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Filling Then Spatio-Temporal Fusion for All-Sky
MODIS Land Surface Temperature Generation
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Abstract—The thermal infrared band of the moderate resolu-
tion imaging spectroradiometer (MODIS) onboard the Terra/Aqua
satellite can provide daily, 1 km land surface temperature (LST)
observations. However, due to the influence of cloud contamina-
tion, spatial gaps are common in the LST product, restricting its
application greatly at the regional scale. In this article, to deal
with the challenge of large gaps (especially complete data loss) in
MODIS LST for local monitoring, a filling then spatio-temporal
fusion (FSTF) method is proposed, which utilizes another type
of product with all-sky coverage, but coarser spatial resolution
(i.e., the 7 km China Land Data Assimilation System (CLDAS)
LST product). Due to the great temporal heterogeneity of LST,
temporally closer auxiliary MODIS LST images are considered to
be preferable choices for spatio-temporal fusion of CLDAS and
MODIS LST time-series. However, such data are always aban-
doned inappropriately in conventional spatio-temporal fusion if
they contain gaps. Accordingly, pregap filling is performed in FSTF
to make fuller use of the valid information in temporally close
MODIS LST images with small gaps. Through evaluation in both
the spatial and temporal domains for three regions in China, FSTF
was found to be more accurate in reconstructing MODIS LST
images than the original spatio-temporal fusion methods. FSTF,
thus, has great potential for updating the current MODIS LST
product at the global scale.

Index Terms—Gap filling, land surface temperature (LST),
moderate resolution imaging spectroradiometer (MODIS), spatio-
temporal fusion.

I. INTRODUCTION

LAND surface temperature (LST) is an important physical
quantity that can be used for studying the interaction

between the Earth’s surface and the atmosphere [1], [2], [3].
Until now, LST has been applied widely in research on regional
drought monitoring [4], [5], land surface evapotranspiration esti-
mation [6], [7], and the heat island effect [8], [9]. Remote sensing
provides great potential for large-scale LST monitoring, as LST
can be retrieved from the thermal infrared (TIR) band of sensors
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onboard several satellites (e.g., the Landsat and Terra/Aqua
satellites) [10], [11], [12], [13].

Although theories for LST retrieval have been developed and
applied widely using various sensors, the LST estimated using
satellite sensor data has an obvious defect. Existing studies
demonstrate that about 67% of the Earth’s surface is contami-
nated by cloud at any one time [14]. As TIR wavelengths cannot
penetrate cloud, some level of data loss in acquired images is to
be expected, caused by poor imaging environments. This char-
acteristic restricts greatly the applications of satellite-derived
LST products, such as in global climate change studies which
require spatial continuity of data. For example, the moderate
resolution imaging spectroradiometer (MODIS) sensor onboard
Terra, as an important data source for generating global LST,
provides a 1 km LST product (i.e., MOD11A1), the scale of
which is appropriate for LST research missions at the regional
scale. However, the unpredictable imaging environment cannot
guarantee data integrity, resulting in spatial information loss in
daily MODIS LST. Thus, to provide an all-sky MODIS LST
product, the missing information in the daily MODIS LST needs
to be reconstructed.

Generally, for small areas of information loss, satisfactory
restoration results can be obtained by adopting spatial recon-
struction methods in remote sensing [15], [16]. As these methods
reconstruct the missing area based only on spatially complete
images from the same data source, when the missing area is
large the uncertainty in reconstructing the missing information
can also be large. Thus, to ensure high accuracy of all-sky
MODIS LST generation, other auxiliary data and reconstruction
methods are required when the information loss is large (espe-
cially completely lost in a local area of interest). Apart from
the above-mentioned LST products made using thermal remote
sensing, land surface models (LSMs) for land data assimilation,
including the China Land Data Assimilation System (CLDAS)
[17] and Global Land Data Assimilation System [18], can also
provide large area LST data with a relatively coarse spatial
resolution. As these datasets are produced by combining obser-
vations from a variety of sources, such as ground and satellite
sensor observations, these systems can also provide an all-sky
spatially complete LST product. Due to this advantage, LSMs
have great potential to supplement the missing information in
optical image-derived products, and assist the reconstruction of
MODIS LST [19]. Thus, in this article when reconstructing
MODIS LST with large areas of data loss, a typical LSM is
considered, such as the CLDAS data which can provide 7 km
spatially seamless hourly LST products covering the Asian area.
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Specifically, spatio-temporal fusion can help to be used to re-
construct the missing MODIS LST based on spatially complete
MODIS-CLDAS LST image pairs at other times, and a CLDAS
LST image at the prediction time.

Over the past decades, various categories of spatio-temporal
fusion approaches were developed [20], [21], [22], [23], [24],
[25]. Generally, the spatial weighting-based and the spatial
unmixing-based methods are the two earliest types of spatio-
temporal fusion methods. Specifically, the common practice for
spatial weighting-based methods is to predict the center fine
pixels by quantifying the contribution of the neighboring spec-
trally similar pixels using a weighting function. The spatial and
temporal adaptive reflectance fusion model (STARFM) [26] is
regarded as the classic example of this type. Based on STARFM,
the enhanced STARFM (ESTARFM) algorithm [27], the Fit-FC
method [28], the spatial temporal adaptive algorithm for map-
ping reflectance change [29], and the spatial weighting-based
virtual image pair-based spatio-temporal fusion (VIPSTF-SW)
[30] approaches were further developed.

