned from data. Moreover, RSIR performance is possible to
be further improved when the network is trained in an end-to-end
manner.

5) Hashing-Based Methods: For RSIR with large-scale
archives, the storage cost and the retrieval efficiency are two
factors to be considered. Hashing- based methods aim to perform
RSIR with short binary codes, which have low storage cost and
high retrieval efficiency. The existing hashing-based methods
can be divided into unsupervised hashing and supervised hash-
ing [25].

The unsupervised hashing methods rely on unlabeled data
to generate binary hash codes. There have been few unsuper-
vised hashing methods in RS community. Chen and Lu [92]
have proposed an unsupervised multispectral RSIR method,
making use of the unsupervised representation learning ability
of GAN. Reato et al. [93] have presented a simple yet effec-
tive unsupervised RSIR method that represented each image
with primitive-cluster-sensitive multihash codes. Lukac et al.
[94] have improved the well-known kernelized locality-sensitive
hashing method using graphical processing units to make it fea-
sible for parallelization, and thus performing fast parallel image
retrieval. Kong et al. [95] have proposed a low-rank hypergraph
hashing to accomplish for the large-scale RSIR. To improve the
performance of unsupervised hashing methods, self-supervised
methods, semi-supervised methods, and methods relying on
pseudolabel have been explored. As an example, Tan et al.
[96] have proposed a deep contrastive self-supervised hashing,
which uses unlabeled images to learn accurate hash codes.
Tang et al. [97], [98] have proposed a semi-supervised deep
hashing method based on the adversarial autoencoder network
for RSIR. Sun et al. [99] have proposed a soft-pseudolabel-based
unsupervised deep hashing method to well reflect the semantic
distance between intercluster images.

Although unsupervised hashing methods are simple and ef-
fective for generating binary codes for large-scale RSIR, their
performance improvement is limited due to the lack of su-
pervised information. In contrast, supervised hashing methods

often achieves better performance than unsupervised hashing
methods. To address the problem that deep hashing networks
tends to be highly expensive in terms of storage space and
computing resources, Li et al. [100] have developed a quantized
deep learning to hash framework for large-scale RSIR. Song
et al. [101] have proposed an asymmetric hash code learning
for RSIR, attempting to improve the conventional learning one
hash function for both the query and database samples in a
symmetric way. Motivated by the residual net, Han et al. [102]
have developed a cohesion intensive deep hashing model for
RSIR. Liu et al. [103] have presented a deep supervised hashing
model for RSIR in the framework of GANs, named GAN-assist
hashing. Li et al. [104] proposed a large-scale RSIR method
based on deep hashing neural network. Ye et al. [105] have
investigated multiple feature hashing learning for large-scale
RSIR. Tang et al. [106] have developed a new supervised hash
learning method for the large-scale high-resolution RSIR task
based on metalearning. Wang et al. [107] have proposed a novel
triplet ordinal cross-entropy hashing method to fix the problem
that most of the existing hashing algorithms only emphasized
preserving pointwise or pairwise similarity. Shan et al. [108]
have presented a proxy-based hash retrieval method, called deep
hashing using proxy loss, which combines hash code learning
with proxy-based metric learning in a CNN. Liu et al. proposed
a new RSIR method named feature and hash learning, which
consists of a deep feature learning model and an adversarial
hash learning model [109]. For most existing hashing methods,
the hash functions are learned once for all and kept fixed all
the time, which are not suitable for the ever-growing new RS
images. Li et al. [110], therefore, proposed a new online hashing
method, learning and adapting hashing functions with respect to
the newly incoming RS images.

The above supervised hashing methods provide new ways
of performing large-scale RSIR. However, a large number of
labeled images are needed to train a successful network. Besides,
it is also time-consuming to generate binary hash codes.

B. MLRSIR Methods

For SLRSIR, both the query images and other images in the
database are single labeled. The assumption is that each image
is annotated by a single label representing the most significant
semantic content of the image. However, in practical scenarios,
RS images might contain multiple classes (e.g., buildings, roads,
trees, etc.). MLRSIR, a more challenging task than SLRSIR,
assumes each image is associated with multiple labels (also
known as primitive class), and thus is suitable for addressing the
above problem. As illustrated in Fig. 4, the process of MLRSIR
is similar to that of SLRSIR but is a bit different in feature
extraction and performance evaluation. To be specific, for ex-
traction, we need to extract the features of each primitive classes
contained in the image. With respect to performance evaluation,
there have been no ground truth images for each multilabel
query images. The retrieved images are ranked according to
the similarity scores between query image and images in the
database. Thus, the metrics for SLRSIR are not available for
evaluating MLRSIR methods.
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Fig. 4. Flowchart of MLRSIR method. The numbers in the ranked images indicate the similarity values between the query image and images in the database.

The literature has committed efforts to developing MLRSIR
methods, such as handcrafted feature-based methods [111],
[112], [113], [114] and deep learning-based ones [115], [116],
[117], [118], [119], [120], [121]. For handcrafted methods,
Chaudhuri et al. [111] have introduced a semi-supervised graph-
theoretic method in the framework of MLRSIR problems. Dai
et al. have presented a novel hyperspectral RSIR system con-
sisting of a spatial and spectral image description scheme and
a sparsity-based supervised retrieval method [112], which was
improved in their later work [113]. Shao et al. [114] have
conducted a comparative performance evaluation of SLRSIR
and MLRSIR methods on a newly collected multilabeled dataset
termed DLRSD, providing the literature a benchmark dataset
along with the baseline results for MLRSIR research.

Regarding deep learning-based methods, Kang et al. [115]
have proposed a new graph relation network to model the rela-
tions between samples by using a graph structure for multilabel
RS scene categorization and retrieval. Hua et al. [122] took ad-
vantage of pairwise label relations to infer multiple object labels
of a high-resolution aerial image and proposed an innovative
inference network. Sumbul and Demir [117] have proposed a
novel graph-theoretic deep representation learning method in the
framework of MLRSIR problems, aiming to extract and exploit
multilabel co-occurrence relationships associated to each RS
image. In their another work [116], a novel triplet sampling
method in the framework of deep neural networks defined for
MLRSIR was proposed to obtain informative and representative
triplet selection, which is an improved version of the previous
work [114]. To increase retrieval efficiency and reduce feature
storage while preserving semantic information, Cheng et al.
[119] have presented a new semantic-preserving deep hashing
model for MLRSIR. Shao et al. [121] have proposed a novel
MLRSIR approach based on the fully convolutional network,
where the single-scale and multiscale region features were ex-
tracted to perform region-based MLRSIR. Although these meth-
ods are able to achieve satisfactory performance, they mainly

focus on extracting powerful features. The similarity measure
as well as evaluation metric for MLRSIR are not considered.
As an alternative, Imbriaco et al. [120] have defined protocols
for performance evaluation using new metrics and studied the
impact of commonly used losses as well as reranking methods
for MLRSIR. It provides a direction for similarity measure for
multilabel images.

