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Abstract—Surface soil organic carbon (SOC) content is among
the first-order controls on the rate and extent of Arctic permafrost
thaw. There is a large discrepancy in current SOC estimates in
Arctic tundra, where sparse measurements are unable to capture
SOC complexity over the vast tundra region. Synthetic aperture
radar (SAR) data are sensitive to surface vegetation, roughness,
and moisture conditions, and may provide useful information on
surface SOC properties. Here, we investigated the potential of mul-
titemporal Sentinel-1 C-band SAR data for regional SOC mapping
in the Arctic tundra through principal component analysis (PCA).
Multiple in situ SOC datasets in the Alaska North Slope were
assembled to generate a consistent surface (0–10 cm) SOC and bulk
density dataset (n = 97). The radar VV backscatter shows a strong
correlation with surface SOC, but the correlation varies greatly
with surface snow, moisture, and freeze/thaw conditions. However,
the first principal component (PC1) of radar backscatter time series
from different years shows spatial consistency representing dom-
inant and persistent surface backscatter behavior. The PC1 also
shows a strong linear correlation with surface SOC concentration
(R = 0.65, p<0.01), and an exponential relationship with bulk
density (R = −0.65, p<0.01). The resulting predicted SOC maps
show much lower soil bulk density and higher SOC concentration
in the southern shrub tundra area than in the northern coastal
region, consistent with in situ data. Our analysis shows that it is
possible to separate the effects of different factors on the radar
backscatter response using PCA and multitemporal SAR data,
which may lead to more effective satellite-based methods for Arctic
SOC mapping.

Index Terms—Arctic tundra, principal component analysis
(PCA), radar backscatter, soil organic carbon (SOC).
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I. INTRODUCTION

THE northern permafrost region contains a vast amount of
soil organic carbon (SOC), which is potentially vulnerable

to accelerated decomposition losses with continued warming
and permafrost thawing [1], [2]. Highly organic soil, charac-
teristic of tundra, can act as an effective insulator to protect
underlying permafrost from surface warming due to its low bulk
density and thermal diffusivity [3]. Surface SOC is particularly
important in modulating active-layer thaw dynamics [4], [5].
Due to important controls of SOC on soil physical properties,
land surface models or permafrost models rely on regional soil
datasets for soil parameterization. Several soil parameterizations
for organic soils have been developed for model applications in
permafrost areas [6], [7], [8], [9]. Field and laboratory mea-
surements show that soil bulk density has a strong influence on
almost all soil physical properties [10], [11]. Soil bulk density
decreases exponentially with increasing SOC concentration,
with a well-established relationship between these two variables
[11], [12]. Therefore, accurate estimates of soil bulk density or
SOC concentration are essential for reliable model projections
of the permafrost response to future climate trends.

Large discrepancies exist among current estimates of SOC
properties in the northern high latitudes. A recent study reported
more than a twofold difference in the SOC estimates from com-
monly used soil datasets including SoilGrids, the Harmonized
World Soil Database (HWSD), and the Northern Circumpolar
Soil Carbon Database, in the areas between 50°N and 80°N
[13]. These datasets generally rely on geospatial analysis or
statistical approaches to upscale in situ data to provide grid-cell
mean estimates of SOC [2], [14]; however, the extremely sparse
soil pedon measurements available in the northern permafrost
region fail to capture the strong spatial variability of organic
soils and contribute to the large discrepancy in regional SOC
estimates [15]. In addition, regional SOC datasets targeting the
permafrost region generally only provide estimates of the total
SOC stock [1], [2], whereas soil bulk density or SOC concen-
tration information has greater utility for modeling use. There is
also a lack of high-resolution (<∼100 m) SOC datasets in the
permafrost region, which are more suitable for representing the
large characteristic tundra landscape variability.

Remote sensing data, particularly from optical remote sen-
sors, have been widely used in regional soil mapping. Earlier
studies have estimated SOC based on spectral reflectance mainly
using regression methods. These methods may have limited
accuracy in areas with significant vegetation cover, or areas
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with large data gaps due to frequent cloud cover [16], [17].
Synthetic aperture radar (SAR) is sensitive to variations in soil
moisture, vegetation structure, and surface roughness, which can
provide useful information on soil properties, including SOC.
SAR also has other advantages over optical remote sensing in
the Arctic with its all-weather, day, and night imaging abilities.
Therefore, SAR offers strong prospects for mapping diverse
soil properties, including soil moisture [18], texture [19], [20],
and chemistry [21]. Previous studies have successfully used
X- and C-band backscatter to retrieve soil texture due to the
strong control of soil texture on soil hydraulic conductivity and
soil moisture dynamics [19], [20]. These studies have generally
involved mineral soils, whereas similar applications involving
organic soils are lacking, despite the large impact of SOC on
soil hydraulic conductivity. However, a few studies have found
close correlations between C- or L-band SAR backscatter and
soil carbon concentration or bulk density in various ecosystems
including agricultural lands, peatlands, and burned forest/shrub
areas [22], [23]. The correlations were generally attributed to
the sensitivity of SAR scattering processes to surface soil con-
ditions. Moreover, lower-frequency SAR data generally show
stronger sensitivity to SOC variations in more densely vege-
tated areas due to their greater penetration depth and stronger
contribution from surface scattering processes [24]. More recent
studies have explored the use of satellite-based SAR data in high-
resolution digital SOC mapping using statistical approaches
or data mining methods, in addition to using multispectral or
hyperspectral imageries [25], [26], [27], [28]. These studies
show that including SAR images generally helps to improve
model accuracy for SOC estimation than using optical images
only, particularly for wetlands, although the importance of the
SAR data may vary for different regions.