Spatial unmixing-based methods estimate the value of the fine
pixels by solving the reflectance of all object classes through
different kinds of unmixing models. This category of method
was developed on the basis of the multisensory, multiresolu-
tion technique proposed by Zhukov [31]. By applying different
constraints and auxiliary data to the unmixing model, various
spatial unmixing-based algorithms were proposed [32], [33],
[34], [35]. Additionally, recently developed methods include
hybrid methods integrating the advantages of the spatial weight-
ing and the spatial unmixing-based methods [36], [37], [38],
[39], together with learning-based methods such as the sparse-
representation-based spatiotemporal reflectance fusion model
(SPSTFM) [40] and the wavelet-artificial intelligence fusion
approach [41]. Except for conventional machine learning meth-
ods, deep learning-based models were also developed due to
their advantages in describing the complex relationship between
coarse and fine spatial resolution images. So far, spatio-temporal
fusion methods based on different improved versions of convo-
lutional neural networks [42], [43], [44], [45] and generative
adversarial networks (GANs) [46], [47], [48] were proposed.
Some examples are the multistage remote sensing image spatio-
temporal fusion network (MSFusion) [45] and the GAN-based
spatiotemporal fusion model (GAN-STFM) [46].

Although spatio-temporal fusion provides practical means for
reconstructing large areas of information loss in MODIS LST,
their reliability is limited by the availability of auxiliary data. It
is acknowledged that due to strong temporal heterogeneity, LST
changes greatly over time, and images with closer acquisition
times tend to have greater similarity. Thus, in spatio-temporal
fusion, fine spatial resolution images with a shorter time in-
terval are considered as a preferable choice for the auxiliary
data. Nevertheless, due to frequent cloud cover, there exists
great difficulty in finding temporally close images with spatially
complete coverage. Although the common practice to search
for cloud-free images with a longer time interval can avoid
the impact of data quality, the prediction may contain large
uncertainties as there can be great LST changes between the
prediction and known times. Actually, the impacts of cloud on

remote sensing images vary, and temporally close images with
a small patch of data missing have the potential to provide
significant auxiliary information to the prediction. Thus, for
the reconstruction of MODIS LST with large areas of data loss,
there is a great need to develop spatio-temporal fusion methods
to take full advantage of temporally close LST images with gaps.

To take fuller advantage of the available MODIS LST data, a
filling then spatio-temporal fusion (FSTF) method is proposed.
Instead of searching for spatially complete, but temporally far
MODIS LST as auxiliary data, FSTF considers temporal prox-
imity also, that is, it utilizes the MODIS LST data temporally
closest to the prediction time for spatio-temporal fusion. Con-
sidering that there probably exist missing spatial data (but with
small gaps) in the temporally closest MODIS LST images, gap
filling is first applied to keep the integrity of the auxiliary data.
Many gap filling methods are available for this task. Amongst
the existing filling methods, the most commonly used are hybrid
methods that integrate the spatial information of the remaining
valid data and the temporal information of auxiliary images
acquired at other times (i.e., temporally neighboring image with
complete coverage) [49], [50]. Some examples are the neigh-
borhood similar pixel interpolator (NSPI) [51] and the modi-
fied NSPI (MNSPI) [52] methods. Additionally, learning-based
methods were also developed recently [53], [54], [55], with
the unique advantage of characterizing the nonlinear relation
between the images with gaps and the auxiliary data.

After gap filling the temporally close MODIS LST data,
spatio-temporal fusion is implemented using the gap filled
MODIS LST, along with the CLDAS LST at the known and pre-
diction times. FSTF provides a new solution to the reconstruction
of MODIS LST with large gaps when there exists difficulty
in finding spatially complete auxiliary data and LST changes
greatly over time, thus solving the key issue in all-sky MODIS
LST generation. Generally, this article makes the following three
main contributions.

1) The FSTF method makes fuller use of the valid infor-
mation in the images acquired temporally close to the
prediction time, thus, breaking through the limitation on
data integrity for traditional spatio-temporal fusion and
enhancing the flexibility of data selection for the case
with strong temporal heterogeneity (e.g., the MODIS LST
studies in this article).

2) By integrating gap filling and the spatio-temporal fusion
techniques effectively, more accurate all-sky MODIS LST
can be reconstructed.

3) The generated all-sky LST has the potential to provide
hourly MODIS-like LST by inheriting the hourly temporal
resolution of CLDAS LST, facilitating fine temporal reso-
lution (e.g., diurnal) LST change monitoring. The hourly,
1 km LST has great potential for various studies based on
the need for dynamic LST at the regional scale.

The remainder of this article is organized into four sections.
In Section II, the data and the proposed FSTF method are
introduced. Section II-A and B present the three study areas and
the two categories of data utilized in this research. Section II-C
introduces the principles of the gap filling and spatio-temporal
fusion methods employed in the experiments. Section II-D, E,
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Fig. 1. Three study areas.

and F present the principle, theoretical basis, and implementa-
tion of the proposed FSTF method, respectively. In Section III,
the effectiveness of FSTF is validated in both the spatial and
temporal domains. Section Ⅳ further discusses the potential
and limitations of FSTF. Section Ⅴ concludes this article.

II. METHODS

A. Study Area

The experiments for this research were implemented in three
regions in North China, each covering a spatial extent of 140 km
× 140 km. Each area is covered by one meteorological sta-
tion providing ground-based measurements. The location of the
three regions and the corresponding meteorological stations are
shown in Fig. 1. Specifically, the three stations are Zhangye
wetland station (100°26′47.04′′E, 38°58′30.36′′N) [56] located
in Gansu province (Region 1), Huailai station (115°47′32.28′′E,
40°21′26.64′′N) [57] located in Hebei province (Region 2)
and Huazhaizi desert station (100°19′12.36′′E, 38°45′57.24′′N)
[56] located in Gansu province (Region 3). The automatic
meteorological stations are all installed on towers, providing
datasets including air temperature, wind speed, precipitation,
and four-component radiation every 10 min. For the three towers
in Regions 1–3, the underlying surfaces are reed wetland, corn
belt, and piedmont desert, respectively.