In contrast to SLRSIR, MLRSIR is still a new topic, and most
of the existing works focus on feature extraction. However, as
stated above, there are no ground truth images for each query
image. Therefore, more attention should be drawn to define
protocols for similarity measures and performance evaluations.

C. RASRSIR Methods

RASRSIR performs RSIR between images captured by dif-
ferent sensors and, thus, having different resolutions (e.g., mul-
tispectral and panchromatic images, and multispectral and hy-
perspectral images). The special case is retrieval between optical
and SAR images, which is generally categorized into CMRSIR,
as illustrated in Table I. Given a multispectral (MUL) image as
the query image and panchromatic images as the database im-
ages, Fig. 5 illustrates the flowchart of RASRSIR. The process is
also similar to that of SLRSIR but different in feature extraction.
Specifically, to avoid the difference caused by image resolution,
the features of MUL and panchromatic (PAN) images are fed into
the same feature space before conducting similarity measure.
There is a continually increasing interest to develop RASRSIR
methods with RS images from different sensors. Li et al. [123]
have proposed a source-invariant deep hashing CNN for RASR-
SIR between MUL and PAN images, which were optimized
in an end-to-end manner using a series of well-designed opti-
mization constraints. To maintain the source discrepancy at the
classifier level, Ma et al. [124] have presented teacher-ensemble
learning with the knowledge distillation method. In [125], a
discriminative distillation network was also proposed to address
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Fig. 5. Flowchart of RASRSIR method. The retrieved images with red rectangles stand for images that are correctly retrieved.

the inconsistency between different image sources. Gao et al.
[126] have proposed a dubbed multiview graph convolutional
hashing method to fuse multisource RS images. Xiong et al.
[127] have explored to explicitly address a data drift problem
by mapping the source domain to the target domain in an image
translation-based framework. Ma et al. [128] have developed a
dual-modality collaborative learning model to fully explore the
specific information from diverse RS images.

RASRSIR is a promising direction for RSIR, and the core
problem is to alleviate the effect of inconsistency between
different image sources.

D. CMRSIR Methods

CMRSIR is similar to RASRSIR in terms of the retrieval
process, and the single difference lies in data modality. For
RASRSIR, the query image and the images in database have the
same modality, which is not the case for CMRSIR. The literature
focuses attention on four modality groups: sketch–image [129],
[130], [131], optical–SAR [132], [133], [134], text–image[135],
[136], [137], [138], [139], [140], and audio–image [141], [142],
[143], [144], [145], [146], [147], [148].

The existing CMRSIR methods for sketch–image and optical–
SAR are fewer than that of text–image and audio–image. Jiang
et al. [129] have taken free-hand sketches into account and
addressed the problem of sketch-based aerial image retrieval.
Chaudhuri et al. [130] have exploited the data modality compris-
ing more spatial information (sketch) to extract other modality
features (image) with cross-attention networks. Xu et al. [131]
have developed a sketch-based RSIR model to learn a deep joint
embedding space with discriminative losses, which was then
evaluated on a sketch RS image dataset. Regarding optical–SAR
CMRSIR, Xiong et al. [132] have addressed the prominent
modality discrepancy caused by different imaging mechanisms
in a deep cross-modality hashing network. To effectively deal

with the discrepancies, Sun et al. [133] have conducted a similar
work. They have proposed a multisensor fusion and explicit
semantic-preserving-based deep hashing method. Sumbul et al.
[134] have collected the multimodal BigEarthNet (BigEarthNet-
MM) benchmark archive containing pairs of Sentinel-1 and
Sentinel-2 image patches.

For text–image and audio–image CMRSIR, there have been a
great number of methods developed in recent years. Regarding
text–image CMRSIR, to bridge the modality gap, Lv et al. [135]
have proposed a fusion-based correlation learning model for
text–image retrieval. Yuan et al. [136] have presented a text–
image retrieval framework based on global and local information
and designed a multilevel information dynamic fusion module
to efficiently integrate features of different levels. In their other
works, an asymmetric multimodal feature matching (FM) net-
work was developed to explore a fine-grained multiscale method
for text–image retrieval in [137]. Besides, a concise but effective
cross-modal retrieval model was designed by considering the
characteristics of multiscale and target redundancy in RS [138].
Cheng et al. [139] have established the direct relationship be-
tween RS images and paired text data. To address the limitation
that the existing approaches require a high number of labeled
training samples, Mikriukov et al. [140] have proposed an unsu-
pervised cross-modal contrastive hashing method for text–image
retrieval. With respect to audio–image CMRSIR, there have been
a large number of methods developed in recent years. Chen et al.
[141], [142], [143] have proposed a few audio–image retrieval
methods. Guo et al. have proposed a CMRSIR method for RS
image and spoken audio [144], which was improved in a later
work [145]. Existing methods for RS image–voice retrieval rely
primarily on the pairwise relationship. To overcome this limi-
tation, Ning et al. [146] have proposed a semantics-consistent
representation learning method for image–voice retrieval. Yang
et al. [147] have proposed a cross-modal feature fusion retrieval
model, which provides a more optimized cross-modal common
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Fig. 6. Flowchart of CVRSIR method. The retrieved images with red rectangles stand for images that are correctly retrieved.

feature space than the previous models and, thus, optimizes the
retrieval performance. In a later work [148], they have presented
the multifusion method.

As an emerging research topic, a great number of CMRSIR
methods have been developed to perform sketch–image, optical–
SAR, text–image, and audio–image retrieval. The performance
of CMRSIR methods would be further improved as long as the
effect of modality difference is well alleviated.

E. CVRSIR Methods

CVRSIR is known as image geolocalization [149] in the
literature, aiming to determine the geographic information of an
image (e.g., ground-view image) by referencing to a geotagged
image of another view (e.g., overhead-view image). Therefore,
image geolocalization is essentially one kind of RSIR applica-
tions. Fig. 6 illustrates the basic flowchart of CVRSIR between
ground-view image and overhead-view images. It is notable that
CVRSIR is similar to SLRSIR in terms of the retrieval process,
and the differences lie in which the query image and other images
in the database are captured from different views, and for each
query image, there is generally one ground truth retrieved image.

The existing CVRSIR methods consist of ground–ground,
ground–overhead, and overhead–overhead, as listed in Table I.
Most CVRSIR methods are overhead–overhead since they are
able to obtain an overhead image with a random location on
the earth. Zhang et al. [150] have proposed a deep network
that embeds spatial configuration of the scenes into feature
representation. Zemene et al. [151] have used image matching in
a structured database of city-wide reference images with known
GPS coordinates. Inspired by the human visual system, Lin et al.