Relatively few studies have investigated SAR applications for
regional soil mapping in the northern permafrost region, which
may be due to the complexity of the radar scattering processes
caused by variations in surface snow and vegetation cover, soil
freeze/thaw transitions, and moisture changes [29], [30], [31],
[32]. It is possible to separate the effects of different factors
on the radar responses using multitemporal analysis based on
statistical approaches [33]. Principal component analysis (PCA)
provides a good way to reduce the redundancy in multiband or
multitemporal remote sensing imagery to reveal the essential
information contained in multidimensional data. After the prin-
cipal component (PC) transformation, the first few PC in the new
axes account for most of the variance in the original dataset and
one or more factors may show more prominent effects on each
PC. PCA has been widely used for change detection [34], land
cover classification, and wetland mapping [35], [36], particularly
based on optical remote sensing, whereas few applications have
involved radar remote sensing for mapping soil properties and
soil moisture variations [30], [33], [37].

SOC in the Arctic region shows strong spatial variability,
accompanying similar heterogeneity in surface moisture, veg-
etation, and roughness conditions. C-band radar backscatter is
sensitive to the above factors and may be effective in character-
izing surface SOC patterns across vast tundra regions where soil
measurements are lacking, but better soil information is needed

TABLE I
LIST OF IN SITU DATASETS

to improve understanding of Arctic permafrost-carbon-climate
feedbacks [38], [39]. Although many studies have used satellite
SAR data in digital soil mapping mainly through data-driven
methods, relatively few studies have investigated the sensitivity
of satellite SAR data acquired in different seasons to variations
in SOC properties, especially in the Arctic region. In this study,
we investigated the sensitivity of multitemporal C-band radar
backscatter time series to multiple factors including SOC and
soil bulk density in Arctic tundra, and its potential for regional
SOC mapping. There is generally a lack of in situ soil measure-
ments in the Arctic for robust analysis. We, therefore, combined
several in situ soil datasets to derive a comprehensive surface
SOC and bulk density dataset in the Alaska North Slope as our
study area. We used the PCA method to separate the effects of
different factors on the C-band backscatter and evaluated the
sensitivity of the first few PCs of backscatter to surface SOC
properties and other confounding factors. The PC or backscatter
showing the highest correlation with the SOC variables was used
in the regional mapping.

II. DATA AND METHODS

A. Study Area and in situ Data

We selected a tundra subregion of ∼2°×4° located on the
Alaska North Slope (≥ 68°N, Fig. 1) as our study area, which
encompasses the Beaufort Coastal Plain and Brooks Range
Foothills ecoregions [40]. The study area is within the core Arc-
tic Boreal Vulnerability Experiment (ABoVE) domain [41] and
has more in situ SOC data than other tundra regions in Alaska and
elsewhere [42], [43], [44]. According to the National Land Cover
Database (NLCD) [45], the Alaska North Slope is dominated
by two major tundra types, including sedge/herbaceous and
scrub/shrub tundra. Beaufort Coastal Plain in the north supports
extensive lowland tundra plant communities, such as sedges,
whereas the warmer Brooks Range Foothills in the south support
tussock tundra, shrub tundra, and mixed tundra communities.
Wetlands are also common in the northern coastal plains, due to
poor drainage and waterlogged soils associated with underlying
permafrost. Based on the NLCD map, the herbaceous tundra,
shrub tundra, and wetlands account for 36.2%, 40.8%, and 4.9%
of the study area, respectively, with the remaining area identified
as barren land (∼9.3%), mainly located in the Mountains of the
Brooks Range.