B. Data

The aim of this research was to reconstruct MODIS LST
images, with the assistance of the CLDAS LST product. The
datasets in this experiment, therefore, included: the MODIS LST

product (MOD11A1), CLDAS LST product, and ground-based
LST.

1) MODIS and CLDAS LST data: MODIS LST is provided
by the MOD11A1 daily surface temperature product (version 6)
(MODIS/Terra LST/emissivity daily L3 global 1 km SIN grid
product), which can be obtained from https://search.earthdata.
nasa.gov/. This product was generated by applying the split
window algorithm to bands 31 and 32 of MODIS onboard Terra.
The MOD11A1 product provides 1 km observations, including
daytime and nighttime LST, quality indicators, and observation
times. When MODIS data are acquired, they are first reprojected
to the same coordinate system as that of CLDAS (WGS84) by
the MODIS Reprojection Tool (MRT). Then, to obtain effective
MODIS data, the acquired MODIS LST is filtered according to
the 8-bit byte quality control (QC) flag of pixels in the QC layer.
Specifically, pixels with the flag “cloud” and “average LST error
> 3 K” are considered to be invalid data. Thus, the MODIS LST
pixels with fine data quality can be selected.

CLDAS is a land surface data assimilation system, which can
provide a large number of land surface observation products,
such as air temperature, air pressure, soil moisture, and LST.
Different from MODIS, the CLDAS product integrates ground
observations provided by automatic meteorological stations,
numerical analysis/forecast products provided by the European
Centre for Medium-Range Weather Forecasting, and many other
products. The LST product of CLDAS can provide 7 km ×
7 km observations covering the Asian area. In terms of temporal
resolution, CLDAS provides hourly LST observations, which
have the potential to match accurately the acquisition times
of MODIS LST images. By examining the acquisition times
of the MODIS LST time-series in the study period, CLDAS

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
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LST at universal time coordinated (UTC) 4 a.m., 3 a.m., and
4 a.m. were selected for Regions 1–3, respectively. Also, the
fused LST was evaluated using the ground-based LST at the
corresponding time. The CLDAS LST can be obtained from
http://data.cma.cn/data.

2) Ground-based measurements: Considering that no real
reference exists for the reconstructed MODIS LST, ground-
based measurements (i.e., in situ data) were used for evaluating
the accuracy of the LST time-series data, which is a common
strategy [58], [59]. The ground measurements were acquired
from the automatic meteorological station data provided by the
Institute of Tibetan Plateau Research (http://data.tpdc.ac.cn).
The three meteorological stations collect four-component ra-
diation every 10 min, providing important variables for the
acquisition of ground-based LST. Generally, the ground-based
LST can be calculated according to the Stefan–Boltzmann law
based on the surface upwelling and atmospheric downwelling
longwave radiation

Ts =

(
L↑ − (1− εb)L

↓

σεb

)1/4

(1)

where Ts is the derived ground-based LST, and σ is the Stefan–
Boltzmann’s constant (5.67×10−8Wm−2K−4). L↑ and L↓ are
surface upwelling and atmospheric downwelling longwave ra-
diation, respectively, and εb is the broadband emissivity, which
can be estimated by

εb = 0.2122 · ε29 + 0.3859 · ε31 + 0.4029 · ε32 (2)

where ε29, ε31 and ε32 are narrowband emissivities of MODIS
bands 29, 31, and 32, which can be obtained from the
MODIS/Aqua LST/3-band emissivity daily L3 global 1 km
product (MYD21A1) [60], [61].

For the three study areas, the reconstructed MODIS LST was
evaluated using the in situ LST at the same acquisition time.

C. Gap Filling and Spatio-Temporal Fusion Methods

FSTF implements gap filling first and then applies spatio-
temporal fusion using CLDAS LST. This section introduces
the gap filling and spatio-temporal fusion methods used in this
research.

1) Gap filling (MNSPI): Gap filling aims to reconstruct the
spatial information loss caused by cloud or other factors. Until
now, methods utilizing both spatial and temporal correlations
together are considered to be more reliable compared with
methods using either of the two. Typically, for the MNSPI
approach, a spatial-based prediction is first estimated according
to spatially neighboring information of the data with gaps, and
then a temporal-based prediction is made with the assistance
of the information in the auxiliary image. For final prediction,
the spatial-based and temporal-based predictions are weighted
according to the spatial and temporal heterogeneity.

2) Spatio-temporal fusion (STARFM, ESTARFM, VIPSTF-
SW, and SPSTFM): Spatio-temporal fusion aims at obtaining
fine spatial and temporal resolution images by combining the
advantages of images with different resolutions. Generally, the
basic mechanisms for predicting the fine spatial resolution image
Fp by spatio-temporal fusion can be summarized using the

following framework [30], [37]:

F̂p = Fk+ΔFk→p

= Fk + f(ΔCk→p) (3)

where the prediction of Fp includes two terms: the known
fine image Fk and the fine increment ΔFk→p (i.e., temporal
change) to be estimated. The first term makes use of the available
fine spatial resolution information directly, while the second
term predicts fine spatial resolution change information from
the available coarse spatial resolution data. The estimation of
ΔFk→p is the core of spatio-temporal fusion, which is cal-
culated by applying different downscaling operators f to the
coarse spatial resolution increment ΔCk→p. For STARFM, f is
a weighting function considering together the spatial, temporal,
and spectral differences of neighboring pixels [26]. Based on
STARFM, a conversion coefficient is used in ESTARFM to
describe this relationship more explicitly [27]. For VIPSTF-SW,
spatial weighting-based fusion is performed using a virtual im-
age pair that is generated by applying a linear transformation to
the original image pair [30]. For SPSTFM, ΔFk→p is estimated
by training a dictionary-pair of patches between two coarse and
fine difference image pairs [40].