[152] have proposed a framework to jointly learn the discrimi-
native representation and detect salient key points with a single
network. Rodrigues and Tani [153] have retrieved corresponding
aerial views from a large database of geotagged aerial imagery.
Hu et al. [154] have leveraged on the recent success of deep
learning and proposed a cross-view matching network for the
ground-to-aerial geolocalization task. Ground–overhead geolo-
calization is the most challenging geolocalization task due to the
large variation of viewpoint and irrelevant content. To address
this issue, Zeng et al. [155] have taken drone-view information
as a bridge between ground-view and satellite-view domains,
and proposed a peer learning and cross diffusion framework.
The rest of the works can be found in [156], [157], [158], [159],
[160], [161], and [162].

The aforementioned CVRSIR works mainly focus on ground–
satellite and ground–aerial geolocalization; we here introduce
a novel similarity learning based on CVRSIR (SL-CVRSIR)
method for ground–drone geolocalization. To evaluate the per-
formance of SL-CVRSIR, we also collect a new dataset named
CVGD, which will be opened later for uncommercial purposes.

Fig. 7 illustrates the architecture of SL-CVRSIR, which has
two identical subnetworks (i.e., CNN1 and CNN2) without
shared weights, and are designed to extract the features of
overhead-view images and ground-view images, respectively.
SL-CVRSIR takes the positive and negative image pairs as input,
where positive pairs are composed of images from the same
location, while negative pairs are composed of images from
different locations. The output of the fully connected layer (i.e.,
Fo and Fg) from each subnetwork is then combined through
subtraction, and the result is passed through a fully connected
(Fc) layer with a single output. The sigmoid operation is used
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Fig. 7. Flowchart of the proposed CVRSIR method based on similarity learning.

to convert the output of Fc layer to a similarity score between 0
and 1, indicating whether the overhead-view and ground-view
images in the image pair are from the same location or not.

To train SL-CVRSIR, the combined loss L is defined as
follows:

L = Lc + Lce (1)

Lc =
1

2
(1− y) d2og +

1

2
y{max (0,m− dog)}2 (2)

Lce = −q log (p)− (1− q) log (1− p) (3)

where Lc is the contrastive loss [79], aiming to compare the
similarity between overhead-view and ground-view images,Lce

is the cross-entropy loss, aiming to measure the difference
between the label and similarity score. y and q are the labels
of image pair with 1 for positive pair and 0 for negative pair, and
p is the similarity score. dog is the Euclidean distance between
overhead-view image and ground-view image in the image pair,
and m is the margin.

Once SL-CVRSIR is trained, the similarity score of each im-
age pair is extracted to perform cross-view retrieval. Specifically,
given one ground-view image (i.e., query image), the overhead-
view images are sorted in descending order by the similarity
values between the query image and each of the overhead-view
images. The query is regarded as a correct query if the overhead-
view image from the same location as the ground-view image is
within the top K% retrieved images.

III. BENCHMARK DATASETS FOR PERFORMANCE EVALUATION

OF RSIR

Benchmark datasets are indispensable for advancing RSIR
approaches and further performance evaluation. As the de-
velopment of RS technology, the literature has witnessed the
remarkable progress on constructing publicly available datasets
for RSIR. These datasets are collected for developing different

RSIR methods and, thus, can be divided into different cate-
gories, including SLRSIR datasets, MLRSIR datasets, RASR-
SIR datasets, CMRSIR datasets, and CVRSIR datasets. We,
therefore, survey the publicly available benchmark datasets pre-
sented for different RSIR methods in recent years, as shown
in Table III. In the table, we list the basic characteristics of
each dataset for simple comparison. The readers are referred
to corresponding datasets for more details. It is worth noting
that not all of these datasets are originally collected for RSIR.
In the following section, we select and detail several represen-
tative datasets for each RSIR method category, i.e., SLRSIR,
MLRSIR, RASRSIR, CMRSIR, and CVRSIR. These represen-
tative benchmark datasets will be further used for performance
evaluation in Section IV.

A. SLRSIR Datasets

In the early years, SLRSIR datasets are commonly used for
RSIR because most of the RSIR works focus on SLRSIR at that
time. The accessible SLRSIR datasets in the literature include
UC Merced [163], WHU-RS19 [164], RSSCN7 [165], AID
[166], PatternNet [167], RSI-CB [168], SIRI-WHU [169], and
NWPU-45 [170]. Among these datasets, PatternNet is originally
collected for RSIR while the other datasets are originally col-
lected for scene classification.

We select three representative datasets, i.e., UC Merced,
WHU-RS19, and PatternNet, and introduce them in detail.

1) UC Merced: The UC Merced [163] dataset is originally
collected for land use/land cover with 21 categories, including
agricultural, airplane, baseball diamond, beach, building, cha-
parral, dense residential, forest, freeway, golf course, harbor,
intersection, medium density residential, mobile home park,
overpass, parking lot, river, runway, sparse residential, storage
tank, and tennis court. Each category contains 100 images
cropped from the United States Geological Survey (USGS)
aerial images. Each image in the UC Merced dataset has the size
of 256×256 pixels and the spatial resolution of 0.3 m. As the first
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TABLE III
PUBLIC AVAILABLE BENCHMARK DATASETS FOR RSIR
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publicly available high-resolution RS evaluation dataset, it has
been regarded as a benchmark to develop novel RSIR methods.

2) WHU-RS19: The WHU-RS19 [164] dataset is collected
from the google earth and then categorize into 19 classes, includ-
ing airport, beach, bridge, commercial area, desert, farmland,
football field, forest, industrial area, meadow, mountain, park,
parking, pond, port, railway station, residential area, river, and
viaduct. WHU-RS19 contains 1005 images with the size of
600×600 pixels and the spatial resolution is up to 0.5 m. It
is a more challenging dataset for RSIR, compared with the UC
Merced dataset in terms of its varied spatial resolutions.

3) PatternNet: The PatternNet [167] dataset is a large-scale
dataset collected from U.S. cities via google earth and google
map API, developing RSIR methods and particularly deep learn-
ing based ones. It contains a total of 30 400 images evenly
divided into 38 categories, including airplane, baseball field,
basketball court, beach, bridge, cemetery, chaparral, Christ-
mas tree farm, closed road, coastal mansion, crosswalk, dense
residential, ferry terminal, football field, forest, freeway, golf
course, harbor, intersection, mobile home park, nursing home,
oil gas field, oil well, overpass, parking lot, parking space,
railway, river, runway, runway marking, shipping yard, solar
panel, sparse residential, storage tank, swimming pool, tennis
court, transformer station, and wastewater treatment plant. The
images in the dataset measure 256×256 pixels with the spatial
resolution ranges from 4.69 to 0.06 m. The release of PatternNet
is to overcome the limitations that the existing datasets are small
scale and their images contain a large amount of background and,
thus, might distract accurate retrieval.