We used three in situ SOC datasets in our analysis (see Fig. 1
and Table I), including two published datasets [10], [42], [43].
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Fig. 1. (a) Land cover map of the Alaska North Slope study area and the location of three in situ datasets, including data from [42] (Sites_M), [43] (Sites_O), and
[44] (Sites_B). Panels (b) and (c) show typical landscape (credit: Richard Chen) and active-layer soil profile for Herbaceous tundra (Sagwon site) and shrub tundra
(Happy Valley site) in the study region, where the mean active layer thickness is ∼50 cm [39] (indicated by yellow tape measure in photos). The insert figure in
panel (a) shows the location of the study area in Alaska. (a) Study area. (b) Happy valley. (c) Active-layer soil profile.

The first dataset combined soil pedon data from the USDA-
NRCS National Cooperative Soil Survey Soil Characterization
Database and data from the University of Alaska Fairbanks
northern soils research program. The dataset includes a total of
658 soil pedons for the Alaska region and is one of the most ex-
tensive soil C and N databases used in Alaska soil mapping. The
dataset also includes soil classification, horizon designations,
horizon boundary depths, 100 °C oven-dried bulk density, C
and N percentage by high-temperature combustion, and several
other soil parameters [42]. There are about 124 pedons in the
Arctic Alaska region, with an average sampling depth of 126 cm.
We extracted data from sites with horizons spanning more than
5 cm in the top 10-cm soil layer, and with a horizon boundary no
deeper than 15 cm below the surface. If multiple measurements
were available for a single soil pedon, they were weighted based
on the horizon depths. After processing, there were 54 sites with
surface (0–10 cm) SOC and/or bulk density measurements in our
study area.

The O’Connor dataset represents three watersheds in the
Arctic Foothills region, with soil samples from more than 250
locations collected in 2017 and 2019. However, the soil organic
matter (SOM) data were not reported at every sampling location
[43]. The topography in this area is more variable with moderate

to steep rolling hills. Soil stratification was determined for each
site by measuring the vertical thickness of three main strata
(acrotelm, catotelm, and mineral soil) typically found in organic-
rich or peat soils in our study area [see Fig. 1(c)]. For each site,
an approximately 30 × 30 cm2 section of soil was sampled for
laboratory analysis, including soil bulk density and hydraulic
properties. The SOM content was obtained from the samples
by using loss on ignition (LOI) analysis and was converted to
SOC concentration using a coefficient of 0.58 [46]. For this
dataset, the SOC and bulk density were reported mainly for
different soil strata. Therefore, the surface (0–10 cm) SOC data
were calculated based on the weighted averages of SOC or bulk
density of different soil strata spanning the surface layer. After
processing, there were 38 sites with both SOC concentration and
bulk density available.

In addition to the two above datasets, we also collected ∼112
soil samples from 5 sites along the Dalton Highway from field
surveys conducted in 2018 [see Fig. 1(a)] [11], [44]. At each site,
we took soil samples from 1 to 2 pits, with multiple soil samples
taken along the soil active layer at ∼5 to 8 cm intervals for better
characterization of the active-layer soil properties. Soil texture,
including sand and clay fraction, root biomass, and soil bulk
density were measured following standard protocols. The SOM



1406 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

content was determined using the LOI method, which heats the
soil samples in a drying oven at 360°C for more than 2 h to
combust the SOM. Mineral texture analysis was performed using
the hydrometer method. Similar to the O’Connor dataset, we
used the coefficient of 0.58 to convert the SOM measurements
to SOC concentration.

B. SAR Data Processing and Analysis

Sentinel-1 satellite C-band (5.4 GHz) Ground Range Detected
(GRD) scenes (path 94) from 2017 to 2018 were downloaded
from the NASA SAR data archive at the Alaska Satellite Facility,
and used for backscatter analysis in relation to surface SOC
properties. For each acquisition, three scenes (frames 220, 225,
and 230) were processed and mosaicked to generate a full
coverage of the study area. There are 24 and 21 images in total
with VV/VH polarized channel data acquired in years 2017 and
2018, respectively. In 2017, one image from late October was
dropped due to a missing frame (220) in the southern region. In
2018, there were no GRD data released for the granule during
April and May. Other granules were not used to fill this gap due
to the different viewing geometries of the images. The GRD data
processing includes thermal and radiometric calibration, speckle
noise filtering, geolocation, and terrain calibration using the 5-m
Alaska IFSAR DEM data. The output images were multilooked
and resampled to 100-m resolution. This intermediate resolution
was chosen to reduce computational demand, and also due to
the relatively coarse resolution of the soil datasets (SoilGrids,
250 m) used in this study. The GRD data were processed using
the SNAP-Python package v7.0.