D. Proposed FSTF Method

In conventional spatio-temporal fusion, when there exist spa-
tial gaps in temporally adjacent MODIS pixels, the image is
completely discarded and cloud-free auxiliary images at a more
distant time are further adopted. However, considering the great
heterogeneity of LST in the temporal dimension, this practice
can amplify the uncertainty of spatio-temporal fusion as greater
LST changes may occur when there is a large time interval
between the known and prediction times. Thus, it is necessary
to make fuller use of the important effective information in
temporally adjacent images, even when they are contaminated
by cloud. Actually, the area of influence of cloud cover in remote
sensing images varies greatly. For images with small cloud
coverage, abandoning the whole image leads to a significant
waste of valuable auxiliary data. Thus, to address this problem,
the FSTF algorithm is developed here. Note that this method
aims to reconstruct MODIS LST images with a large area of
information loss (especially for completely missing data). The
process of FSTF (green line) is shown in Fig. 2, presented with
a comparison to traditional spatio-temporal fusion (red line).

For FSTF, to predict the MODIS LST at tp, auxiliary image
pairs on other dates need to be selected. Suppose that there are
four image pairs acquired before and after the acquisition time
of tp. More precisely, tm and tn are temporally close to tp,
while the MODIS LST images contain data loss to some extent.
Image pairs acquired at tk and tl, however, are temporally further
from the predicted MODIS LST, with complete spatial coverage.
For traditional spatio-temporal fusion, image pairs acquired at tk
and tl are applied directly. Due to the great LST change occurring
from the known to prediction times, however, the reliability
of prediction remains to be examined. Alternatively, for FSTF,
MODIS LST images acquired at tm and tn are first reconstructed
using gap filling methods. Then, the complete MODIS and
CLDAS LST image pairs are included in the spatio-temporal

http://data.cma.cn/data
http://data.tpdc.ac.cn
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Fig. 2. Processing involved in the proposed FSTF and conventional spatio-temporal fusion methods.

fusion to make a final prediction. It is noted that the proposed
FSTF is a class of method that can be implemented by applying
different gap filling and spatio-temporal methods.

When reconstructing the MODIS LST time-series, we divided
the acquired MODIS LST images into three classes according
to the missing area: no gaps, small gaps (missing area less than
40%), and large gaps (missing area more than 40%). For the
small gap case, a gap filling method (i.e., MNSPI) was applied to
reconstruct the missing information with the temporally closest,
spatially complete MODIS LST images. For the large gaps
case, spatio-temporal fusion was implemented based on the
temporally closest MODIS LST image, which refers to either
the observed MODIS LST image with no gaps or filled data for
the small gaps case. By applying the above-mentioned process,
all-sky MODIS LST time-series images can be reconstructed.

E. Comparison Between FSTF and Traditional
Spatio-Temporal Fusion

For further examination of the rationale of FSTF, a theoretical
comparison between the FSTF and traditional spatio-temporal
fusion is presented. Suppose that there is a MODIS LST image
Mm acquired at a time close to the MODIS LST Mp to be
predicted, but with a small area of spatial information loss.
Also, the temporally further, spatially complete MODIS LST
Mk is available. Traditionally, spatio-temporal fusion requires
spatially complete auxiliary data. Accordingly, the prediction
for Mp is

M̂p = Mk + f1(ΔCk→p) (4)

where f1 is the downscaling function in spatio-temporal fusion,
and ΔCk→p is the CLDAS LST increment from tk to tp.

FSTF conducts spatio-temporal fusion based on the tempo-
rally close MODIS LST image Mm, even if there exists data
loss. Thus, the prediction for Mp is

M̂′
p = M̂m + f1(ΔCm→p)

= Mm_valid + M̂m_missing + f1(ΔCm→p) (5)

where Mm_valid denotes the data for the valid area of Mm

and M̂m_mis sin g is the missing area of Mm required to be

estimated. It is noted that there is no overlap between Mm_valid

and M̂m_mis sing . By applying gap filling based on Mk, (5) can
be updated as follows:

M̂′
p = Mm_valid +Mk_mis sing + f2(ΔMk→m_valid)

+ f1(ΔCm→p). (6)

In (6), Mk_mis sing are the valid data in Mk that share the
same geographical location with the missing area in Mm, and
ΔMk→m_valid is the MODIS LST increment from tk to tm for
the valid area. f2 is a spatial interpolation algorithm.

For comparison between traditional spatio-temporal fusion
and FSTF, the traditional version in (4) is altered to

M̂p = Mk + f1(ΔCk→m) + f1(ΔCm→p)

= Mk_mis sing+Mk_valid+f1(ΔCk→m)+f1(ΔCm→p)
(7)

where ΔCk→m and ΔCm→p are the CLDAS LST increments
from tk to tm and tm to tp, respectively. It is noted that f1 here
should be a linear function, which is in accordance with the
four spatio-temporal fusion methods applied in this research.
Through comparison between (7) with (6), it is found that
there are two terms differing, that is, Mk_valid + f1(ΔCk→m)
in (7) and Mm_valid + f2(ΔMk→m_valid) in (6). For the two
constant parts Mk_valid and Mm_valid, they cover the same
spatial area. However, it is clear that compared with Mk_valid,
Mm_valid is temporally closer to the prediction time and, thus,
can provide more reliable auxiliary information. The core is to
compare f1(ΔCk→m) with f2(ΔMk→m_valid). First, from the
perspective of spatial scale, f1(ΔCk→m) involves a downscal-
ing process with great uncertainty. However, f2(ΔMk→m_valid)
in FSTF is a spatial interpolation algorithm performed at the
same fine spatial resolution with the original data, which tends
to involve less uncertainty. Second, from the amount of data for
prediction, f2(ΔMk→m_valid) in FSTF needs only to predict
the data for pixels in the missing area, but f1(ΔCk→m) needs
to predict the data for all pixels in the entire region. It is widely
acknowledged that uncertainty normally exists in any prediction
process. In summary, we can conclude that FSTF tends to involve
less certainty than traditional spatio-temporal fusion.
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TABLE I
ACQUISITION TIMES OF MODIS AND CLDAS DATA UTILIZED IN THE

EXPERIMENTS

F. Implementation of the FSTF Method

The specific implementation of FSTF is as follows:

Step 1: The obtained MODIS LST time-series was classified
into three categories: complete LST image, LST image with
small gaps, and LST image with large gaps.