B. MLRSIR Datasets

It is time-consuming and laborious to construct a multilabel
archive for RSIR since each image in the MLRSIR dataset is
associated with at least one primitive class (i.e., label). Thanks to
the literature’s efforts, several publicly available datasets avail-
able for MLRSIR have been collected and opened over the past
five years. The existing MLRSIR datasets include DLRSD [114],
WHDLD [121], MLRSNet [171], ML-AID [172], MultiScene
[173], and BigEarthNet [174].

Among these datasets, three representative archives, i.e.,
DLRSD, WHDLD, and MLRSNet, are selected and introduced
in detail.

1) DLRSD: The DLRSD [114] dataset is labeled based on the
UC Merced archive [163], and therefore, it also consists of 2100
images with the size of 256×256 pixels and the spatial resolution
of 0.3 m. DLRSD is a dense labeling dataset, where the pixels
of each image in the UC Merced dataset are annotated with one
of the 17 primitive classes (labels), including airplane, bare soil,
building, car, chaparral, court, dock, field, grass, mobile home,
pavement, sand, sea, ship, tank, tree, and water. It is an improved
version of the multilabel archive [111] and is available for not
only image-level tasks, such as SLRSIR and MLRSIR, but also
pixel-level task, such as semantic segmentation.

2) WHDLD: Similar to DLRSD, the WHDLD [121] dataset
is also a pixel-level dense labeling dataset, where the images are
cropped from a large mosaic image with the images acquired by

Gaofen-1 and Ziyuan-3 satellites. The pixels of each image in
WHDLD are annotated with the following six primitive classes
(labels), including building, road, pavement, vegetation, bare
soil, and water. WHDLD contains 4940 images with the size
of 256×56 pixels and the spatial resolution of 2 m. WHDLD
is different from DLRSD in terms of the number of images,
image labels, and the spatial resolution of images. Therefore,
it is treated as a complementary dataset to DLRSD for both
image-level and pixel-level tasks.

3) MLRSNet: The MLRSNet [171] dataset is composed of
109 161 images with the size of 256×256 pixels, and the spatial
resolution ranges from 10 to 0.1 m. The images are divided into
46 broad categories, and the number of images in each category
varies from 1500 to 3000. In addition, there are 60 predefined
primitive classes (labels), containing airplane, airport, bare soil,
baseball diamond, basketball court, beach, bridge, buildings,
cars, chaparral, cloud, containers, cross walk, dense residential
area, desert, dock, factory, field, football field, forest, freeway,
golf course, grass, greenhouse, gully, harbor, intersection, island,
lake, mobile home, mountain, overpass, park, parking lot, park-
way, pavement, railway, railway station, river, road, roundabout,
runway, sand, sea, ships, snow, snowberg, sparse residential
area, stadium, swimming pool, tanks, tennis court, terrace, track,
trail, transmission tower, trees, water, wetland, and wind turbine.
Each image in MLRSNet is associated with at least one of the
60 labels. In contrast to DLRSD and WHDLD, MLRSNet has
the characteristics of hierarchy, large scale, and high diversity.
However, as an image-level multilabel dataset, it cannot be used
for pixel-level tasks.

C. RASRSIR Dataset

The existing public datasets for RASRSIR are not as many as
that for SLRSIR and MLRSIR, and the DSRSID [123] dataset is
one of the open datasets. The images in DSRSID are titled from
panchromatic images and multispectral images acquired by the
Gaofen-1 optical satellite and are grouped into image pairs where
each pair is a combination of one panchromatic image and one
multispectral image. The one-channel panchromatic image has
the size of 256×256 pixels and the spatial resolution of 2 m,
and the four-channel multispectral image has the size of 64×64
pixels with the spatial resolution of 8 m. Additionally, DSRSID
consists of eight classes, i.e., aquafarm, cloud, forest, high build-
ing, low building, farm land, river, and water, where each class
contains 10 000 panchromatic and multispectral image pairs.

D. CMRSIR Datasets

CMRSIR is to perform RSIR between different data modal-
ities, such as optical–SAR images, audio—image, and text–
image. There has been a large number of benchmark archives
constructed for CMRSIR: SODMRSID [132], BigEarthNet-
MM [134], RSketch [131], UCM/Syndey-Captions [175],
RSICD [176], UCM/Syndey/RSICD-audio [144], TextRS [177],
and CBRSIR_VS [133].

In the following section, we select four representative
archives, i.e., RSketch, UCM/Syndey/RSICD-audio, TextRS,
and CBRSIR_VS.
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1) RSketch: The RSketch [131] dataset is collected for CMR-
SIR between RS image and sketch. It is composed of 20 cate-
gories, including airplane, baseball diamond, basketball court,
beach, bridge, closed road, crosswalk, football field, golf course,
intersection, oil gas field, overpass, railway, river, runway, run-
way marking, storage tank, swimming pool, tennis court, and
wastewater treatment plant, and each category contains 200 RS
images and 45 sketches. Both the size of RS image and sketch
are fixed to 256×256 pixels. The RS images are collected from
the existing datasets, such as UC Merced [163], WHU-RS19
[164], AID [166], and PatternNet [167].

2) UCM-/Syndey-/RSICD-Audio: The UCM-/Syndey-/
RSICD-audio [144] is collected based on the existing
UCM-/Syndey-Captions [175] and RSICD [176], respectively.
To construct the dataset, each image is given five sentences,
and each sentence of an image is generated by five different
speakers. The spoken audios have varied length ranging from 1
to 15 s, which make the dataset challenging.

3) TextRS: The images in the TextRS [177] dataset are col-
lected from the four existing datasets containing UC Merced
[163], AID [166], PatternNet [167], and NWPU-45 [170]. Tex-
tRS contains 2144 images randomly selected from the four
datasets, and each image is then annotated with five sentences
generated by five different people to guarantee diversity.

4) CBRSIR_VS: The CBRSIR_VS [133] dataset is an optical
and SAR dual-modality RS image dataset. It consists of ten
class labels and 26 901 pairs of optical and SAR images. The
optical images are VHR images with the size of 256×256
and the resolution of 1 m, and the SAR images are from
Sentinel-1 imagery with the size of 64×64 and the resolution
of 10 m.

E. CVRSIR Datasets

The images in a CVRSIR dataset are usually collected from
ground–aerial view and ground–satellite view. The two view
images captured from the same location are aligned to form
image pairs. CVRSIR is a hot topic in recent years, and thus, the
literature has constructed benchmarks of different viewpoints
to advance CVRSIR research, including University-1652 [178],
CVACT [179], AiRound/CvBrCT [180], CVUSA subset [181],
VIGOR [182], Vo and Hays [183], and two cities dataset [184].
Besides, we also release a novel dataset termed cross-view be-
tween ground and drone (CVGD) to perform CVRSIR between
ground-view and drone-view images. The readers are referred
to the following section for more details on CVGD.