Incidence angle has a relatively large impact on the radar
backscatter response. Previous studies have shown that a reason-
able linear fit between backscatter (at dB scale) and incidence
angle can be obtained for incidence angles between 30° and
60° [47], [48]. In the study area, the local incidence angle of
the SAR images mainly ranges from 36° to 42° with a mean
value of ∼39°. We used a simple equation to normalize the
local backscatter distribution from any incidence angle (θ) to
the reference incidence angle (θref) of 40°

σ◦
ref = σ◦ (θ)− β (θ − θref) (1)

where β is an empirical parameter, and falls mostly within the
range of−0.1 to−0.2 dB/° for the tundra area [47]. In this study,
we used the value of −0.13 dB/° following [48]. This value has
a relatively small impact on the following PCA and correlation
analysis since there is limited variation in the local incidence
angle in most of the study area except for the southern mountain
areas of the Brooks Range. However, we masked out the above
areas with complex mountain topography, identified as “barren
land” in the land cover map prior to the PCA.

We applied PCA to the backscatter time series to ana-
lyze the potential relations between the PCs and SOC prop-
erties. Preliminary analysis showed an overall better correlation
between the regional SOC data (SoilGrids) and backscatter at
VV polarization than with VH polarization, particularly during
winter. Therefore, only VV backscatter was used in the following
analysis. The backscatter data show different spatial variations

during both summer and winter in 2017 and 2018. The year
2017 had a drier spring season with only a few millimeters of
total precipitation in June and a later autumn freeze onset, than
the year 2018. Therefore, we applied PCA to the backscatter
time series in 2017 and 2018 separately. The regional mean
of the backscatter was first removed from each image, and the
difference images were used as inputs to the PCA. Mountain
areas in the southeast portion of the study area have lower
incidence angles and much higher backscatter than other regions
due to their greater topographic complexity, whereas large un-
certainties may also exist in the terrain correction of the radar
imagery in these areas. These characteristics of complex terrain
could dominate the initial PCs of the larger study region and
introduce uncertainties in determining regional soil properties.
Therefore, we masked out mountain and ocean areas within the
domain prior to the PC analysis to minimize the influence of
these areas on the estimated SAR soil properties.

C. SOC Estimation Using Radar Backscatter and PCs

We mainly used correlation analysis to assess the relations
between the SOC data and radar backscatter imagery (including
the PCs). Linear or exponential relationships were tested be-
tween the in situ SOC data (including SOC concentration and
bulk density) and extracted radar backscatter data (including
the PCs). The established empirical relationship was then used
to predict regional bulk density based on the radar backscatter
imagery. PC1 was used instead of the raw backscatter data due
to the large variability in backscatter time series. We used the
following cross-validation method to evaluate the robustness of
the empirical equations derived from the above analysis. We
first randomly selected 80% of grouped PC1 and SOC data
(bulk density or SOC concentration) for the model training,
whereas the remaining 20% of samples were used for validation.
A linear fit was used for estimating SOC concentration, and an
exponential fit model was used for the bulk density estimates.
Due to a limited set of observations (∼90 independent sites),
we repeated the above experiment 10 times and calculated the
mean root-mean-square error (RMSE) and bias from the results
to evaluate the performance of the empirical equations.

Our preliminary analysis showed large variability in the re-
lations between SOC and backscatter data for individual grid
cells. Inconsistency in the methods for SOC estimation of the
surface layer (0–10 cm) among the three in situ datasets, partic-
ularly for the O’Connor dataset, may contribute to the variance.
Therefore, we used the following equation to estimate the SOC
concentration (g/g):

SOC = 0.58× (ln (ρb,min)− ln (ρb)) /3.14 (2)

where ρb(g/cm
3) is the predicted soil bulk density, and

ρb,min(g/cm
3) is the soil bulk density associated with the min-

eral texture fraction, which is calculated based on the sand
and clay fraction from SoilGrids data. The above exponential
equation was derived using the in situ soil samples from the
North Slope region [11], and shows stronger correspondence (R2

= 0.91) and lower RMSE values particularly for soil samples
with higher carbon content (SOM>0.4 g/g). An exponential



YI et al.: MAPPING SURFACE ORGANIC SOIL PROPERTIES IN ARCTIC TUNDRA USING C-BAND SAR DATA 1407

relationship between SOC and soil bulk density has also been
reported in previous studies [12].

In addition to the above in situ SOC datasets, we also used
SoilGrids (version 1 [49] and version 2 [50]) in the regional
analysis. SoilGrids was chosen mainly because it shows rel-
atively high accuracy [14] and has a much finer spatial reso-
lution (∼250 m) than other regional and global soil inventory
records, which are generally coarser than 1 km. SoilGrids also
provides estimates for both SOC concentration and bulk density
at multiple soil depths, whereas other local datasets tailored for
the permafrost region such as NCSCD (Northern Circumpolar
Soil Carbon Database) and a regional upscaling dataset [2] only
provide estimates of the bulk SOC content (kgC/m2) at coarser
spatial and/or vertical resolution. However, the two SoilGrids
data versions show different SOC patterns and levels over the
North Slope region (not shown). In the study area, a visual
comparison of these data also indicates a large discrepancy in
the bulk density data at the 0–5 cm interval, whereas some areas
show unrealistically high values in both SOC concentration and
bulk density in the SoilGrids version 2 data (see Fig. S1). The
SoilGrids version 1 estimates of surface SOC and bulk density
are more consistent with the in situ SOC data for the study region
(SOC: R = 0.78, bias = −4.7%, and RMSE = 0.12 g/g; bulk
density: R= 0.79, bias= 0.19, and RMSE= 0.22 g/m3) than the
version 2 data (SOC: R = 0.53, bias = −0.81%, and RMSE =
0.13 g/g; bulk density: R = 0.59, bias = 0.14, and RMSE = 0.23
g/m3) (see Fig. S2). Therefore, we mainly used the SoilGrids
version 1 data in our regional analysis.