Step 2: The MNSPI method was applied to reconstruct the
information in the MODIS LST images with small gaps based
on the temporally closest, complete LST image.

Step 3: For MODIS LST images with large gaps, there are two
parts. First, the MNSPI method was applied to reconstruct
the missing information in the two MODIS LST images ac-
quired temporally closest, before and after the prediction time.
Second, based on the reconstructed MODIS LST images,
spatio-temporal fusion was applied to reconstruct the missing
MODIS LST image, with the assistance of the corresponding
CLDAS LST images at the three times (the prediction time
and the two known times of reconstructed MODIS LST data).

III. EXPERIMENTS

The experiments for this research are divided into two parts.
In the first experiment in Section Ⅲ-A, the proposed FSTF
method was examined in the spatial dimension. That is, the
reconstructed MODIS LST image was evaluated (predicting one
LST image at each time) by comparison with the reference image
with complete spatial coverage. According to the process of
FSTF, SectionⅢ-A presents the results of gap filling and spatio-
temporal fusion, followed by a comparison between different
spatio-temporal fusion methods to provide the FSTF version
with the greatest performance for Section Ⅲ-B. In the second
experiment in SectionⅢ-B, the performance of FSTF was tested
in the temporal dimension. That is, the reconstructed MODIS
LST time-series was evaluated based on the temporal profile
of each pixel, by referring to the in situ LST measurements.
Table I lists the acquisition times of the MODIS and CLDAS
data utilized in Experiments 1 and 2.

A. Experiment 1: Evaluation in the Spatial Dimension

To examine the feasibility of FSTF, a comparison experiment
was conducted between spatio-temporal fusion (simplified to
STF in the experiments) and FSTF. The research areas included
in this experiment were selected amongst the three regions
introduced in Section Ⅲ-A. The data are shown in Fig. 3. For
Cases 1 and 2, experimental data were selected from Region
1. While for Case 3, data were selected from Region 3. To

fully validate the performance of FSTF, both simulated and real
missing data were considered in this experiment.

For Case 1, the MODIS LST image on 2 May 2018 was
predicted. For STF, MODIS and CLDAS LST image pairs
acquired on 22 March 2018 and 6 May 2018 were used, which
are 41 and 4 days away from the prediction date, respectively. For
FSTF, we simulated gaps for MODIS LST images on 27 April
2018 and 3 May 2018, which are 5 and 1 days away from the
prediction date, respectively. Then, MNSPI was implemented to
reconstruct the simulated missing data in MODIS LST. Finally,
spatio-temporal fusion was conducted to predict MODIS LST
on 2 May 2018 based on spatial reconstructed image pairs on 27
April 2018 and 3 May 2018. The available spatially complete
MODIS LST image on 2 May 2018 was used as reference
for evaluation. Cases 2 and 3 were implemented based on real
MODIS and CLDAS data. For Case 2, MODIS LST on 31 July
2018 was predicted. The temporally closest complete MODIS
LST images, which were acquired 29 days earlier and 22 days
later than the prediction date were included in STF. For FSTF,
the temporally closest MODIS LST images with small gaps were
used, which were acquired 8 and 1 days away from the prediction
dates. For Case 3, to predict the MODIS LST image on 17 May
2020, the spatially complete MODIS LST acquired 16 and 42
days away were used for STF, while MODIS LST data with
small gaps acquired 1 and 5 days away were applied in FSTF.
Similarly, the available MODIS LST images (with no gaps) on
31 July 2018 and 17 May 2020 were used as references for
evaluation in Cases 2 and 3, respectively. For the three cases,
the STARFM, ESTARFM, SPSTFM, and VIPSTF-SW meth-
ods were applied to STF, while the four corresponding FSTF
versions were also tested. It is noted that FSTF is a class
of methods composed of a gap filling method and a spatio-
temporal fusion method. In this research, FSTF was specified
by integrating the MNSPI method and four different spatio-
temporal fusion methods (i.e., STARFM, ESTARFM, SPSTFM,
and VIPSTF-SW), which are named as STARFM-based FSTF,
ESTARFM-based FSTF, SPSTFM-based FSTF, and VIPSTF-
SW-based FSTF, respectively.

1) Gap filling: Gap filling is the first step for FSTF, the
performance of which can affect the final prediction. The gap
filling results for three cases are shown in Fig. 4. Amongst the
three cases, quantitative evaluation can be conducted for the
simulated experiment (i.e., Case 1), as the spatially complete
MODIS LST images at the corresponding time are available. For
Case 1, the correlation coefficients (CCs) for the reconstructed
MODIS LST images on 27 April 2018 and 3 May 2018 are
0.929 and 0.820, respectively. Moreover, the root mean square
errors (RMSEs) are 1.221 K and 1.142 K, respectively. As the
performance of MNSPI depends on the size and position of
missing area greatly, the accuracy varies in different gap filling
cases. Generally, the results of MNSPI for the three cases have a
satisfactory performance considering the visual continuity and
relatively harmonious hue.