We select University-1652, CVACT, CVUSA subset, and the
newly constructed CVGD as representative benchmarks and
introduce them in detail.

1) University-1652: The University-1652 [178] dataset is a
multiview multisource benchmark for drone-based geolocaliza-
tion. It has ground-view, drone-view, and satellite-view images
collected from 1652 buildings of 72 universities. The training
set contains 701 buildings of 33 universities, and the testing
set contains 701 building of the rest 39 universities. It should
be noted that the training set has 71.64 images on average
per location, while the existing datasets generally contain two

images per location. University-1652 has the characteristics of
multisource, multiview, and more images per class.

2) CVACT: The CVACT [179] dataset is a city-scale fully
GPS-tagged cross-view dataset consisting of ground-view
panoramas collected via google street view API and the corre-
sponding satellite-view images. The image resolution of ground-
view image is 1664×832 pixels and is 1200×1200 pixels for
satellite image. Regarding the training set and testing set, there
are 35 532 and 92 802 image pairs, respectively. Besides, it also
provides a validation set with 8884 image pairs. Note that the
training set is from the CVUSA subset [181].

3) CVUSA Subset: The CVUSA subset [181] dataset, a small
version of the original CVUSA [158], is a much larger dataset.
Specifically, the panoramas of CVUSA are selected to form a
CVUSA subset as ground-view images, for each of which the
aerial images at zoom level 19 are downloaded from bing map
in the same geographic area. The panoramas with unavailable
corresponding aerial images are filtered out, and finally 35 532
training image pairs and 8884 testing image pairs are obtained.
The image resolution of the ground-view image and the satellite
image are 1232×224 pixels and 750×750 pixels, respectively.

4) CVGD: Most existing datasets of CVRSIR are ground-
and aerial-view or ground- and satellite-view. No ground- and
drone-view images are included except for the University-1652
dataset. However, the drone images in University-1652 are
actually simulated drone images collected from google earth.
Moreover, all the ground–drone images in University-1652 are
building images without any other objects, and thus, the lit-
erature needs a dataset with high diversity, i.e., images con-
taining different objects. To this end, we collect a ground- and
drone-view dataset, named CVGD. The images in CVGD are
collected from 100 locations in a university. Considering the
fact that, in a real CVRSIR task, there are possibly more than
one ground and drone image pairs indicating the same location
but captured different viewpoints, we collect 2–6 drone images
and 2–7 ground images per location, as shown in Fig. 8.

Fig. 9 illustrates nine examples of ground and drone pairs,
and it can be observed that the images contain different types of
objects, such as building, tree, road, grass, and lake; thus, it is
more challenging than University-1652.

IV. PERFORMANCE EVALUATION OF RSIR METHODS ON

BENCHMARK DATASETS

In this section, we first introduce the performance metrics
for different RSIR methods and then present the results of
representative RSIR methods.

A. Performance Metrics for RSIR

Performance metrics are crucial for performance evaluation of
RSIR methods. Considering the fact that different RSIR methods
need their own measures, we categorize the existing measures
into SLRSIR, MLRSIR, RASRSIR, CMRSIR, and CVRSIR,
and then introduce them in detail.

1) Metrics for SLRSIR: There are several metrics that are
commonly used for performance evaluation of SLRSIR, which
are average normalized modified retrieval rank (ANMRR), mean
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Fig. 8. Process of how the ground- and drone-view images are collected for each location. The red and green points indicate the same location on the ground.

Fig. 9. Example image pairs of nine locations in CVGD dataset.

average precision (MAP), precision at k (P@K), and precision–
recall (PR) curve [58]. The definitions of these metrics are
presented in the following text.

ANMRR is a metric that takes the rank of each returned image
into account and is possibly the most widely used measure for
SLRSIR. Let q be one query image, and ng(q) is the number of
its similar images. ANMRR is defined by

ANMRR =
1

nq

nq∑
q=1

NMRR(q) (4)

wherenq is the query times, and NMRR(q) is defined as follows:

NMRR(q) =
ar(q)− 0.5 [1 + ng(q)]

1.25k(q)− 0.5 [1 + ng(q)]
(5)

where ar(q) = 1
ng(q)

∑ng(q)
k=1 r(k) is the average rank, and r(k)

is the retrieved rank of the kth image, which is defined as follows:

r(k) =

{
r(k), r(k) ≤ k(q)
1.25k(q), r(k) > k(q)

(6)

where k(q) = 2ng(q). ANMRR ranges between zero and one,
and the lower the value, the better the performance.

To explain the other three metrics clearly, we here introduce
precision and recall first. Precision is the ratio of the images
retrieved that are similar to the query image, while recall is the
ratio of the images that are similar to the query image that are
successfully retrieved.
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MAP is a commonly used performance metric and is defined
as follows:

MAP =

∑nq
q=1 AveP(q)

nq
(7)

where AveP is the average precision. P (k) is the precision at
cutoff k, i.e., the metric P@K. rel(k) is the indicator function
with the value of 1 if the image at rank is relevant and 0 if
otherwise.

PR curve can be obtained by plotting precision and recall val-
ues. In practice, the 11-interpolated PR curve is usually selected,
which is achieved by plotting the interpolated precision measure
at 11 recall levels (i.e., 0, 0.1, 0.2, …, 1). The interpolated
precisionPinter at recall level k is defined as the highest precision
for any recall level k′ ≥ k

Pinter(k) = max(P (k′)). (8)

2) Metrics for MLRSIR: The existing evaluation measures
for SLRSIR are not suitable for MLRSIR since there has no
ground truth (i.e., similar images) for each multilabel image in
the MLRSIR dataset. To leverage this limitation, the measures
designed for multilabel classification are used for performance
of MLRSIR [111]. These measures are accuracy, precision,
recall, hamming loss (HL), and F1-measure (F1), and are defined
as follows:

pAccuacy =
1

m

m∑
i=1

|lq ∩ lri |
|lq ∪ lri |

(9)

pPrecision =
1

m

m∑
i=1

|lq ∩ lri |
|lri |

(10)

pRecall =
1

m

m∑
i=1

|lq ∩ lri |
|lq| (11)

pHL =
1

m

m∑
i=1

|lq ⊕ lri |
n

(12)

pF1 =
1

m

m∑
i=1

2 |lq ∩ lri |
|lq|+ |lri |

(13)

where ∩, ∪, and ⊕ are the logical AND, logical OR, and logical
XOR operations, respectively. | · | is the number of nonzeros, lq
is the multilabel vector of query image, lri is the ith retrieved
image, n is the number of labels (i.e., primitive classes), and m
is the number of retrieved images.

Although the above-mentioned measures can be used for per-
formance evaluation, they are originally designed for multilabel
classification and, thus, are not well suited for MLRSIR. To
circumvent this limitation, Imbriaco et al. [120] presented a
novel and effective metric for MLRSIR.