D. Other Ancillary Datasets

Other ancillary data used in the radar data analysis included
the 2016 30-m NLCD land cover data, 5-m Alaska IFSAR
DEM data, and Daymet surface meteorology data [51]. All
datasets were resampled to 100-m resolution, consistent with the
processed radar data. Mean elevation and slope were generated
from the Alaska DEM dataset and used for the analysis. Daymet
surface meteorology data were used to evaluate the backscatter
response to changing surface freeze/thaw and moisture condi-
tions. We calculated the accumulated precipitation in the prior
12-day period for each satellite acquisition date. Maximum and
minimum air temperature data were used to define the surface
freeze/thaw onset, which was defined as the date when both daily
air temperature records and their 7-day moving averages drop
below (or rise above) 0°C. The precipitation and freeze/thaw
onset estimates from the Daymet data were evaluated using ad-
ditional weather station data from three SNOTEL sites (SNOw-
pack TELemetry, http://www.wcc.nrs.usda.gov) located in the
study area [see Fig. 1(a)]. Overall, Daymet provides a reasonable
estimate of the precipitation pattern, which generally increases
from north to south within the study region (see Fig. S3).

III. RESULTS

A. Principal Component Analysis of C-Band VV Backscatter

Different land cover types show distinct C-band VV backscat-
ter characteristics (see Fig. 2). The vegetated areas generally

Fig. 2. Mean C-band VV backscatter time series for different land cover types
in 2017 and 2018, in response to freeze/thaw (FT) onset and total precipitation
during the prior 12-day period. Barren areas associated with complex mountain
terrain show distinct backscatter behavior, and were screened from the PC
analysis.

show higher backscatter (∼3 to 4 dB) during summer than during
winter, whereas barren land has much higher backscatter overall
throughout the year than other areas, with reduced differences
between summer and winter. The summer backscatter is also
more variable than the winter backscatter. Among all vegetated
areas, the scrub/shrub tundra shows the highest backscatter
throughout the year, and wetland areas have the lowest backscat-
ter, particularly during the winter. In 2017, a large decrease (∼2
dB) in radar backscatter was observed during the spring thaw
(around DOY 143), due to thaw-induced surface inundation.
We were unable to determine the backscatter response to the
spring thaw in 2018 due to missing SAR data during the seasonal
transition in April and May. A gradual decrease in the radar
backscatter was observed during June and July in 2017 due to dry
conditions from very low precipitation, whereas the backscatter
during the thaw season of 2018 is more variable. Increases
in backscatter were generally observed in response to wetter
conditions from high antecedent precipitation in 2018, but not
in 2017. The backscatter decreases after the freeze onset, and the
spatial pattern of the winter backscatter is different between 2017
and 2018, likely associated with variations in winter snowpack
distribution.

Although the winter and summer backscatter of years 2017
and 2018 show quite different spatial patterns, the PCA produces
similar results for both years. The first three PCs account for
56%, 19%, and 7% of the total input variance in 2017 and 48%,
26%, and 9% of the total variance in 2018. The first PC (PC1)
generated from the backscatter time series in 2017 and 2018
shows a very similar spatial pattern between years [see Fig. 3(a)
and (b)], indicating dominant common backscatter features in
the study area. The eigenvector values or loadings (representing
the correlation between each original image and each PC) are
all positive for PC1, indicating that high PC1 values generally

http://www.wcc.nrs.usda.gov
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Fig. 3. PC1 in (a) 2017 and (b) 2018, and (c) and (d) its VV backscatter
behavior, with its relation to (e) and (f) surface SOC properties, including bulk
density (BLD) and SOC concentration derived from SoilGrids version 1 data,
for each PC1 bin.

correspond to high backscatter values, and vice versa. This is
confirmed by the mean backscatter time series for each bin of the
PC1 [see Fig. 3(c) and (d)]. From the PC1 image, we can also see
that shrub tundra areas generally have positive values, whereas
other tundra areas have mostly negative values. With increasing
PC1 values, the surface soil bulk density generally decreases,
wheras the SOC concentration generally increases, indicated by
the SoilGrids data. It should be noted that the SoilGrids version
1 data generally show higher SOC concentration and lower bulk
density at 5 cm depth than at the surface (0 cm). The SoilGrids
estimates at 5 cm depth also show an overall higher correlation
and lower bias compared with in situ soil measurements for the
Alaskan domain, particularly for soils with high SOC content
(not shown). Therefore, we used the SoilGrids estimates at 5 cm
depth in the regional comparison with our SOC estimates for the
surface layer, which was defined as the interval of 0–10 cm, to
be consistent with the assembled in situ dataset.