2) Spatio-temporal fusion: The results of FSTF and STF are
presented in Fig. 5. Checking the fusion results, the predictions
of FSTF are visually more similar to the reference than those for
STF in most cases. Specifically, for Case 1, the values of the STF
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Fig. 3. MODIS LST data used in Experiment 1.

Fig. 4. Gap filling results of the temporally close MODIS LST images with gaps in the three cases in Experiment 1.

predictions tend to be larger than those in the reference, which
incorrectly visually present as red, especially in the middle and
upper left of the image. Generally, the ESTARFM-based and
VIPSTF-SW-based results have a color similar to the reference.
For Case 2, almost all the predictions present an overprediction
of LST. Compared with the results of STF, the predictions of all
three FSTF versions are visually more accurate and they present
more similar colors to the reference. Amongst all four versions,
the prediction of the VIPSTF-SW-based methods appears to
be the closest to the reference visually, and other predictions
overestimate the range of high-temperature area. For Case 3,
the prediction using FSTF is challenged, as the missing area
overlaps greatly in the two auxiliary MODIS LST images.
Moreover, although the MODIS LST image pairs involved

in STF are temporally further from the prediction date, the
MODIS LST image acquired on 1 May 2020 is quite similar to
the predicted MODIS LST image due to the irregular variation
of LST. Thus, in this case, FSTF may fail to produce more
satisfactory results than STF. From visual inspection, however,
FSTF presents more satisfactory results for all four versions in
the prediction of the upper half of the image, but fails to predict
the correct color in the middle of image corresponding to the
missing area in the auxiliary images.

Quantitative evaluation for spatio-temporal fusion is
implemented based on RMSE and CC, as exhibited in Table II.
For Cases 1 and 2, the accuracies of FSTF are obviously greater
than for STF. For Case 1, the RMSEs of STARFM-based,
ESTARFM-based, SPSTFM-based, and VIPSTF-SW-based
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Fig. 5. Results of STF and FSTF in Experiment 1.

TABLE II
ACCURACIES FOR THE THREE CASES IN EXPERIMENT 1

FSTF predictions are 3.146, 0.949, 3.424, and 2.054 K smaller
than for the original methods. In addition, the corresponding CCs
of the FSTF versions are 0.012, 0.045, 0.171, and 0.032 larger
than for the four original methods. Amongst all the predictions,
SPSTFM-based FSTF produces the smallest RMSE of 2.071 K
and the largest CC of 0.872. For Case 2, the RMSEs of
STARFM-based, ESTARFM-based, SPSTFM-based, and
VIPSTF-SW-based FSTF are 2.980, 1.621, 2.651, and 3.893 K
smaller than for the corresponding original methods. Overall,

VIPSTF-SW-based FSTF produces the smallest RMSE of
4.890 K and largest CC of 0.784. For Case 3, FSTF produces
less accurate predictions than the original methods, which
corresponds to the visual inspection. Actually, in most cases,
LST acquired within a few days tends to be more similar, while
LST acquired more than half a month differs more according
to the natural variation in temperature. Objectively, when the
MODIS LST images were acquired temporally further away,
but are more similar in value to the prediction date, FSTF may
fail to produce more accurate prediction. This kind of extreme
situation, however, is rare in practice, which requires subjective
inspection in the auxiliary data selection process. Thus, in
spatio-temporal fusion, temporally closer image pairs are still
a preferable choice for fusion. To avoid the contingency of the
experiment, examination of the temporal dimension will be
conducted in Section Ⅲ-B, with the mission of reconstructing
MODIS LST time-series.

3) Comparison between different spatio-temporal fusion
methods: In this research, four spatio-temporal fusion methods
(i.e., STARFM, ESTARFM, SPSTFM, and VIPSTF-SW) were
applied to both STF and FSTF. From visual inspection, the
results of the four methods seem to be similar, for both STF and
FSTF versions. Checking the quantitative evaluation results, it is
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Fig. 6. MODIS LST time-series for the three regions in Experiment 2.

found that the ESTARFM-based and VIPSTF-SW-based meth-
ods tend to be more accurate for both the STF and FSTF versions.
It is noted that although the predictions of SPSTFM-based FSTF
have the largest CC and smallest RMSE for Case 1, its accuracy
declines greatly for Cases 2 and 3. While VIPSTF-SW-based
FSTF produces the second largest CC of 0.868 for Case 1, and the
largest CC and the smallest RMSE for Case 2. Specifically, the
CC of VIPSTF-SW-based FSTF for Case 2 is 0.040, 0.001, and
0.050 larger than for STARFM-based, ESTARFM-based, and
SPSTFM-based FSTF, respectively. For RMSE, VIPSTF-SW-
based FSTF is 1.835 K, 1.456 K, and 1.365 K smaller than for
STARFM-based, ESTARFM-based, and SPSTFM-based FSTF,
respectively. For Case 3, ESTARFM-based STF produces the
largest CC of 0.965 and the smallest RMSE of 2.601 K, while the
performance of the four methods in FSTF is relatively similar.
Considering the relative performances of the four methods in this
examination of the spatial dimension, the VIPSTF-SW-based
method will be applied to the following experiments in the
temporal dimension.