3) Metrics for RASRSIR and CMRSIR: Regarding RASRIR
and CMRSIR, there have been ground truth for each query
image; therefore, the metrics for SLRSIR can be used for perfor-
mance evaluation. It is worth noting that for text–image retrieval
in CMRSIR, recall at k (R@K, K = 1, 5, and 10) is the widely
used measure [177], which is defined as the fraction of the top
K results that are relevant to the query.

4) Metrics for CVRSIR: The most commonly used metric for
evaluating the performance of CVRSIR is recall at K (R@K, K
= 1, 2, 3, …) [179]. For the metric R@K, the special case is
which K equals 1%×N , where N is the number of images.
R@K then becomes R@top 1%, another widely used metric for
performance evaluation.

B. Results of RSIR Methods

This section presents the performance comparisons of repre-
sentative RSIR methods of each category on the corresponding
benchmark datasets. It is notable that these results (except for the
results on CVGD dataset) are collected from the published works
since it is impossible to reimplement all of these algorithms
that are not publicly available. To give a fair comparison, all
the results are obtained on the same retrieval dataset. Besides,
for RASRSIR and CMRSIR methods, there are two retrieval
scenarios, i.e., “A→B” (Retrieve B with A as the query) and
“B→A” (Retrieve A with B as the query).

1) Results of SLRSIR: Table IV presents the performance of
some representative SLRSIR methods, including handcrafted
feature-based methods (i.e., local features, VLAD-PQ, mor-
phological texture, IRMFRCAMF, BoVW, GIST, LBP, gabor
texture, and VLAD) and deep learning based methods (i.e.,
VGGM_P, VGGM_F, LDCNN, UFL, and ResNet50_P) on UC
Merced, WHU-RS19, and PatternNet dataset.

As can be observed from Table IV, deep learning based meth-
ods greatly improve the performance of handcrafted feature-
based methods by a significant margin on the three datasets.
However, UFL achieves comparative performance with hand-
crafted feature-based methods on the PatternNet dataset. The
result makes sense since UFL is an unsupervised deep learning
method. For the deep learning-based methods, LDCNN (belong-
ing to the novel network-based methods) achieves remarkable
performance. Specifically, LDCNN outperforms CaffeRef_F
and ResNet50_P (belonging to the feature extraction-based
methods) on WHU-RS19 and PatternNet datasets, respectively,
indicating that training novel CNNs from scratch are capable of
learning more discriminative features. For UC Merced dataset,
LDCNN obtains slightly worse performance than VGGM_P and
VGGM_F. This is because LDCNN is trained using the AID
[166] dataset, which has large variation from the UC Merced
dataset. Therefore, the performance of LDCNN could be further
improved when training using images that are similar to the
target dataset, and in particular using the target dataset [163].
The results demonstrate that CNN features improve SLRSIR
performance by a significant margin compared with handcrafted
features. Among the CNN-based methods, the LDCNN net-
work achieves the best performance on both WHU-RS19 and
PatternNet dataset, and is potential to perform the best on the
UC Merced dataset when the target dataset is used for training.
Additionally, ResNet often performs better for RSIR than other
pretrained CNNs and would be a potential CNN network for
practical application scenarios.

2) Results of MLRSIR: The performance of MLRSIR meth-
ods is evaluated on DLRSD and WHDLD datasets. The results
are shown in Table V. It is obvious that deep learning based
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TABLE IV
PERFORMANCE COMPARISONS OF SLRSIR METHODS ON UC MERCED, WHU-RS19, AND PATTERNNET DATASETS

methods (i.e., SSRCF and MSRCF) outperform handcrafted
feature-based methods (i.e., BoVW, LBP, gabor texture, and
MLIR) in terms of HL, accuracy, precision, recall, and F1 met-
rics. For deep learning based methods, the multiscale region fea-
ture (i.e., MSRCF) performs better than the single-scale region
feature (i.e., SSRCF) as expected; thus, MLRSIR could benefit
from combining CNN features extracted from different layers.
Specifically, MSCRF achieves about 3% and 5% improvement
on DLRSD and WHDLD, respectively, in terms of accuracy
values. Overall, for handcrafted features, BoVW obtains the best
performance, with the accuracy value of 0.5454 for DLRSD and
0.7013 for WHDLD.

According to the results in Table V, deep learning has demon-
strated its capacity for promoting MLRSIR. It is notable that
both SSRCF and MSRCF features are extracted based on FCN
network [196]. Thus, the performance is possible to be fur-
ther improved if a more sophisticated network is exploited.
The results indicate that CNN features improve MLRSIR per-
formance by a significant margin compared with handcrafted
features. Among the two CNN-based methods (i.e., SSRCF
and MSRCF), MSRCF combines features of different layers

to obtain multiscale features and thus achieves better perfor-
mance. It would be a potential method for practical application
scenarios.

3) Results of RASRSIR: The performance comparisons of
RASRSIR methods for retrieval between MUL and PAN im-
ages on DSRSID dataset are summarized in Table VI. As the
results shown, SIDHCNNs achieve remarkable performance for
both “PAN→MUL” and “MUL→PAN” retrieval scenarios, and
outperforms the other methods by a large margin in terms of
MAP values.

To be specific, SIDHCNNs improves the worst perform-
ing method CCA by 80% for “PAN→MUL” and 81% for
“MUL→PAN.” The worst performance is because CCA works
in an unsupervised way. In contrast, the supervised method
SCM performs better than CCA, which achieves about 22%
and 23% improvement for “PAN→MUL” and “MUL→PAN,”
respectively. Regarding DCHM, it is the second-best performing
method benefiting from deep learning, indicating that deep
learning can contribute to develop more effective RASRSIR
methods. The remarkable performance of SIDHCNNs indicates
that CNN integrating with hash learning is a potential solution
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TABLE V
PERFORMANCE COMPARISONS OF MLRSIR METHODS ON DLRSD AND WHDLD DATASETS

TABLE VI
PERFORMANCE COMPARISONS OF RASRSIR METHODS ON DSRSID DATASET

for retrieval between PAN and MUL images even with short
hash codes.

4) Results of CMRSIR: Four kinds of CMRSIR methods,
including sketch–image, optical–SAR, audio–image, and text–
image, are evaluated on four cross-modal datasets, which are
RSketch, CBRSIR_VS, UCM/Syndey/RSICD-audio, and Tex-
tRS, respectively. The results are presented in Table VII.