The PC2 and PC3 can be explained by the variations in
regional precipitation, spring thaw onset, and winter snowpack
(see Fig. S4 and Fig. 4). In 2017, the images acquired on DOY
227 and DOY 251 have the largest contribution to PC2, whereas,
in 2018, the acquisitions for DOY 186 and DOY 210 have the
largest contribution to PC2, based on the PCA loadings. These
dates generally correspond to large antecedent precipitation
(from the prior 12-day period) according to the Daymet and
SNOTEL precipitation data, particularly in 2017. In 2018, the
in situ precipitation data at the three SNOTEL sites show large

Fig. 4. Third principal component (PC3) and its backscatter behavior at VV
polarization.

spatial variability, compared with the more consistent regional
drying/wetting patterns in year 2017; this may contribute to
temporal differences between the PC2 loadings and the precip-
itation data in 2018 (see Fig. S4). The regional variability in
the spring thaw onset also likely contributes to large changes
in the PC2 loadings in June. As for PC3, there are much larger
differences in the backscatter between areas with positive and
negative PC3 values during winter (∼3 dB) than during summer
(<1 dB). Areas with higher PC3 values seem to correspond
with higher snowpack according to the Daymet SWE data (see
Fig. S5). In addition, the loadings have larger negative values
(−0.2 to −0.3) for PC3 during winter than the loadings of the
first two PCs, which indicates a higher contribution of winter
acquisitions to PC3. However, the Daymet data are unable to
capture the strong variability in winter snowpack conditions due
to the sparse regional in situ weather station network, which
prevents a quantitative comparison.

B. Regional SOC Mapping

The radar backscatter shows a significant (p<0.05) correlation
with the in situ SOC data. However, the correlation varies greatly
(R = ∼0.3–0.64) for different seasons in different years (see
Fig. S6). Changes in winter snowpack, summer moisture and
vegetation conditions may all contribute to variations in the
radar backscatter, and thus affect the correlation between the
backscatter and surface SOC properties. In 2017, the radar
backscatter in late winter shows the highest correlation with
the in situ SOC data; whereas the radar backscatter in the early
thaw season of 2018 shows the highest correlation with in situ
SOC data. Backscatter acquired on DOY 131 (2017) and DOY
210 (2018) show the strongest correlations with surface SOC
properties, including SOC concentration (R = 0.64, p<0.01)
and soil bulk density (R = −0.62, p<0.01) among all images
(see Fig. 5).
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Fig. 5. Correlation analysis of C-band VV backscatter and PC1, with in situ
SOC data, including (a) and (b) SOC concentration, and (c) and (d) bulk density,
for the surface layer (0–10 cm). The radar backscatter data from May 11, 2017,
and July 29, 2018 had the highest correlation with the SOC data and are presented
here.

The PCA can separate the effects of different factors, and
the transformed PCs may provide more reliable estimates of
surface SOC. As shown above, PC1 derived from different
backscatter time series show a consistent spatial pattern and
may be used to predict surface SOC properties. The correlations
between PC1 and surface SOC properties are comparable or
slightly better than correlations between the in situ SOC data
and backscatter acquired during the winter in 2017 and the early
thaw season in 2018 [see Fig. 5(b) and (d)]. A favorable linear
correlation was found between PC1 and SOC concentration (R
= 0.65, p<0.01), whereas an exponential equation provides a
better fit for the relation between PC1 and soil bulk density
(R = −0.65, p<0.01). The cross-validation analysis obtained
similar exponential or linear relationships explaining the soil
bulk density and SOC concentration patterns (see Table S1).
The cross-validation results also indicate that the exponential fit
between soil bulk density and PC1 works well, with mean RMSE
of 0.24±0.09 g/cm3 and 0.20±0.05 g/cm3 for years 2017 and
2018, respectively (see Fig. 6). However, there is more scatter in
the model predicted and in situ SOC concentrations. Therefore,
(2) was used for the SOC estimation as described in Section II-C.