B. Experiment 2: Evaluation in the Temporal Dimension

To examine the performance of FSTF in the temporal dimen-
sion, MODIS LST images covering a period of a few months
were selected, as shown in Fig. 6. Specifically, images from
1 March 2018 to 31 August 2018, 1 March 2018 to 30 June
2018 and 1 May 2020 to 31 August 2020 were considered
for Regions 1–3, respectively. Checking the LST image types
defined in Section Ⅱ-D for the three regions, there are 13,
5, and 4 images with no gaps in the three regions, with a
proportion of 7.07%, 4.1%, and 3.25% amongst all available

MODIS LST images for Regions 1–3, respectively. Obviously,
as cloud contamination tends to be a normal phenomenon, the
number of spatially complete MODIS LST is limited. Amongst
all three regions, the number of images with large gaps tends
to be the largest, occupying 53.26%, 51.64%, and 63.41% for
Regions 1–3, respectively. Considering the composition of the
three types of images for the three regions, reconstruction of the
MODIS LST time-series in Region 3 is the most challenging.
Partial reconstruction results of the VIPSTF-SW-based STF and
FSTF methods are shown in Fig. 7. Generally, the reconstruction
results have a fine spatial continuity and accord with the law of
the natural change of LST. For several days, the reconstruction
results of STF and FSTF differ greatly, such as the results on
20 August for Region 1, 4 April for Region 2, and 21 July for
Region 3.

To quantify the reconstruction accuracy for the three regions,
the in situ LST measurements for Zhangye wetland station,
Huailai station, and Huazhaizi desert station were applied for
Regions 1–3, respectively, as shown in Fig. 8. The left column
presents the predictions for STF and FSTF at the location of
the stations and the in situ measurements. To present the differ-
ences between the predictions of STF and FSTF more clearly,
the absolute difference between the prediction and the in situ
measurements is shown in the right column (Fig. 8). Generally,
the prediction of FSTF is closer to the measured LST than that
for STF for the three regions. For Region 1, as the number of
spatially complete MODIS LST images is relatively large, the
predictions of STF and FSTF appear to be similar on most dates.
As can be seen from Fig. 8(b), however, the absolute difference
for FSTF on the first half of the dates is smaller than that for
STF, and the performances of these two methods in the second
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Fig. 7. MODIS LST time-series reconstruction results (partial) in Experiment 2.

Fig. 8. Accuracy for reconstruction of daily MODIS LST. (a) Predicted LST for Region 1. (b) Absolute difference for Region 1. (c) Predicted LST for Region
2. (d) Absolute difference for Region 2. (e) Predicted LST for Region 3. (f) Absolute difference for Region 2.
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Fig. 9. Error distributions for the reconstruction of daily MODIS LST.

Fig. 10. Scatter plots for the reconstruction of daily MODIS LST.

half of the dates are close to each other. For Region 2, it can
be noted in Fig. 8(c) that the green line is closer to the in situ
LST measurements, indicating the greater performance of FSTF.
Again, the prediction of FSTF also presents a smaller absolute
difference in Fig. 8(d). For Region 3, both Fig. 8(e) and (f)
indicate that the predicted LST of FSTF is closer to the measured
LST on most dates.

To examine the overall performance, the error distributions
and scatterplots between the predictions and in situ data are
shown in Figs. 9 and 10, respectively. In Fig. 9, it is noted that
for all three regions, the error of FSTF is closer to zero compared
with STF. In Fig. 10, for all three regions, the scatter plots of

TABLE III
ACCURACY OF RECONSTRUCTION OF THE MODIS LST TIME-SERIES

FSTF against the in situ data are closer to the y = x line and are
more aggregated compared with those for STF and the in situ
data. To further evaluate the overall accuracy, the mean absolute
error (MAE), RMSE, and coefficient of determination (R2) were
calculated, as shown in Table III. Checking the three indices,
the FSTF predictions present greater accuracy generally. More
precisely, the MAEs of FSTF are 0.683 K, 1.273 K, and 2.447 K
smaller than those for STF for Regions 1 to 3, respectively.
Furthermore, FSTF produces RMSEs that are 0.666, 0.900, and
2.189 K smaller than for STF for the three regions. Thus, when
reconstructing LST time-series with large spatial gaps, FSTF
can produce greater accuracy.

IV. DISCUSSION

A. Prediction of 1 Km Hourly MODIS LST Data

As presented in the Introduction, the CLDAS product can
provide 7 km hourly LST. To reconstruct all-sky LST, this article
utilized the CLDAS LST at the same acquisition time of MODIS
LST for reconstruction. Ultimately, MODIS LST time-series
were generated by FSTF. Although this research produces 1 km
spatial resolution daily LST, the temporal resolution may be
coarse for studies on diurnal variation in LST. Actually, with the
reconstructed daily 1 km MODIS LST and 7 km hourly CLDAS
LST, there exists a great possibility to obtain hourly MODIS-like
LST by inheriting the spatial resolution of MODIS LST and
temporal resolution of CLDAS. This process can be realized
directly by employing spatio-temporal fusion. Once the spatially
complete MODIS-CLDAS LST image pair at one time point in
a day is acquired, it can be regarded as the known fine-coarse
image pair. Thus, by fusing with CLDAS at other times during
the day, 1 km LST for the other 23 h in a day can be predicted.

Taking the reconstruction of hourly 1 km LST on May 1 to
May 10 for Region 1 as an example, the reconstruction results are
shown in Fig. 11. To obtain a more reliable prediction, the former
and latter temporally closest MODIS-CLDAS LST image pairs
were applied for spatio-temporal fusion. For example, when
reconstructing the 1 km LST at UTC 7:00 on May 2, the MODIS-
CLDAS LST image pairs at UTC 4:00 on May 2 and May 3,
together with the CLDAS at UTC 7:00 on May 2 were included.
Checking the reconstruction results, the variation of LST within
a day is reconstructed, as the LST increases from UTC 0:00 to
6:00 and decreases from UTC 6:00 to 23:00. Also, the variation
of LST presents temporal continuity, which is in accordance with
the common expectation that LST changes gradually over time.
Generally, the reconstruction of 1 km hourly LST is feasible from
visual inspection. The reconstructed 1 km hourly LST images
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Fig. 11. Prediction of hourly MODIS LST data.

have great potential for research on diurnal variation in LST
across different land cover types. Note that when generating
1 km hourly LST, the errors may accumulate and, thus, it is
important to ensure a high accuracy of any previous daily LST
reconstruction based on FSTF.