For sketch–image CMRSIR methods, SBRSIR performs the
best on RSketch dataset. Specifically, the performances are
0.9091 and 0.5008 for seen and unseen categories (Seen cat-
egories mean the samples are used for training, while unseen
categories mean the opposite), respectively, in terms of MAP
values. Sketch-a-Net performs poorly on both seen and un-
seen categories due to the shallow architecture of network.
Although DSM improves the performance of Sketch-a-Net, the
improvement is limited. As the second-best method, LDF-CLS
achieves a bit worse performance than SBRSIR but improves

the performance of Sketch-a-Net and DSM by a remarkable
margin. The results indicate that the deep hash-based method
(i.e., SBRSIR) is a potential solution for sketch–image retrieval
whether the categories are seen or unseen category. Regarding
CMRSIR between VHR and SAR images, MsEspH outperforms
other three methods for both “VHR→SAR” and “SAR→VHR”
retrieval scenarios. For example, compared with the second-best
method DSMHN, MsEspH achieves about 4% improvement and
would be a potential solution for retrieval between VHR and
SAR images.

For CMRSIR between audio (A) and image (I), CNN+M,
CNN+ΔM, and CNN+Δ2M obtain comparative performance
for “I→A” on UCM-audio, Sydney-audio, and RSICD-audio
datasets. For “A→I”, overall, CNN+M is the best performing
method. It is notable that CNN+SPEC performs the worst
for both “A→I” and “I→A” retrieval scenarios; therefore, the
discriminative features for audio and image are crucial for
obtaining better performance. With respect to CMRSIR between
text and image, overall, DBTN_EfficientNet outperforms other
method in terms of R@1, R@5, and R@10 values. These results
indicate that the deeper CNNs (i.e., ResNet50, Inception_v3,
and VGG16) do not achieve remarkable performance when
combined with DBTN.

5) Results of CVRSIR: Table VIII presents the results of
CVRSIR on three benchmark datasets, i.e., University-1652,
CVACT, and CVUSA subset. For the University-1652 dataset,
the method proposed by Wang et al. outperforms other methods
by a significant margin for “Drone→ Satellite” and “Satellite→
Drone” retrieval scenarios in terms of R@1 value. Besides, it can
be observed that each method performs better for “Satellite →
Drone” than “Drone → Satellite” scenario. This is because for
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TABLE VII
PERFORMANCE COMPARISONS OF CMRSIR METHODS ON FOUR KINDS OF

CROSS-MODAL DATASETS

“Satellite→Drone,” there are multiple true-matched drone-view
images for query satellite image. The success of Wang et al.’s
method is due to the integration of local patterns in image, which
are important for cross-view localization. Therefore, in practical
application scenario, it is recommended to take the local features
into account. Regarding the CVACT and CVUSA subset, SAFA
achieves better performance than other methods and, in particu-
lar, CVM-Net in terms of R@1, R@5, R@10, and R@ Top 1%
values. To be specific, the R@1 values of CVM-Net are 0.2015
and 0.1880 for CVACT and CVUSA subsets, respectively. In
contrast, SAFA improves the performance of CVM-Net by 61%
for CVACT and 71% for CVUSA subset. The results indicate
that spatial features are important for cross-view localization.
SAFA would be a potential solution for geolocalization.

In addition to the benchmark datasets mentioned above, we
also report the performance of SL-CVRSIR on our CVGD
dataset, as shown in Table IX. The presented SL-CVRSIR is

compared with two methods, including FM and improved fea-
ture matching (IFM). For the FM method, we extract the features
of overhead-view images and ground-view images from the first
fully connected layer of the subnetwork pretrained on ImageNet
and perform CVRSIR following the workflow, as illustrated in
Fig. 6. While for the IFM method, it is similar to FM and the only
difference is that the subnetwork in IFM is from SL-CVRSIR.
To train SL-CVRSIR, the 100 locations in CVGD are randomly
split into training set, validation set, and testing set with the
ratio of 6:2:2, and then the images of each location constitute
the positive and negative image pairs. Considering the fact that
CVGD is a small-scale dataset, we increase the training set by
flip and rotation, and the weights of convolutional layers of the
subnetwork are kept frozen. The initial learning rate is set to
3e-5 and is decreased to 0.9 times of the former learning rate
every ten epochs, and the batch size is set to 128 with 64 positive
pairs and 64 negative pairs.

It can be observed that SL-CVRSIR outperforms FM and
IFM and particularly FM in terms of the recall at top K% (K =
1, 5, 10, 15, 20) metric, indicating that the proposed similarity
learning-based method is an effective approach for CVRSIR.
Regarding FM and IFM, it is notable that the trained subnetwork
performs better than the pretrained subnetwork as expected.
Furthermore, the subnetwork VGG16 achieves overall better
performance than AlexNet for all of the three methods; therefore,
it is possible that the performance could be further improved
when using a deeper subnetwork.

V. CHALLENGES AND POTENTIAL SOLUTIONS FOR RSIR

Over the past decade, RS community has witnessed the sig-
nificant progress of RSIR on developing novel methods and
constructing new benchmark datasets. However, RSIR has been
facing some challenges, which need to be addressed to further
promote RSIR research. Here, we present five main challenges
for current RSIR: lack of large-scale RSIR datasets, large dif-
ference between RS images, difficulty in reproducing results
of existing methods, inconsistent dataset split and evaluation
protocol, and semantic gap in CBRSIR system.

A. Lack of Large-Scale RSIR Datasets

RSIR datasets are crucial for developing RSIR algorithms, es-
pecially data-driven methods (i.e., deep learning). The literature
has committed to constructing new datasets for RSIR methods
of different categories over the past decade, and there have
been a few publicly available benchmark datasets, as shown in
Table II. Unfortunately, the existing datasets have the following
limitations. First, the commonly used datasets collected in early
years are often small scale on which the results have gradually
been saturated. Moreover, these datasets are too small to develop
deep learning based approaches. Second, some existing datasets,
such as WHU-RS19 [164], AID [166], and NWPU-45 [170], are
originally collected for scene classification rather than RSIR.
The problem is that their images contain large amounts of back-
ground unrelated to image category, and thus may distract RSIR.
Third, the existing large-scale datasets are not large enough for
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TABLE VIII
PERFORMANCE COMPARISONS OF CVRSIR METHODS ON UNIVERSITY-1652, CVACT, AND CVUSA SUBSET DATASETS

TABLE IX
PERFORMANCE OF SL-CVRSIR ON THE CVGD DATASET

training deep learning networks from scratch, although the litera-
ture has collected some large-scale datasets. In practice, transfer
learning is still a commonly accepted strategy to overcome this
limitation.

To address the dataset related issues, much larger RSIR
datasets are required. Besides, we should keep in mind the
differences between different categories of RSIR methods when

creating datasets and follow the guidance on creating benchmark
datasets for RS image interpretation [208].