Fig. 7 shows the predicted regional SOC maps and uncertainty
estimates using PC1 of the radar backscatter data. The soil bulk
density was estimated using the empirical relationship shown in
Fig. 5(d), whereas the SOC concentration was derived from the
estimated bulk density and (2) due to a larger scatter between the
in situ SOC data and PC1 as shown in Fig. 5(b). The uncertainty
estimates were defined as the 95% confidence range. The south-
ern areas of the domain dominated by scrub/shrub tundra gener-
ally show higher SOC concentration and lower soil bulk density
compared with other tundra areas. Larger uncertainties were
mostly observed in the northern coastal region. The estimated
SOC and bulk density parameters show quite different spatial

Fig. 6. Cross-validation results for surface soil bulk density and SOC concen-
tration estimates in (a) and (b) 2017 and (c) and (d) 2018, respectively. Different
colors indicate different experiments, which were conducted by randomly se-
lecting 80% of the samples for model training, and using the remaining 20% of
samples for validation. A linear fit equation was used for SOC concentration,
whereas an exponential fit equation was used for estimating soil bulk density.

Fig. 7. Predicted surface (0–10 cm) SOC properties and uncertainty estimates,
including (a) and (b) soil bulk density and (c) and (d) SOC concentration.

patterns from SoilGrids (see Fig. S1). The scrub/shrub tundra
shows much lower bulk density and higher SOC concentration
than the two SoilGrids datasets, with more consistency between
the in situ data and the estimated values from this study (see
Fig. 8). For herbaceous tundra, our results show similar SOC but
lower soil bulk density than the two SoilGrids datasets, and large
variability against the in situ data. There is also a large difference
between the in situ data and the other three soil datasets in the
wetland area. However, there are very limited observations and
greater uncertainty associated with this land cover type (3 sites),
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Fig. 8. Comparison of biome-specific statistics for surface (0–10 cm depth)
(a) soil bulk density and (b) SOC concentration from different datasets. The
“Predicted” category indicates the estimates from this study. The SoilGrids
version 1 data were defined at 5 cm depth, whereas the SoilGrids version 2
data were defined for the 0–5 cm depth.

compared with the other two tundra types (scrub/shrub: 54 sites;
herbaceous: 31 sites).

IV. DISCUSSION

Our results show strong correlations between Sentinel-1 C-
band VV backscatter and SOC properties affecting active layer
and permafrost conditions in tundra. These results indicate the
potential utility for satellite SAR-based SOC mapping across the
pan-Arctic. However, the relationship between radar backscatter
and soil properties can vary greatly for different seasons and
years, depending on heterogeneous surface conditions including
winter snowpack and summer moisture levels indicated from this
study, and vegetation growth indicated from previous studies
[32]. A strong correlation between C-band winter backscatter
and SOC storage has previously been reported for Arctic tundra,
but not for summer backscatter [31]. This is likely because the
backscatter under frozen conditions can better represent surface
roughness and vegetation structure, which are interactive with
SOC and other soil properties. Some prior studies have also
found that compared with summer backscatter, winter C-band
backscatter is more useful for land cover and surface char-
acterization due to enhanced sensitivity to surface roughness
and vegetation structure [29], [47]. However, the presence of
seasonal snow cover may increase volume scattering and thus

affect the C-band backscatter response [52], limiting the use of
winter backscatter data for surface characterization. For exam-
ple, we found a much lower correlation between surface SOC
properties and winter backscatter in 2018; that was different
from the previous year (2017) and was likely due to varying snow
conditions between years (see Figs. S5 and S6). We also found
that the VV backscatter data show an overall better correlation
with SOC properties than the VH backscatter, especially during
winter. This is likely because volume scattering contributes more
to the VH backscatter; therefore, the VH backscatter is more
sensitive to surface vegetation than soil conditions in the tundra
area [23].

How the radar backscatter responds to precipitation or soil
wetness depends on the land surface physical properties. Soil
texture and SOC content mainly determine soil hydraulic prop-
erties; therefore, multitemporal radar backscatter can potentially
be used to map soil physical properties including SOC. A few
studies have tried to use multitemporal radar data to retrieve
soil texture in semiarid regions [19], [20]. Another study also
demonstrated the usefulness of SAR data for soil drainage
mapping in an agricultural field using a maximum likelihood
classifier, but with less accuracy than using hyperspectral re-
flectance data [53]. However, comparatively few studies have
used SAR data to retrieve SOC or soil moisture in Arctic
tundra. The relatively long Sentinel-1 revisit period and strong
C-band radar backscatter sensitivity to vegetation may limit such
applications in tundra [23]. The heterogenous microtopography
and highly organic soils typical of Arctic tundra impart unique
microwave scattering properties and the polarimetric response
can be highly random, which also limit the utility of SAR data for
mapping soil properties in Arctic tundra [18]. Our study did not
show a consistent C-band backscatter response to antecedent
precipitation. The C-band radar backscatter sensitivity to soil
moisture is limited to a very shallow surface layer (<5 cm depth).
Our recent study [9] documented surface layer soil drydown
characteristics in the study area, and found a more rapid drydown
(∼5 to 10 days) in the southern organic-rich soils; that was
generally shorter than the satellite revisit period (i.e., 12 days).
The use of longer wavelength (e.g., L-band) observations and
data fusion methods able to exploit complementary information
from active and passive sensors could enable more effective soil
retrievals and a better understanding of the microwave sensitivity
to different soil properties [23], [54].