B. Flexibility of FSTF

In this article, a FSTF method is proposed to reconstruct
all-sky MODIS LST images with the assistance of CLDAS data.
FSTF includes two steps: gap filling and spatio-temporal fusion.
By integrating a typical gap filling method (i.e., MNSPI) and
one of the four spatio-temporal fusion methods (i.e., STARFM,
ESTARFM, SPSTFM, and VIPSTF-SW), four specific forms
of FSTF were developed in this article. As the two parts to-
gether determine the accuracy of FSTF, to further increase the
reconstruction accuracy, it is of great need to explore more
forms of FSTF by combining more powerful gap filling and
spatio-temporal fusion methods. For gap filling, more spatial-
temporal information-based methods can be considered, such
as deep learning-based methods. The key issue would be to
collect sufficient reliable training data based on the platform of
a high performance computer. For spatio-temporal fusion, the
four algorithms included in this article are spatial weighting-
based methods and machine learning-based methods. In future
research, the performance of FSTF may be improved by de-
veloping other spatio-temporal fusion methods, such as hybrid
methods and deep learning-based methods. In potential models,
it would be crucial to account for the change pattern of LST over
time. Moreover, it is noted that the FSTF method proposed in this
article implements gap filling and spatio-temporal fusion with
images at just one or two time points. Actually, there exists great
spatial and temporal correlation between the image time-series
to be reconstructed. In future research, an extended FSTF version
integrating the information of the image time-series deserves to
be developed for more reliable reconstruction.

C. Potential of FSTF

The FSTF method proposed in this article aims at reconstruct-
ing large areas of data loss in MODIS LST, thus, contributing
to the generation of all-sky MODIS LST products. It has great
potential for updating the current MODIS LST product at the
global scale. Furthermore, FSTF has the potential to be applied
to more situations. First, FSTF can help to generate all-sky LST
with finer spatial resolution by blending the predicted all-sky
MODIS LST product with a finer spatial resolution, but coarser
temporal resolution product. For example, the Landsat-8 TIR
band can provide 100 m spatial resolution LST every 16 days,
but also encounters the problem of spatial information loss.
In this case, FSTF can be applied to reconstruct Landsat LST
with data loss by fusing with all-sky 1 km MODIS LST, thus,
generating all-sky 100 m LST. Second, other than LST, FSTF
has the potential to support the reconstruction of other surface
observation data. Generally, FSTF has the ability to reconstruct
fine spatial resolution products with data loss by fusing with
spatially complete products of the same type, but with coarser
spatial resolution and finer temporal resolution. Actually, miss-
ing data is a common problem in surface observation products,
as many products are generated from optical remote sensing
images, which always face the issue of cloud contamination.

D. Uncertainty in FSTF and Validation

The FSTF method proposed in this article provides a new
approach for reconstructing MODIS LST images. However, it
is a method composed of multiple steps and, importantly, its
performance relies heavily on the pregap filling process. As
MNSPI cannot produce a perfect prediction, the error caused by
gap filling may propagate to the postspatio-temporal fusion step.
Thus, the impact of the error caused by the pregap filling process
should be considered when applying spatio-temporal fusion.
Moreover, it would also be worthwhile to explore a one-stage
method that can realize gap filling and spatio-temporal fusion
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in a unified framework, where the uncertainty can be handled
jointly.

In situ time-series data were employed for accuracy validation
of FSTF in the temporal domain, due to a lack of real, spatially
complete reference data. In practice, due to the lack of alternative
data, in situ measurements serve as a common choice for evalua-
tion of predicted LST time-series [58], [59]. However, there may
exist errors in the reference data themselves, not least since the
automatic meteorological stations are installed on towers instead
of on the ground. Thus, when using in situ LST data to evaluate
the accuracy of FSTF, uncertainties remain and these should be
further investigated. In future research, ground measurements
with greater reliability are expected to be explored to provide a
more critical validation system.

FSTF provides a new means for making full utilization of the
available data, and in this research was demonstrated to be more
accurate than the conventional spatio-temporal fusion methods
used widely for LST reconstruction in recent studies [8], [12],
[19]. Moreover, the MODIS LST time-series reconstructed by
FSTF tends to be closer to the in situ time-series data in the
temporal trend [see Fig. 8(a), (c), and (e)]. Future research should
explore ways to increase the accuracy of FSTF further to meet
various research demands. In particular, in future research it
would be interesting to further increase the accuracy of FSTF
by involving multisource data and optimizing the integration of
gap filling and spatio-temporal fusion methods.

V. CONCLUSION

As an important sensor for global monitoring, MODIS can
provide 1 km LST every day, but is affected by different degrees
of spatial information loss. For generation of an all-sky MODIS
LST product, it is both necessary, and a great challenge, to
reconstruct images with large gaps, especially for completely
missing data in a local area of interest. This article proposes a
FSTF method for reconstructing MODIS LST time-series with
the assistance of CLDAS LST data. By integrating effectively
gap filling and spatio-temporal fusion methods, FSTF provides
a practical solution for all-sky MODIS LST time-series gener-
ation. Based on the experiments conducted in three regions, the
following main conclusions are made.

1) FSTF is able to take full advantage of temporally close
MODIS LST data with small gaps and can produce greater
reconstruction accuracy than the original spatio-temporal
fusion.

2) CLDAS is a type of effective auxiliary data for recon-
structing MODIS LST with large gaps.

3) VIPSTF-SW-based FSTF is generally superior to
STARFM-based and ESTARFM-based FSTF.
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