B. Large Difference Between RS Images

With the rapid development of RS technology, more and more
RS images have become available. Generally, these images have
varied resolutions, complexities, and even modalities, presenting
great challenges for RSIR and in particular the cross-source
RSIR. To be specific, for unisource RSIR (i.e., SLRSIR and
MLRSIR), although the query images and images to be retrieved
are from the same source, they might be different in terms
of image size, resolution, scale, etc., leading to the problem
of big intraclass diversity and high interclass similarity. For
cross-source RSIR (i.e., RASRSIR, CMRSIR, and CVRSIR),
retrieval is performed between two sources. The large differ-
ences between RS images may also degrade the performance.
For example, RASRSIR is generally to perform retrieval be-
tween images captured by two different sensors (e.g., multi-
spectral and panchromatic sensors of one satellite), which is
also the case for the existing DSRSID dataset [123]. However,
RASRSIR will become more challenging when the multispectral
and panchromatic images are from more than one satellite.
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Considering the large difference between RS images, there
are two potential solutions: First, constructing a large dataset
containing images with varied resolutions, complexities, and
scales. Second, developing novel RSIR algorithms and partic-
ularly deep learning based approaches to learn more powerful
and discriminative features.

C. Difficulty in Reproducing Results of Existing Methods

A large number of RSIR methods have been developed over
the past decade, and some of them even achieved SOTA perfor-
mance. Some of these methods, however, are unable to reimple-
ment because of the lack of open implementations. Besides, it is
difficult to replicate the same results presented in the published
works because the necessary implementation details were not
provided. For example, to train a successful CNN, some tricks,
such as data augmentation and dropout, are often exploited. It
is impossible to replicate exactly the same results without these
details.

RS community may learn from CV domain, where the open-
source implementation and necessary details are often provided.

D. Inconsistent Dataset Split and Evaluation Protocol

A developed algorithm needs to be compared with the existing
methods to demonstrate its performance. To this end, we need
to either reimplement these methods or collect the results from
published works. The former is a challenge, as discussed above.
While for the latter, the results presented in related works may
not be feasible due to the inconsistent dataset split and evaluation
protocol. For example, most existing RSIR datasets do not
provide dataset splits, such as training set, validation set, and
testing set. In practice, these dataset splits are often obtained by
randomly dividing the dataset into different parts, resulting in
different dataset splits. Besides, the evaluation protocol may also
be different. For example, before evaluating an RSIR method,
we need to select the query images and performance metrics. It
is not fair to compare two RSIR methods with totally different
query images. Moreover, the methods may be evaluated using
different metrics, making it impossible to compare them directly.

The above-mentioned issues could be overcome as long as
we provide the dataset splits and evaluation protocol when
constructing new RSIR datasets, as CV domain does.

E. Existence of Semantic Gap

Most of the existing RSIR methods were performed in the
feature level, relying on visual features to compare similarity
between RS images. However, the results cannot well reflect the
users’ real query intensions due to the “semantic gap” between
the visual features and, in particular, the low-level features
and the richness of human semantics [209]. As the current
mainstream technique for RSIR, deep learning is able to extract
high-level features containing some semantic information, but
the “semantic gap” problem is still not well explored.

To reduce the effect of “semantic gap,” a potential solution is
to combine deep learning with the traditional techniques, such
as relevance feedback to learn users’ intention.

VI. FUTURE DIRECTIONS FOR RSIR

RSIR is an effective technique for organizing and managing
large RS image archive, and the RS community has committed
great efforts to promote RSIR over the past decade. Thanks to
deep learning, the literature has achieved significant progress in
terms of new RSIR methods and benchmark datasets. However,
some RSIR issues are still required to be addressed. In this
section, we, therefore, point out several potential directions for
RSIR.

A. Constructing More Large and Challenging Datasets

Deep learning has been the mainstream technique for RSIR.
To train a successful CNN, a large volume of labeled images
is required. However, the existing RSIR datasets (as shown
in Table II) are still not large enough to train CNNs from
scratch. Besides, RS images generally have varied resolutions,
complexities, and modalities in real RSIR scenarios. Therefore,
these factors should be taken into account when constructing
RSIR datasets to meet the real RSIR scenarios.

B. Few- and Zero-Shot Learning (FSL and ZSL) for RSIR

Current RSIR methods focus the attention on developing
novel supervised algorithms, in particular CNN-based methods.
The prerequisites for these methods are large-scale labeled im-
age archives. However, it is time-consuming and laborious to
annotate a huge volume of RS images. FSL is a type of machine
learning method where the training set contains limited labeled
samples, and ZSL even requires no labeled samples, which have
been two commonly used techniques for RS task, such as scene
classification [210], [211], [212]. FSL and ZSL provide RS
community a potential direction for developing effective RSIR
methods without large-scale labeled images.

C. Developing Novel MLRSIR and CMRSIR Methods

MLRSIR and CMRSIR are still new topics and have some
advantages over SLRSIR. For example, MLRSIR is able to
perform fine-grained retrieval for users, which is, however, not
available by using SLRSIR. By assuming such a situation, one
intends to search an outdoor basketball court where there is a
parking lot and restaurant nearby. MLRSIR is to conduct RSIR
between multilabel images, thus is feasible for the above task.
Regarding CMRSIR, the text–image and audio–image CMR-
SIR methods are friendly for users with no expert knowledge.
Therefore, developing novel MLRSIR and CMRSIR methods
will promote the application of RSIR.

D. Incremental Learning for RSIR

Current RSIR methods are trained and evaluated using static
RS datasets and, thus, is not suited for incremental scenarios
[213]. Specifically, most of the RSIR methods assume that
the trained model has seen all the image categories, which
is, however, not the case in real-world applications as new
RS images are constantly emerging. This is also the reason
why RSIR methods generally achieve worse performance when
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transferred to unseen images. Therefore, one potential direction
is to develop incremental learning methods for RSIR that can
deal with incremental streams of new RS image.

E. Hashing Methods for Large-Scale RSIR

In practical RSIR applications, we are facing large amounts
of RS images. RSIR in a large-scale scenario is challenging
mainly in two aspects. On the one hand, more storage space
is needed to store RS images and features. On the other hand,
it is time-consuming to perform one query in a large-scale RS
archive. Hashing methods are able to generate compact binary
codes for RSIR, which can not only save storage cost but also
have high retrieval efficiency, providing a potential direction for
large-scale RSIR. The key is to balance the tradeoff between
efficiency and accuracy.

VII. CONCLUSION

As one of the research topics in RS community, RSIR has
obtained great improvements in terms of methods and bench-
mark datasets over the past decade. We, therefore, in this article
provide a comprehensive and systematic survey of the recent
achievements of RSIR and discuss its challenges and potential
future directions. To be specific, we first group the existing RSIR
methods in a hierarchical category and review the related works
from five RSIR category, including SLRSIR, MLRSIR, RASR-
SIR, CMRSIR, and CVRSIR. Then, we present the benchmark
datasets for each RSIR category. To promote CVRSIR, we pro-
posed an effective method based on the similarity learning and
constructed a new ground–drone dataset for performance evalu-
ation. Besides, we compared the performance of representative
RSIR methods of each category on some benchmark datasets.
Finally, we discussed the challenges and potential directions for
RSIR.
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