The shallow penetration depth of C-band SAR and inconsis-
tent data sampling among the in situ datasets may add consider-
able uncertainties to our SOC estimates. The direct sensitivity of
C-band radar is largely confined to the top few centimeters of the
surface, and may reveal less information about deeper soil layers,
especially in areas with denser tundra shrub covers. Previous
studies have shown stronger L-band microwave sensitivity to
SOC and soil bulk density in forest and peatland areas than C-
band, consistent with enhanced soil sensitivity at lower frequen-
cies [21], [22]. Polarimetric decomposition using quad or dual-
polarized SAR data can effectively separate the contributions
from volume and surface scattering and may provide additional
insights on whether the shallow C-band penetration depth limits
its use of representing surface conditions in Arctic tundra [23].
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Our study did not consider temporal changes in SOC properties.
However, our study period was relatively short, during which
limited SOC changes are expected to occur in the undisturbed
tundra [55]. On the other hand, we assembled three different
in situ SOC datasets, and the associated differences in the soil
sampling process may add large uncertainties to the assembled
surface (0–10 cm) SOC dataset. In particular, the O’Connor
dataset only provides measurements of SOC concentration or
bulk density for different soil strata (e.g., acrotelm and catotelm),
whose depths vary greatly depending on microtopography and
vegetation types within the study area [10].

A number of studies have used various statistical approaches
or data mining methods with inputs from multisensor remote
sensing data to map regional SOC patterns for peatlands and
other landscapes [25], [26], [27], [28]. Multitemporal SAR
data have been found to provide useful information for such
applications [25], [26]. One study shows that including SAR data
at longer wavelengths such as L-band helps distinguish different
peatland classes from nonpeatlands, but with less importance
than C-band [25]. The different studies also report different con-
clusions on the relative importance of optical remote sensing ver-
sus SAR data for regional SOC characterization [25], [26], [27],
which likely depends on the regional differences in topography,
vegetation, and surface wetness conditions represented from the
various studies. The strong sensitivity of radar backscatter to
multiple factors including land cover, surface snow, and moisture
changes affected by heterogeneous freeze/thaw and precipitation
events may add additional challenges for regional mapping. The
PCA can separate these different factors and extract essential
information from the multitemporal radar data, which may pro-
vide useful inputs to other statistical approaches or data mining
methods such as Random Forest [30]. For example, in our study
area, the PC1 seems to show dominant and persistent backscatter
features of the land surface, closely linked to vegetation type and
SOC characteristics (see Fig. 3). Previous studies have drawn
similar conclusions that PC1, together with the other first few
PCs, can effectively distinguish surface features pertaining to
various vegetation, topography, and roughness conditions [30],
[33], [35], [36]. Therefore, a combination of PCA and other data
mining methods may prove to be a useful approach for satellite
SAR-based SOC mapping in tundra [34].

V. CONCLUSION

In this article, we investigated the potential of multitemporal
C-band (5.4 GHz) SAR data for regional SOC mapping in
the Arctic tundra. We combined multiple in situ soil datasets
to generate consistent SOC and bulk density estimates for the
surface (0–10 cm depth) soil layer over an Alaska North Slope
subregion. Our analysis shows that both winter and summer C-
band backscatter show a strong correlation (R>0.6, n = 97, and
p<0.01) with in situ surface SOC data. However, the correlation
between the backscatter and SOC data depends on additional
radar sensitivity to surface snow, moisture, and freeze/thaw
conditions, which can vary greatly for different seasons and
years. Through PCA using multitemporal Sentinel-1 SAR data,
we separated the effects of these different factors on the radar

response. The first PC showed a consistent spatial pattern across
different years, and represents persistent backscatter behavior
of land surface, which is closely correlated with SOC and bulk
density in surface soils. The predicted SOC maps show much
lower soil bulk density and higher SOC concentration in the
southern shrub tundra area than in the northern coastal region,
and are more consistent with the in situ data, compared with the
SoilGrids products. Our study shows the potential of satellite
C-band SAR data for regional SOC mapping in the Arctic. Future
work will further investigate the sensitivity of polarimetric SAR
data at different frequencies to surface soil conditions. We also
plan to combine PCA with other data mining methods to generate
high-resolution and high-quality SOC maps in the Arctic using
multitemporal and multifrequency SAR data.
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